146 research outputs found

    Power distribution investigation of a hexagonal diffused cellular indoor visible light communications system

    Get PDF
    This paper presents a three dimensions (3D) model of optical power distribution in a diffused cellular indoor visible light communication (VLC) system. To achieve an ideal system which has a maximum coverage area with a minimum power consumption, both hexagon geometric structure and holographic light shaping diffuser (LSD) are employed. We analysed the mathematical models for both square and hexagonal structures with and without using LSD. In addition, the practical system consisting of a (Luxeon Star/O) royal blue LED as a transmitter is used to verify and evaluate the system performance. The system operates at a date rate of 5 Mb/s using the on-off keying non-return-to-zero (OOK-NRZ) modulation format. The simulation results show that using hexagon geometry and a 30o holographic LSD diffuser, the received optical power distribution becomes uniform. The coverage area of the cellular link is therefore significantly extended by 343%. In addition the experimental results for a single cell system are also presented

    Power distribution and Q-factor analysis of diffuse cellular indoor visible light communication systems

    Get PDF
    Comparing with the existing incandescent, light-emitting diodes (LEDs) offer higher power efficiency, higher brightness, longer lifetime, and have a fast dynamic response in the order of a few megahertz. LEDs are recently expected to be utilised for the next generation indoor optical wireless communication (OWC) system. In this paper, we present a mathematical design model as well as a practical measurement for an indoor diffuse cellular visible light communication (VLC) system. It operates at a date rate of 5 Mb/s using the on-off keying non-return-to-zero (OOK-NRZ) modulation format. Using commercially available luminit holographic light shaping diffusers (LSD), we show that the achieved distributions of received power and the Q-factor are more uniform. The range and coverage area of the cellular link are therefore significantly extended

    Optical Wireless and Millimeter Waves for 5G Access Networks

    Get PDF
    Growing bandwidth demands are driving the search for increased network capacity leading to the exploration of new wavelength ranges for future communication systems. Therefore, we consider two technologies that offer increased transmission bandwidths by virtue of their high carrier frequencies, namely optical wireless and millimeter-wave transmission. After highlighting the relevant electromagnetic (EM) spectrum region, we briefly describe the applications and properties of each approach coupled with a short history of their development. This is followed by a performance comparison in two possible 5G links: outdoor point-to-point and indoor hotspots. We find that in both cases, there are regions where optical wireless communications (OWC) are better, but others where millimeter waves are to be preferred. Specifically, the former outperforms the latter over distances up to approximately 50 meters outdoors and a 10-meter hotspot radius indoors

    Application of wavelets and artificial neural network for indoor optical wireless communication systems

    Get PDF
    Abstract This study investigates the use of error control code, discrete wavelet transform (DWT) and artificial neural network (ANN) to improve the link performance of an indoor optical wireless communication in a physical channel. The key constraints that barricade the realization of unlimited bandwidth in optical wavelengths are the eye-safety issue, the ambient light interference and the multipath induced intersymbol interference (ISI). Eye-safety limits the maximum average transmitted optical power. The rational solution is to use power efficient modulation techniques. Further reduction in transmitted power can be achieved using error control coding. A mathematical analysis of retransmission scheme is investigated for variable length modulation techniques and verified using computer simulations. Though the retransmission scheme is simple to implement, the shortfall in terms of reduced throughput will limit higher code gain. Due to practical limitation, the block code cannot be applied to the variable length modulation techniques and hence the convolutional code is the only possible option. The upper bound for slot error probability of the convolutional coded dual header pulse interval modulation (DH-PIM) and digital pulse interval modulation (DPIM) schemes are calculated and verified using simulations. The power penalty due to fluorescent light interference (FL I) is very high in indoor optical channel making the optical link practically infeasible. A denoising method based on a DWT to remove the FLI from the received signal is devised. The received signal is first decomposed into different DWT levels; the FLI is then removed from the signal before reconstructing the signal. A significant reduction in the power penalty is observed using DWT. Comparative study of DWT based denoising scheme with that of the high pass filter (HPF) show that DWT not only can match the best performance obtain using a HPF, but also offers a reduced complexity and design simplicity. The high power penalty due to multipath induced ISI makes a diffuse optical link practically infeasible at higher data rates. An ANN based linear and DF architectures are investigated to compensation the ISI. Unlike the unequalized cases, the equalized schemes don‘t show infinite power penalty and a significant performance improvement is observed for all modulation schemes. The comparative studies substantiate that ANN based equalizers match the performance of the traditional equalizers for all channel conditions with a reduced training data sequence. The study of the combined effect of the FLI and ISI shows that DWT-ANN based receiver perform equally well in the present of both interference. Adaptive decoding of error control code can offer flexibility of selecting the best possible encoder in a given environment. A suboptimal ?soft‘ sliding block convolutional decoder based on the ANN and a 1/2 rate convolutional code with a constraint length is investigated. Results show that the ANN decoder can match the performance of optimal Viterbi decoder for hard decision decoding but with slightly inferior performance compared to soft decision decoding. This provides a foundation for further investigation of the ANN decoder for convolutional code with higher constraint length values. Finally, the proposed DWT-ANN receiver is practically realized in digital signal processing (DSP) board. The output from the DSP board is compared with the computer simulations and found that the difference is marginal. However, the difference in results doesn‘t affect the overall error probability and identical error probability is obtained for DSP output and computer simulations

    Genetic algorithm optimisation methods applied to the indoor optical wireless communications channel

    Get PDF
    This thesis details an investigation into the application of genetic algorithms to indoor optical wireless communication systems. The principle aims are to show how it is possible for a genetic algorithm to control the received power distribution within multiple dynamic environments, such that a single receiver design can be employed lowering system costs. This kind of approach is not typical within the research currently being undertaken, where normally, the emphasis on system performance has always been linked with improvements to the receiver design. Within this thesis, a custom built simulator has been developed with the ability to determine the channel characteristics at all locations with the system deployment environment, for multiple configurations including user movement and user alignment variability. Based on these results an investigation began into the structure of the genetic algorithm, testing 192 different ones in total. After evaluation of each one of the algorithms and their performance merits, 2 genetic algorithms remained and are proposed for use. These 2 algorithms were shown capable of reducing the receiver power deviation by up to 26%, and forming, whilst the user perturbs the channel, through movement and variable alignment, a consistent power distribution to within 12% of the optimised case. The final part of the work, extends the use of the genetic algorithm to not only try to optimise the received power deviation, but also the received signal to noise ratio deviation. It was shown that the genetic algorithm is capable of reducing the deviation by around 12% in an empty environment and maintain this optimised case to within 10% when the user perturbs the channel

    A review of communication-oriented optical wireless systems

    Get PDF
    This article presents an overview of optical wireless (OW) communication systems that operate both in the short- (personal and indoor systems) and the long-range (outdoor and hybrid) regimes. Each of these areas is discussed in terms of (a) key requirements, (b) their application framework, (c) major impairments and applicable mitigation techniques, and (d) current and/or future trends. Personal communication systems are discussed within the context of point-to-point ultra-high speed data transfer. The most relevant application framework and related standards are presented, including the next generation Giga-IR standard that extends personal communication speeds to over 1 Gb/s. As far as indoor systems are concerned, emphasis is given on modeling the dispersive nature of indoor OW channels, on the limitations that dispersion imposes on user mobility and dispersion mitigation techniques. Visible light communication systems, which provide both illumination and communication over visible or hybrid visible/ infrared LEDs, are presented as the most important representative of future indoor OW systems. The discussion on outdoor systems focuses on the impact of atmospheric effects on the optical channel and associated mitigation techniques that extend the realizable link lengths and transfer rates. Currently, outdoor OW is commercially available at 10 Gb/s Ethernet speeds for Metro networks and Local-Area-Network interconnections and speeds are expected to increase as faster and more reliable optical components become available. This article concludes with hybrid optical wireless/radio-frequency (OW/RF) systems that employ an additional RF link to improve the overall system reliability. Emphasis is given on cooperation techniques between the reliable RF subsystem and the broadband OW system

    A review of communication-oriented optical wireless systems

    Get PDF

    Application of wavelets and artificial neural network for indoor optical wireless communication systems

    Get PDF
    This study investigates the use of error control code, discrete wavelet transform (DWT) and artificial neural network (ANN) to improve the link performance of an indoor optical wireless communication in a physical channel. The key constraints that barricade the realization of unlimited bandwidth in optical wavelengths are the eye-safety issue, the ambient light interference and the multipath induced intersymbol interference (ISI). Eye-safety limits the maximum average transmitted optical power. The rational solution is to use power efficient modulation techniques. Further reduction in transmitted power can be achieved using error control coding. A mathematical analysis of retransmission scheme is investigated for variable length modulation techniques and verified using computer simulations. Though the retransmission scheme is simple to implement, the shortfall in terms of reduced throughput will limit higher code gain. Due to practical limitation, the block code cannot be applied to the variable length modulation techniques and hence the convolutional code is the only possible option. The upper bound for slot error probability of the convolutional coded dual header pulse interval modulation (DH-PIM) and digital pulse interval modulation (DPIM) schemes are calculated and verified using simulations. The power penalty due to fluorescent light interference (FL I) is very high in indoor optical channel making the optical link practically infeasible. A denoising method based on a DWT to remove the FLI from the received signal is devised. The received signal is first decomposed into different DWT levels; the FLI is then removed from the signal before reconstructing the signal. A significant reduction in the power penalty is observed using DWT. Comparative study of DWT based denoising scheme with that of the high pass filter (HPF) show that DWT not only can match the best performance obtain using a HPF, but also offers a reduced complexity and design simplicity. The high power penalty due to multipath induced ISI makes a diffuse optical link practically infeasible at higher data rates. An ANN based linear and DF architectures are investigated to compensation the ISI. Unlike the unequalized cases, the equalized schemes don‘t show infinite power penalty and a significant performance improvement is observed for all modulation schemes. The comparative studies substantiate that ANN based equalizers match the performance of the traditional equalizers for all channel conditions with a reduced training data sequence. The study of the combined effect of the FLI and ISI shows that DWT-ANN based receiver perform equally well in the present of both interference. Adaptive decoding of error control code can offer flexibility of selecting the best possible encoder in a given environment. A suboptimal 'soft' sliding block convolutional decoder based on the ANN and a 1/2 rate convolutional code with a constraint length is investigated. Results show that the ANN decoder can match the performance of optimal Viterbi decoder for hard decision decoding but with slightly inferior performance compared to soft decision decoding. This provides a foundation for further investigation of the ANN decoder for convolutional code with higher constraint length values. Finally, the proposed DWT-ANN receiver is practically realized in digital signal processing (DSP) board. The output from the DSP board is compared with the computer simulations and found that the difference is marginal. However, the difference in results doesn‘t affect the overall error probability and identical error probability is obtained for DSP output and computer simulations.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore