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Abstract

We establish for which weighted graphs H homomorphism functions from multi-
graphs G to H are specializations of the Tutte polynomial of G, answering a question
of Freedman, Lovész and Schrijver.

We introduce a new property of graphs called “g-state Potts uniqueness” and re-
late it to chromatic and Tutte uniqueness, and also to “chromatic—flow uniqueness”,
recently studied by Duan, Wu and Yu.
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1 Introduction

In [7] it was shown that evaluations of the ¢-state Potts partition function of
a graph G are the only evaluations of the Tutte polynomial of G that are also
homomorphism counting functions from G to a multigraph H. We extend this
result to homomorphisms from G to an edge-weighted graph H (Theorem 2.3).
This answers a question of Freedman, Lovédsz and Schrijver [6, Example 3.3].

The search for chromatically unique graphs has been an active area of re-
search [10,11] ever since Read introduced the concept of chromatically equiv-
alent graphs in 1968. Interest has spread to polynomial invariants related to
the chromatic polynomial, such as the Tutte polynomial [12] and flow poly-
nomial [5]. We initiate here the study of “g-state Potts equivalent” graphs
and “g-state Potts uniqueness”, focussing on the case ¢ = 2. We remark how-
ever that there are examples of graphs that are 2-state Potts equivalent but
not g¢-state Potts equivalent for ¢ > 3. The 2-state Potts partition function
is not only a specialization of the Tutte polynomial but also of the “Ising
polynomial” of Andrén and Markstrom [2]: a pair of Tutte equivalent or “iso-
magnetic” graphs are also 2-state Potts equivalent.

2 Homomorphisms and the Tutte polynomial

A homomorphism from a multigraph G to a multigraph H is a function from
V(G) to V(H) which takes edges of G to edges of H (preserving parallel
classes). The function hom(G, H) counting the number of homomorphisms
from a multigraph G to H is extended to edge-weighted graphs H with adja-
cency matrix A(H) = (h,,) by setting

hom(G, H) = Z H LIONIOF

FV(G)—V (H) ijeE(G)

The vector (hom(G, H) : H € H) is called the right H-profile of G, and the
vector (hom(G, H) : G € G) the left G-profile of H.
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As usual Cy, P, and K}, denote the cycle, path and complete graph on k
vertices.

Example 2.1 If G = {P} U{C}, : k > 1} then the left G-profiles of H and
H' are the same if and only if H and H' are cospectral. (See [8].)

If H={K,:q> 1} then G and G’ have the same right H-profile if and
only if G and G’ are chromatically equivalent.

We denote by T(G;x,y) the Tutte polynomial of G and by P(G;q,y) the
q-state Potts partition function of GG. These polynomials are related by the
equation P(G;q,y) = ¢"D(y — 1)"OT(G; %Tliq,y); taking y = 0 gives the
chromatic polynomial.

Say a function h on multigraphs is G-local if it takes non-zero values and has
the property that for each G' € G the quotients h(G)/h(G/e) and h(G)/h(G\e)
each depend only on whether e is a bridge, loop or ordinary edge.

Let K g’b denote the edge-C-weighted complete graph on ¢ vertices with
loops attached at each vertex, having weight a on loops and weight b on non-
loops. It is an easy consequence of definitions that P(G;¢q,y) = hom(G, K, 371)
for y € C. A multigraph can be regarded as an edge-N-weighted graph with
edge weights indicating multiplicities. The proof of [7, Theorem 2.7] yields
the following:

Theorem 2.2 Let H be a connected multigraph and G = {Kf’o, Kg’k, Ch, Py :
k > 1}. The following statements are equivalent:

(i) There exist x,y € Q and a G-local function h such that hom(G, H) =
MG)T(G;x,y) for every graph G € G.

(ii) There exist a,b,q € N, ¢ > 1, such that H = K;"b.

Theorem 2.2 implies that Kg’b for a,b € N is amongst connected multi-
graphs determined by its left {Kf’o, Kg’k, C, Py : k > 1}-profile. The star on
k + 1 vertices is denoted by K j; Ki 0 = P, is an isolated vertex.

Theorem 2.3 For any a,b € C the graph Kg’b 18 determined up to isomor-
phism amongst all edge-C-weighted graphs by its left {Cy, K15 : 0 < k < q}-
profile.

Proof (sketch) The adjacency matrix of a graph with the same {K;; : 0 <
k < q}-profile as Kg’b must be a ¢ X ¢ matrix with constant row and column
sums a + (¢ — 1)b. A symmetric matrix cospectral with the adjacency matrix
(@ —b)I +bJ of K g’b is also similar to it by the spectral theorem. These two
facts suffice to determine that the adjacency matrix of a graph with the same



{Ck, K1 : 0 < k < g}-profile as Kg’b must equal (a — b)I + bJ. O

It can also be shown [8] that K g’b is amongst edge-C-weighted graphs
determined by its left {K7°, K3* : 0 < k < q}-profile. We also note that [6,
Example 3.3] includes the result that there is an edge-R-weighted graph H such
that hom(G, H) = (1—2)¥9(1—y)VIT(G; z,y) if and only if (z—1)(y—1) = ¢
for integers ¢ > 1. This provides an alternative proof of Theorem 2.2 in the
case where G is the set of all multigraphs.

3 ¢-state Potts uniqueness

A multigraph G is Tutte unique if T(G;z,y) = T(G'; x,y) implies G = G, for
every other graph G’. The following is motivated by Theorem 2.2:

Definition 3.1 [7] A multigraph is colouring unique if it is determined by its
right {K¥' : ¢,y € N}-profile.

Our main result here is the following:

Theorem 3.2 A multigraph G is Tutte unique if and only if it is colouring
UnIque.

Proof (sketch) P(G;q,y) for ¢,y € N includes all evaluations of T'(G; x, y)
at (x,y) for integers x,y > 2. Use [1, Lemma 2.1] to prove T(G;x,y) is
determined by interpolation of its values on a sufficiently large rectangle of
integer points (x,y), xz,y > 2. O

Having proved Theorem 3.2 it is natural to consider either fixing y or fixing
¢ in Definition 3.1. The former includes chromatic uniqueness (y = 0) and
flow uniqueness (y =1 — q).

Definition 3.3 A multigraph is ¢-state Potts unique if it is determined by its
right { K%' : y € N}-profile.

We focus on g = 2, the case of the Ising model. On the one hand we can
list a number of graph invariants determined by the 2-state Potts partition
function of G, such as for each 0 < i < |E(G)| the number of Eulerian
subgraphs of G of size i. On the other hand we have examples that show
that some invariants are not (such as connectedness). There remain many
invariants of G which we neither know to be determined by P(G;2,y) nor the
contrary.

Graphs such as the wheel W5 shown to be “chromatic—flow unique” by
Duan, Wu and Yu [5] are also 2-state Potts unique. We prove the following;:



Theorem 3.4 The ladders Ly for k > 6, Mobius ladders My for k > 4 and
squares of cycles C¢ for k > 10 are all 2-state Potts unique.

Proof (sketch) Most graph invariants obtained from the chromatic and flow
polynomial used in the proofs in [5] are also determined by the 2-state Potts
partition function; if not, then a minor change of argument suffices. O

Let 0(ay, ..., as) denote the s-bridge graph consisting of internally disjoint
paths of lengths aq, ..., as joining two terminal vertices. The flow polynomial
F(G;q) cannot distinguish any pair of s-bridge graphs: it is always equal to
¢ H(g—1)*+(=1)*(g—1)]. Chen et al. [4] (see also [11]) establish the equiv-
alence classes to which s-bridge graphs belong under chromatic equivalence.

Proposition 3.5 Non-isomorphic multibridge graphs 0(aq, ..., as) have dif-
ferent 2-state Potts partition functions.

The sizes of the Eulerian subgraphs of 0(2,2,3,4) are 0,4,5,5,6,6,7,11
and those of 0(2,3,3) edge-glued with Cy are 0,4,5,5,6,7,8,9. Hence these
graphs have different 2-state Potts partition functions, whereas they have the
same chromatic polynomial [11].

4 Conclusion

The problem of determining a graph by its left or right profile has been studied
in various contexts, leading to interesting notions of left- and right-convergence
(see [3] for a survey) and homomorphism dualities (see for example [9]). Here
we have seen how Tutte uniqueness corresponds to being determined by a
right profile by weighted complete graphs (Theorem 3.2). Moreover, graphs
in this family are determined by their left profile by cycles and stars (Theo-
rem 2.3). The theory of graph homomorphisms provides a fresh perspective on
old problems about polynomial graph invariants as well as raising interesting
new questions, some of which are explored in a forthcoming paper [8].
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