121 research outputs found

    Coherent Resonat millenial-scale climate transitions triggered by massive meltwater pulses

    Get PDF
    The role of mean and stochastic freshwater forcing on the generation of millennial-scale climate variability in the North Atlantic is studied using a low-order coupled atmosphere–ocean–sea ice model. It is shown that millennial-scale oscillations can be excited stochastically, when the North Atlantic Ocean is fresh enough. This finding is used in order to interpret the aftermath of massive iceberg surges (Heinrich events) in the glacial North Atlantic, which are characterized by an excitation of Dansgaard–Oeschger events. Based on model results, it is hypothesized that Heinrich events trigger Dansgaard–Oeschger cycles and that furthermore the occurrence of Heinrich events is dependent on the accumulated climatic effect of a series of Dansgaard–Oeschger events. This scenario leads to a coupled ocean–ice sheet oscillation that shares many similarities with the Bond cycle. Further sensitivity experiments reveal that the timescale of the oscillations can be decomposed into stochastic, linear, and nonlinear deterministic components. A schematic bifurcation diagram is used to compare theoretical results with paleoclimatic data

    Basin bifurcations, oscillatory instability and rate-induced thresholds for AMOC in a global oceanic box model

    Get PDF
    The Atlantic Meridional Overturning Circulation (AMOC) transports substantial amounts of heat into the North Atlantic sector, and hence is of very high importance in regional climate projections. The AMOC has been observed to show multi-stability across a range of models of different complexity. The simplest models find a bifurcation associated with the AMOC `on' state losing stability that is a saddle node. Here we study a physically derived global oceanic model of Wood {\em et al} with five boxes, that is calibrated to runs of the FAMOUS coupled atmosphere-ocean general circulation model. We find the loss of stability of the `on' state is due to a subcritical Hopf for parameters from both pre-industrial and doubled CO2{}_2 atmospheres. This loss of stability via subcritical Hopf bifurcation has important consequences for the behaviour of the basin of attraction close to bifurcation. We consider various time-dependent profiles of freshwater forcing to the system, and find that rate-induced thresholds for tipping can appear, even for perturbations that do not cross the bifurcation. Understanding how such state transitions occur is important in determining allowable safe climate change mitigation pathways to avoid collapse of the AMOC.Comment: 18 figure

    Oscillators and relaxation phenomena in Pleistocene climate theory

    Get PDF
    Ice sheets appeared in the northern hemisphere around 3 million years ago and glacial-interglacial cycles have paced Earth's climate since then. Superimposed on these long glacial cycles comes an intricate pattern of millennial and sub-millennial variability, including Dansgaard-Oeschger and Heinrich events. There are numerous theories about theses oscillations. Here, we review a number of them in order to draw a parallel between climatic concepts and dynamical system concepts, including, in particular, the relaxation oscillator, excitability, slow-fast dynamics and homoclinic orbits. Namely, almost all theories of ice ages reviewed here feature a phenomenon of synchronisation between internal climate dynamics and the astronomical forcing. However, these theories differ in their bifurcation structure and this has an effect on the way the ice age phenomenon could grow 3 million years ago. All theories on rapid events reviewed here rely on the concept of a limit cycle in the ocean circulation, which may be excited by changes in the surface freshwater surface balance. The article also reviews basic effects of stochastic fluctuations on these models, including the phenomenon of phase dispersion, shortening of the limit cycle and stochastic resonance. It concludes with a more personal statement about the potential for inference with simple stochastic dynamical systems in palaeoclimate science. Keywords: palaeoclimates, dynamical systems, limit cycle, ice ages, Dansgaard-Oeschger eventsComment: Published in the Transactions of the Philosophical Transactions of the Royal Society (Series A, Physical Mathematical and Engineering Sciences), as a contribution to the Proceedings of the workshop on Stochastic Methods in Climate Modelling, Newton Institute (23-27 August). Philosophical Transactions of the Royal Society (Series A, Physical Mathematical and Engineering Sciences), vol. 370, pp. xx-xx (2012); Source codes available on request to author and on http://www.uclouvain.be/ito

    An Organizing Center for Thermohaline Excitability

    Get PDF
    The bifurcation behavior of a conceptual heat–salt oscillator model is analyzed by means of numerical continuation methods. A global (homoclinic) bifurcation acts as an organizing center for the dynamics of the simplified convective model. It originates from a codimension-2 bifurcation in an extended parameter space. Comparison with earlier work by Cessi shows that the intriguing stochastic thermohaline excitability can be understood from the bifurcation structure of the model. It is argued that global bifurcations may play a crucial role in determining long-term variability of the thermohaline circulation

    Millennial Variability in an Idealized Ocean Model: Predicting the AMOC Regime Shifts

    No full text
    A salient feature of paleorecords of the last glacial interval in the North Atlantic is pronounced millennial variability, commonly known as Dansgaard–Oeschger events. It is believed that these events are related to variations in the Atlantic meridional overturning circulation and heat transport. Here, the authors formulate a new low-order model, based on the Howard–Malkus loop representation of ocean circulation, capable of reproducing millennial variability and its chaotic dynamics realistically. It is shown that even in this chaotic model changes in the state of the meridional overturning circulation are predictable. Accordingly, the authors define two predictive indices which give accurate predictions for the time the circulation should remain in the on phase and then stay in the subsequent off phase. These indices depend mainly on ocean stratification and describe the linear growth of small perturbations in the system. Thus, monitoring particular indices of the ocean state could help predict a potential shutdown of the overturning circulation

    Dansgaard-Oeschger events: tipping points in the climate system

    Get PDF
    Dansgaard-Oeschger events are a prominent mode of variability in the records of the last glacial cycle. Various prototype models have been proposed to explain these rapid climate fluctuations, and no agreement has emerged on which may be the more correct for describing the paleoclimatic signal. In this work, we assess the bimodality of the system reconstructing the topology of the multi--dimensional attractor over which the climate system evolves. We use high-resolution ice core isotope data to investigate the statistical properties of the climate fluctuations in the period before the onset of the abrupt change. We show that Dansgaard-Oeschger events have weak early warning signals if the ensemble of events is considered. We find that the statistics are consistent with the switches between two different climate equilibrium states in response to a changing external forcing (e.g. solar, ice sheets...), either forcing directly the transition or pacing it through stochastic resonance. These findings are most consistent with a model that associates Dansgaard-Oeschger with changing boundary conditions, and with the presence of a bifurcation point.Comment: Final typeset version freely available at: Clim. Past, 9, 323-333, 2013 www.clim-past.net/9/323/2013/ doi:10.5194/cp-9-323-201

    Homoclinic bifurcations in the quasi-geostrophic double-gyre circulation

    Get PDF
    The wind-driven double-gyre circulation in a rectangular basin goes through several dynamical regimes as the amount of lateral friction is decreased. This paper studies the transition to irregular flow in the double-gyre circulation by applying dynamical systems methodology to a quasi-geostrophic, equivalent-barotropic model with a 10-km resolution.The origin of the irregularities, in space and time, is the occurrence of homoclinic bifurcations that involve phase-space behavior far from stationary solutions. The connection between these homoclinic bifurcations and earlier transitions, which occur at larger lateral friction, is explained. The earlier transitions, such as pitchfork and asymmetric Hopf bifurcation, only involve the nonlinear saturation of linear instabilities, while the homoclinic bifurcations are associated with genuinely nonlinear behavior. The sequence of bifurcations—pitchfork, Hopf, and homoclinic—is independent of the lateral friction and may be described as the unfolding of a singularity that occurs in the frictionless, Hamiltonian limit of the governing equations.Two distinct chaotic regimes are identified: Lorenz chaos at relatively large lateral friction versus Shilnikov chaos at relatively small lateral friction. Both types of homoclinic bifurcations induce chaotic behavior of the recirculation gyres that is dominated by relaxation oscillations with a well-defined period.The relevance of these results to the mid-latitude oceans\u27 observed low-frequency variations is discussed. A previously documented 7-year peak in observed North-Atlantic variability is shown to exist across a hierarchy of models that share the gyre modes and homoclinic bifurcations discussed herein

    The Mid-Pleistocene Transition induced by delayed feedback and bistability

    Get PDF
    The Mid-Pleistocene Transition, the shift from 41 kyr to 100 kyr glacial-interglacial cycles that occurred roughly 1 Myr ago, is often considered as a change in internal climate dynamics. Here we revisit the model of Quaternary climate dynamics that was proposed by Saltzman and Maasch (1988). We show that it is quantitatively similar to a scalar equation for the ice dynamics only when combining the remaining components into a single delayed feedback term. The delay is the sum of the internal times scales of ocean transport and ice sheet dynamics, which is on the order of 10 kyr. We find that, in the absence of astronomical forcing, the delayed feedback leads to bistable behaviour, where stable large-amplitude oscillations of ice volume and an equilibrium coexist over a large range of values for the delay. We then apply astronomical forcing. We perform a systematic study to show how the system response depends on the forcing amplitude. We find that over a wide range of forcing amplitudes the forcing leads to a switch from small-scale oscillations of 41 kyr to large-amplitude oscillations of roughly 100 kyr without any change of other parameters. The transition in the forced model consistently occurs near the time of the Mid-Pleistocene Transition as observed in data records. This provides evidence that the MPT could have been primarily a forcing-induced switch between attractors of the internal dynamics. Small additional random disturbances make the forcing-induced transition near 800 kyr BP even more robust. We also find that the forced system forgets its initial history during the small-scale oscillations, in particular, nearby initial conditions converge prior to transitioning. In contrast to this, in the regime of large-amplitude oscillations, the oscillation phase is very sensitive to random perturbations, which has a strong effect on the timing of the deglaciation events

    Regimes of low-frequency variability in a three-layer quasi-geostrophic ocean model

    Get PDF
    The temporal variability of the midlatitude double-gyre wind-driven ocean circulation is studied in a three-layer quasi-geostrophic model over a broad range in parameter space. Four different types of flow regimes are found, each characterized by a specific time-mean state and spatio-temporal variability. As the lateral friction is decreased, these regimes are encountered in the following order: the viscous antisymmetric regime, the asymmetric regime, the quasi-homoclinic regime and the inertial antisymmetric regime. The variability in the viscous and the inertial antisymmetric regimes (at high and low lateral friction, respectively) is mainly caused by Rossby basin modes. Low-frequency variability, i.e.on interannual to decadal time-scales, is present in the asymmetric and quasi-homoclinic regime and can be related to relaxation oscillations originating from low-frequency gyre modes. The focus of this paper is on the mechanisms of the transitions between the different regimes. The transition from the viscous antisymmetric regime to the asymmetric regime occurs through a symmetry-breaking pitchfork bifurcation. There are strong indications that the quasi-homoclinic regime is introduced through the existence of a homoclinic orbit. The transition to the inertial antisymmetric regime is due to the symmetrization of the time-mean state zonal velocity field through rectification effects
    corecore