3,150 research outputs found

    Homomorphisms and polynomial invariants of graphs

    Get PDF
    This paper initiates a general study of the connection between graph homomorphisms and the Tutte polynomial. This connection can be extended to other polynomial invariants of graphs related to the Tutte polynomial such as the transition, the circuit partition, the boundary, and the coboundary polynomials. As an application, we describe in terms of homomorphism counting some fundamental evaluations of the Tutte polynomial in abelian groups and statistical physics. We conclude the paper by providing a homomorphism view of the uniqueness conjectures formulated by Bollobás, Pebody and Riordan.Ministerio de Educación y Ciencia MTM2005-08441-C02-01Junta de Andalucía PAI-FQM-0164Junta de Andalucía P06-FQM-0164

    Graph homomorphisms, the Tutte polynomial and “q-state Potts uniqueness”

    Get PDF
    We establish for which weighted graphs H homomorphism functions from multigraphs G to H are specializations of the Tutte polynomial of G, answering a question of Freedman, Lov´asz and Schrijver. We introduce a new property of graphs called “q-state Potts uniqueness” and relate it to chromatic and Tutte uniqueness, and also to “chromatic–flow uniqueness”, recently studied by Duan, Wu and Yu.Ministerio de Educación y Ciencia MTM2005-08441-C02-0

    From the Ising and Potts models to the general graph homomorphism polynomial

    Full text link
    In this note we study some of the properties of the generating polynomial for homomorphisms from a graph to at complete weighted graph on qq vertices. We discuss how this polynomial relates to a long list of other well known graph polynomials and the partition functions for different spin models, many of which are specialisations of the homomorphism polynomial. We also identify the smallest graphs which are not determined by their homomorphism polynomials for q=2q=2 and q=3q=3 and compare this with the corresponding minimal examples for the UU-polynomial, which generalizes the well known Tutte-polynomal.Comment: V2. Extended versio

    Distinguishing graphs by their left and right homomorphism profiles

    Get PDF
    We introduce a new property of graphs called ‘q-state Potts unique-ness’ and relate it to chromatic and Tutte uniqueness, and also to ‘chromatic–flow uniqueness’, recently studied by Duan, Wu and Yu. We establish for which edge-weighted graphs H homomor-phism functions from multigraphs G to H are specializations of the Tutte polynomial of G, in particular answering a question of Freed-man, Lovász and Schrijver. We also determine for which edge-weighted graphs H homomorphism functions from multigraphs G to H are specializations of the ‘edge elimination polynomial’ of Averbouch, Godlin and Makowsky and the ‘induced subgraph poly-nomial’ of Tittmann, Averbouch and Makowsky. Unifying the study of these and related problems is the notion of the left and right homomorphism profiles of a graph.Ministerio de Educación y Ciencia MTM2008-05866-C03-01Junta de Andalucía FQM- 0164Junta de Andalucía P06-FQM-0164
    corecore