1,107 research outputs found

    Cores of Countably Categorical Structures

    Full text link
    A relational structure is a core, if all its endomorphisms are embeddings. This notion is important for computational complexity classification of constraint satisfaction problems. It is a fundamental fact that every finite structure has a core, i.e., has an endomorphism such that the structure induced by its image is a core; moreover, the core is unique up to isomorphism. Weprove that every \omega -categorical structure has a core. Moreover, every \omega-categorical structure is homomorphically equivalent to a model-complete core, which is unique up to isomorphism, and which is finite or \omega -categorical. We discuss consequences for constraint satisfaction with \omega -categorical templates

    Permutation monoids and MB-homogeneity for graphs and relational structures

    Get PDF
    In this paper we investigate the connection between infinite permutation monoids and bimorphism monoids of first-order structures. Taking our lead from the study of automorphism groups of structures as infinite permutation groups and the more recent developments in the field of homomorphism-homogeneous structures, we establish a series of results that underline this connection. Of particular interest is the idea of MB-homogeneity; a relational structure M is MB-homogeneous if every monomorphism between finite substructures of M extends to a bimorphism of M. The results in question include a characterisation of closed permutation monoids, a Fraisse-like theorem for MB-homogeneous structures, and the construction of 2ℵ0 pairwise non-isomorphic countable MB-homogeneous graphs. We prove that any finite group arises as the automorphism group of some MB-homogeneous graph and use this to construct oligomorphic permutation monoids with any given finite group of units. We also consider MB-homogeneity for various well-known examples of homogeneous structures and in particular give a complete classification of countable homogeneous undirected graphs that are also MB-homogeneous

    New Ramsey Classes from Old

    Full text link
    Let C_1 and C_2 be strong amalgamation classes of finite structures, with disjoint finite signatures sigma and tau. Then C_1 wedge C_2 denotes the class of all finite (sigma cup tau)-structures whose sigma-reduct is from C_1 and whose tau-reduct is from C_2. We prove that when C_1 and C_2 are Ramsey, then C_1 wedge C_2 is also Ramsey. We also discuss variations of this statement, and give several examples of new Ramsey classes derived from those general results.Comment: 11 pages. In the second version, to be submitted for journal publication, a number of typos has been removed, and a grant acknowledgement has been adde
    • …
    corecore