123 research outputs found

    Exact Distance Oracles for Planar Graphs with Failing Vertices

    Full text link
    We consider exact distance oracles for directed weighted planar graphs in the presence of failing vertices. Given a source vertex uu, a target vertex vv and a set XX of kk failed vertices, such an oracle returns the length of a shortest uu-to-vv path that avoids all vertices in XX. We propose oracles that can handle any number kk of failures. More specifically, for a directed weighted planar graph with nn vertices, any constant kk, and for any q[1,n]q \in [1,\sqrt n], we propose an oracle of size O~(nk+3/2q2k+1)\tilde{\mathcal{O}}(\frac{n^{k+3/2}}{q^{2k+1}}) that answers queries in O~(q)\tilde{\mathcal{O}}(q) time. In particular, we show an O~(n)\tilde{\mathcal{O}}(n)-size, O~(n)\tilde{\mathcal{O}}(\sqrt{n})-query-time oracle for any constant kk. This matches, up to polylogarithmic factors, the fastest failure-free distance oracles with nearly linear space. For single vertex failures (k=1k=1), our O~(n5/2q3)\tilde{\mathcal{O}}(\frac{n^{5/2}}{q^3})-size, O~(q)\tilde{\mathcal{O}}(q)-query-time oracle improves over the previously best known tradeoff of Baswana et al. [SODA 2012] by polynomial factors for q=Ω(nt)q = \Omega(n^t), t(1/4,1/2]t \in (1/4,1/2]. For multiple failures, no planarity exploiting results were previously known

    On Computing Homological Hitting Sets

    Get PDF
    Cut problems form one of the most fundamental classes of problems in algorithmic graph theory. In this paper, we initiate the algorithmic study of a high-dimensional cut problem. The problem we study, namely, Homological Hitting Set (HHS), is defined as follows: Given a nontrivial r-cycle z in a simplicial complex, find a set ? of r-dimensional simplices of minimum cardinality so that ? meets every cycle homologous to z. Our first result is that HHS admits a polynomial-time solution on triangulations of closed surfaces. Interestingly, the minimal solution is given in terms of the cocycles of the surface. Next, we provide an example of a 2-complex for which the (unique) minimal hitting set is not a cocycle. Furthermore, for general complexes, we show that HHS is W[1]-hard with respect to the solution size p. In contrast, on the positive side, we show that HHS admits an FPT algorithm with respect to p+?, where ? is the maximum degree of the Hasse graph of the complex ?

    Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs

    Get PDF

    Max s,ts,t-Flow Oracles and Negative Cycle Detection in Planar Digraphs

    Full text link
    We study the maximum s,ts,t-flow oracle problem on planar directed graphs where the goal is to design a data structure answering max s,ts,t-flow value (or equivalently, min s,ts,t-cut value) queries for arbitrary source-target pairs (s,t)(s,t). For the case of polynomially bounded integer edge capacities, we describe an exact max s,ts,t-flow oracle with truly subquadratic space and preprocessing, and sublinear query time. Moreover, if (1ϵ)(1-\epsilon)-approximate answers are acceptable, we obtain a static oracle with near-linear preprocessing and O~(n3/4)\tilde{O}(n^{3/4}) query time and a dynamic oracle supporting edge capacity updates and queries in O~(n6/7)\tilde{O}(n^{6/7}) worst-case time. To the best of our knowledge, for directed planar graphs, no (approximate) max s,ts,t-flow oracles have been described even in the unweighted case, and only trivial tradeoffs involving either no preprocessing or precomputing all the n2n^2 possible answers have been known. One key technical tool we develop on the way is a sublinear (in the number of edges) algorithm for finding a negative cycle in so-called dense distance graphs. By plugging it in earlier frameworks, we obtain improved bounds for other fundamental problems on planar digraphs. In particular, we show: (1) a deterministic O(nlog(nC))O(n\log(nC)) time algorithm for negatively-weighted SSSP in planar digraphs with integer edge weights at least C-C. This improves upon the previously known bounds in the important case of weights polynomial in nn, and (2) an improved O(nlogn)O(n\log{n}) bound on finding a perfect matching in a bipartite planar graph.Comment: Extended abstract to appear in SODA 202

    Topologically Trivial Closed Walks in Directed Surface Graphs

    Full text link
    Let GG be a directed graph with nn vertices and mm edges, embedded on a surface SS, possibly with boundary, with first Betti number β\beta. We consider the complexity of finding closed directed walks in GG that are either contractible (trivial in homotopy) or bounding (trivial in integer homology) in SS. Specifically, we describe algorithms to determine whether GG contains a simple contractible cycle in O(n+m)O(n+m) time, or a contractible closed walk in O(n+m)O(n+m) time, or a bounding closed walk in O(β(n+m))O(\beta (n+m)) time. Our algorithms rely on subtle relationships between strong connectivity in GG and in the dual graph GG^*; our contractible-closed-walk algorithm also relies on a seminal topological result of Hass and Scott. We also prove that detecting simple bounding cycles is NP-hard. We also describe three polynomial-time algorithms to compute shortest contractible closed walks, depending on whether the fundamental group of the surface is free, abelian, or hyperbolic. A key step in our algorithm for hyperbolic surfaces is the construction of a context-free grammar with O(g2L2)O(g^2L^2) non-terminals that generates all contractible closed walks of length at most L, and only contractible closed walks, in a system of quads of genus g2g\ge2. Finally, we show that computing shortest simple contractible cycles, shortest simple bounding cycles, and shortest bounding closed walks are all NP-hard.Comment: 30 pages, 18 figures; fixed several minor bugs and added one figure. An extended abstraction of this paper will appear at SOCG 201
    corecore