85 research outputs found

    Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    Full text link

    Adaptive Hybrid Visual Servo Regulation of Mobile Robots Based on Fast Homography Decomposition

    Get PDF
    For the monocular camera-based mobile robot system, an adaptive hybrid visual servo regulation algorithm which is based on a fast homography decomposition method is proposed to drive the mobile robot to its desired position and orientation, even when object’s imaging depth and camera’s position extrinsic parameters are unknown. Firstly, the homography’s particular properties caused by mobile robot’s 2-DOF motion are taken into account to induce a fast homography decomposition method. Secondly, the homography matrix and the extracted orientation error, incorporated with the desired view’s single feature point, are utilized to form an error vector and its open-loop error function. Finally, Lyapunov-based techniques are exploited to construct an adaptive regulation control law, followed by the experimental verification. The experimental results show that the proposed fast homography decomposition method is not only simple and efficient, but also highly precise. Meanwhile, the designed control law can well enable mobile robot position and orientation regulation despite the lack of depth information and camera’s position extrinsic parameters

    Homography-Based Tracking Control for Mobile Robots

    Get PDF
    This work presents a control strategy that allows a follower robot to track a target vehicle moving along an unknown trajectory with unknown velocity. It uses only artificial vision to establish both the robot’s position and orientation relative to the target. The control system is proved to be asymptotically stable at the equilibrium point, which corresponds to the navigation objective. Experimental results with two robots, a leader and a follower, are included to show the performance of the proposed vision-based tracking control system

    Alignment control using visual servoing and mobilenet single-shot multi-box detection (SSD): a review

    Get PDF
    The concept is highly critical for robotic technologies that rely on visual feedback. In this context, robot systems tend to be unresponsive due to reliance on pre-programmed trajectory and path, meaning the occurrence of a change in the environment or the absence of an object. This review paper aims to provide comprehensive studies on the recent application of visual servoing and DNN. PBVS and Mobilenet-SSD were chosen algorithms for alignment control of the film handler mechanism of the portable x-ray system. It also discussed the theoretical framework features extraction and description, visual servoing, and Mobilenet-SSD. Likewise, the latest applications of visual servoing and DNN was summarized, including the comparison of Mobilenet-SSD with other sophisticated models. As a result of a previous study presented, visual servoing and MobileNet-SSD provide reliable tools and models for manipulating robotics systems, including where occlusion is present. Furthermore, effective alignment control relies significantly on visual servoing and deep neural reliability, shaped by different parameters such as the type of visual servoing, feature extraction and description, and DNNs used to construct a robust state estimator. Therefore, visual servoing and MobileNet-SSD are parameterized concepts that require enhanced optimization to achieve a specific purpose with distinct tools

    Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    Full text link

    Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    Full text link

    Pool testing of AUV visual servoing for autonomous inspection

    Full text link
    • …
    corecore