22 research outputs found

    HOPs and COPs: Room frames with partitionable transversals

    Get PDF
    In this paper, we construct Room frames with partitionable transversals. Direct and recursive constructions are used to find sets of disjoint complete ordered partitionable (COP) transversals and sets of disjoint holey ordered partitionable (HOP) transversals for Room frames. Our main results include upper and lower bounds on the number of disjoint COP transversals and the number of disjoint HOP transversals for Room frames of type 2n. This work is motivated by the large number of applications of these designs

    On the minisymposium problem

    Full text link
    The generalized Oberwolfach problem asks for a factorization of the complete graph KvK_v into prescribed 22-factors and at most a 11-factor. When all 22-factors are pairwise isomorphic and vv is odd, we have the classic Oberwolfach problem, which was originally stated as a seating problem: given vv attendees at a conference with tt circular tables such that the iith table seats aia_i people and ∑i=1tai=v{\sum_{i=1}^t a_i = v}, find a seating arrangement over the v−12\frac{v-1}{2} days of the conference, so that every person sits next to each other person exactly once. In this paper we introduce the related {\em minisymposium problem}, which requires a solution to the generalized Oberwolfach problem on vv vertices that contains a subsystem on mm vertices. That is, the decomposition restricted to the required mm vertices is a solution to the generalized Oberwolfach problem on mm vertices. In the seating context above, the larger conference contains a minisymposium of mm participants, and we also require that pairs of these mm participants be seated next to each other for ⌊m−12⌋\left\lfloor\frac{m-1}{2}\right\rfloor of the days. When the cycles are as long as possible, i.e.\ vv, mm and v−mv-m, a flexible method of Hilton and Johnson provides a solution. We use this result to provide further solutions when v≡m≡2(mod4)v \equiv m \equiv 2 \pmod 4 and all cycle lengths are even. In addition, we provide extensive results in the case where all cycle lengths are equal to kk, solving all cases when m∣vm\mid v, except possibly when kk is odd and vv is even.Comment: 25 page

    The completion of optimal (3,4)(3,4)-packings

    Full text link
    A 3-(n,4,1)(n,4,1) packing design consists of an nn-element set XX and a collection of 44-element subsets of XX, called {\it blocks}, such that every 33-element subset of XX is contained in at most one block. The packing number of quadruples d(3,4,n)d(3,4,n) denotes the number of blocks in a maximum 33-(n,4,1)(n,4,1) packing design, which is also the maximum number A(n,4,4)A(n,4,4) of codewords in a code of length nn, constant weight 44, and minimum Hamming distance 4. In this paper the undecided 21 packing numbers A(n,4,4)A(n,4,4) are shown to be equal to Johnson bound J(n,4,4)J(n,4,4) (=⌊n4⌊n−13⌊n−22⌋⌋⌋)( =\lfloor\frac{n}{4}\lfloor\frac{n-1}{3}\lfloor\frac{n-2}{2}\rfloor\rfloor\rfloor) where n=6k+5n=6k+5, k∈{m: mk\in \{m:\ m is odd, 3≤m≤35, m≠17,21}∪{45,47,75,77,79,159}3\leq m\leq 35,\ m\neq 17,21\}\cup \{45,47,75,77,79,159\}

    Understanding the contribution of mode area and slow light to the effective Kerr nonlinearity of waveguides

    Get PDF
    We resolve the ambiguity in existing definitions of the effective area of a waveguide mode that have been reported in the literature by examining which definition leads to an accurate evaluation of the effective Kerr nonlinearity. We show that the effective nonlinear coefficient of a waveguide mode can be written as the product of a suitable average of the nonlinear coefficients of the waveguide’s constituent materials, the mode’s group velocity and a new suitably defined effective mode area. None of these parameters on their own completely describe the strength of the nonlinear effects of a waveguide.Shahraam Afshar V., T. M. Monro, and C. Martijn de Sterk

    Enumeration of Matchings: Problems and Progress

    Full text link
    This document is built around a list of thirty-two problems in enumeration of matchings, the first twenty of which were presented in a lecture at MSRI in the fall of 1996. I begin with a capsule history of the topic of enumeration of matchings. The twenty original problems, with commentary, comprise the bulk of the article. I give an account of the progress that has been made on these problems as of this writing, and include pointers to both the printed and on-line literature; roughly half of the original twenty problems were solved by participants in the MSRI Workshop on Combinatorics, their students, and others, between 1996 and 1999. The article concludes with a dozen new open problems. (Note: This article supersedes math.CO/9801060 and math.CO/9801061.)Comment: 1+37 pages; to appear in "New Perspectives in Geometric Combinatorics" (ed. by Billera, Bjorner, Green, Simeon, and Stanley), Mathematical Science Research Institute publication #37, Cambridge University Press, 199

    Pairwise balanced designs covered by bounded flats

    Full text link
    We prove that for any KK and dd, there exist, for all sufficiently large admissible vv, a pairwise balanced design PBD(v,K)(v,K) of dimension dd for which all dd-point-generated flats are bounded by a constant independent of vv. We also tighten a prior upper bound for K={3,4,5}K = \{3,4,5\}, in which case there are no divisibility restrictions on the number of points. One consequence of this latter result is the construction of latin squares `covered' by small subsquares
    corecore