539 research outputs found

    A Review on Image Processing

    Get PDF
    Image Processing involves changing the nature of an image in order to improve its pictorial information for human interpretation, for autonomous machine perception. Digital image processing is a subset of the electronic domain wherein the image is converted to an array of small integers, called pixels, representing a physical quantity such as scene radiance, stored in a digital memory, and processed by computer or other digital hardware. Interest in digital image processing methods stems from two principals applications areas: improvement of pictorial information for human interpretation; and processing of image data for storage, transmission, and representation for autonomous machine perception. Edges characterize boundaries and edge detection is one of the most difficult tasks in image processing hence it is a problem of fundamental importance in image processing. In this paper investigates different steps of digital image processing.like, a high-speed non-linear Adaptive median filter implementation is presented. Then Adaptive Median Filter solves the dual purpose of removing the impulse noise from the image and reducing distortion in the image. The Image Processing Toolbox software is a collection of functions that extend the capability of the MATLAB numeric computing environment. The toolbox supports a wide range of image processing operations on the given image. Index Terms — Image Enhancement, Feature Extraction

    Wavelet-Neural Network Based Image Compression System for Colour Images

    Get PDF
    There are many images used by human being, such as medical, satellite, telescope, painting, and graphic or animation generated by computer images. In order to use these images practically, image compression method has an essential role for transmission and storage purposes. In this research, a wavelet based image compression technique is used. There are various wavelet filters available. The selection of filters has considerable impact on the compression performance. The filter which is suitable for one image may not be the best for another. The image characteristics are expected to be parameters that can be used to select the available wavelet filter. The main objective of this research is to develop an automatic wavelet-based colour image compression system using neural network. The system should select the appropriate wavelet for the image compression based on the image features. In order to reach the main goal, this study observes the cause-effect relation of image features on the wavelet codec (compression-decompression) performance. The images are compressed by applying different families of wavelets. Statistical hypothesis testing by non parametric test is used to establish the cause-effect relation between image features and the wavelet codec performance measurements. The image features used are image gradient, namely image activity measurement (IAM) and spatial frequency (SF) values of each colour component. This research is also carried out to select the most appropriate wavelet for colour image compression, based on certain image features using artificial neural network (ANN) as a tool. The IAM and SF values are used as the input; therefore, the wavelet filters are used as the output or target in the network training. This research has asserted that there are the cause-effect relations between image features and the wavelet codec performance measurements. Furthermore, the study reveals that the parameters in this investigation can be used for the selection of appropriate wavelet filters. An automatic wavelet-based colour image compression system using neural network is developed. The system can give considerably good results

    The contour tree image encoding technique and file format

    Get PDF
    The process of contourization is presented which converts a raster image into a discrete set of plateaux or contours. These contours can be grouped into a hierarchical structure, defining total spatial inclusion, called a contour tree. A contour coder has been developed which fully describes these contours in a compact and efficient manner and is the basis for an image compression method. Simplification of the contour tree has been undertaken by merging contour tree nodes thus lowering the contour tree's entropy. This can be exploited by the contour coder to increase the image compression ratio. By applying general and simple rules derived from physiological experiments on the human vision system, lossy image compression can be achieved which minimises noticeable artifacts in the simplified image. The contour merging technique offers a complementary lossy compression system to the QDCT (Quantised Discrete Cosine Transform). The artifacts introduced by the two methods are very different; QDCT produces a general blurring and adds extra highlights in the form of overshoots, whereas contour merging sharpens edges, reduces highlights and introduces a degree of false contouring. A format based on the contourization technique which caters for most image types is defined, called the contour tree image format. Image operations directly on this compressed format have been studied which for certain manipulations can offer significant operational speed increases over using a standard raster image format. A couple of examples of operations specific to the contour tree format are presented showing some of the features of the new format.Science and Engineering Research Counci

    Research on digital image watermark encryption based on hyperchaos

    Get PDF
    The digital watermarking technique embeds meaningful information into one or more watermark images hidden in one image, in which it is known as a secret carrier. It is difficult for a hacker to extract or remove any hidden watermark from an image, and especially to crack so called digital watermark. The combination of digital watermarking technique and traditional image encryption technique is able to greatly improve anti-hacking capability, which suggests it is a good method for keeping the integrity of the original image. The research works contained in this thesis include: (1)A literature review the hyperchaotic watermarking technique is relatively more advantageous, and becomes the main subject in this programme. (2)The theoretical foundation of watermarking technologies, including the human visual system (HVS), the colour space transform, discrete wavelet transform (DWT), the main watermark embedding algorithms, and the mainstream methods for improving watermark robustness and for evaluating watermark embedding performance. (3) The devised hyperchaotic scrambling technique it has been applied to colour image watermark that helps to improve the image encryption and anti-cracking capabilities. The experiments in this research prove the robustness and some other advantages of the invented technique. This thesis focuses on combining the chaotic scrambling and wavelet watermark embedding to achieve a hyperchaotic digital watermark to encrypt digital products, with the human visual system (HVS) and other factors taken into account. This research is of significant importance and has industrial application value

    Dimensionality reduction and sparse representations in computer vision

    Get PDF
    The proliferation of camera equipped devices, such as netbooks, smartphones and game stations, has led to a significant increase in the production of visual content. This visual information could be used for understanding the environment and offering a natural interface between the users and their surroundings. However, the massive amounts of data and the high computational cost associated with them, encumbers the transfer of sophisticated vision algorithms to real life systems, especially ones that exhibit resource limitations such as restrictions in available memory, processing power and bandwidth. One approach for tackling these issues is to generate compact and descriptive representations of image data by exploiting inherent redundancies. We propose the investigation of dimensionality reduction and sparse representations in order to accomplish this task. In dimensionality reduction, the aim is to reduce the dimensions of the space where image data reside in order to allow resource constrained systems to handle them and, ideally, provide a more insightful description. This goal is achieved by exploiting the inherent redundancies that many classes of images, such as faces under different illumination conditions and objects from different viewpoints, exhibit. We explore the description of natural images by low dimensional non-linear models called image manifolds and investigate the performance of computer vision tasks such as recognition and classification using these low dimensional models. In addition to dimensionality reduction, we study a novel approach in representing images as a sparse linear combination of dictionary examples. We investigate how sparse image representations can be used for a variety of tasks including low level image modeling and higher level semantic information extraction. Using tools from dimensionality reduction and sparse representation, we propose the application of these methods in three hierarchical image layers, namely low-level features, mid-level structures and high-level attributes. Low level features are image descriptors that can be extracted directly from the raw image pixels and include pixel intensities, histograms, and gradients. In the first part of this work, we explore how various techniques in dimensionality reduction, ranging from traditional image compression to the recently proposed Random Projections method, affect the performance of computer vision algorithms such as face detection and face recognition. In addition, we discuss a method that is able to increase the spatial resolution of a single image, without using any training examples, according to the sparse representations framework. In the second part, we explore mid-level structures, including image manifolds and sparse models, produced by abstracting information from low-level features and offer compact modeling of high dimensional data. We propose novel techniques for generating more descriptive image representations and investigate their application in face recognition and object tracking. In the third part of this work, we propose the investigation of a novel framework for representing the semantic contents of images. This framework employs high level semantic attributes that aim to bridge the gap between the visual information of an image and its textual description by utilizing low level features and mid level structures. This innovative paradigm offers revolutionary possibilities including recognizing the category of an object from purely textual information without providing any explicit visual example

    Digital photo album management techniques: from one dimension to multi-dimension.

    Get PDF
    Lu Yang.Thesis submitted in: November 2004.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 96-103).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Motivation --- p.1Chapter 1.2 --- Our Contributions --- p.3Chapter 1.3 --- Thesis Outline --- p.5Chapter 2 --- Background Study --- p.7Chapter 2.1 --- MPEG-7 Introduction --- p.8Chapter 2.2 --- Image Analysis in CBIR Systems --- p.11Chapter 2.2.1 --- Color Information --- p.13Chapter 2.2.2 --- Color Layout --- p.19Chapter 2.2.3 --- Texture Information --- p.20Chapter 2.2.4 --- Shape Information --- p.24Chapter 2.2.5 --- CBIR Systems --- p.26Chapter 2.3 --- Image Processing in JPEG Frequency Domain --- p.30Chapter 2.4 --- Photo Album Clustering --- p.33Chapter 3 --- Feature Extraction and Similarity Analysis --- p.38Chapter 3.1 --- Feature Set in Frequency Domain --- p.38Chapter 3.1.1 --- JPEG Frequency Data --- p.39Chapter 3.1.2 --- Our Feature Set --- p.42Chapter 3.2 --- Digital Photo Similarity Analysis --- p.43Chapter 3.2.1 --- Energy Histogram --- p.43Chapter 3.2.2 --- Photo Distance --- p.45Chapter 4 --- 1-Dimensional Photo Album Management Techniques --- p.49Chapter 4.1 --- Photo Album Sorting --- p.50Chapter 4.2 --- Photo Album Clustering --- p.52Chapter 4.3 --- Photo Album Compression --- p.56Chapter 4.3.1 --- Variable IBP frames --- p.56Chapter 4.3.2 --- Adaptive Search Window --- p.57Chapter 4.3.3 --- Compression Flow --- p.59Chapter 4.4 --- Experiments and Performance Evaluations --- p.60Chapter 5 --- High Dimensional Photo Clustering --- p.67Chapter 5.1 --- Traditional Clustering Techniques --- p.67Chapter 5.1.1 --- Hierarchical Clustering --- p.68Chapter 5.1.2 --- Traditional K-means --- p.71Chapter 5.2 --- Multidimensional Scaling --- p.74Chapter 5.2.1 --- Introduction --- p.75Chapter 5.2.2 --- Classical Scaling --- p.77Chapter 5.3 --- Our Interactive MDS-based Clustering --- p.80Chapter 5.3.1 --- Principal Coordinates from MDS --- p.81Chapter 5.3.2 --- Clustering Scheme --- p.82Chapter 5.3.3 --- Layout Scheme --- p.84Chapter 5.4 --- Experiments and Results --- p.87Chapter 6 --- Conclusions --- p.94Bibliography --- p.9

    Digital Image Processing

    Get PDF
    Newspapers and the popular scientific press today publish many examples of highly impressive images. These images range, for example, from those showing regions of star birth in the distant Universe to the extent of the stratospheric ozone depletion over Antarctica in springtime, and to those regions of the human brain affected by Alzheimer’s disease. Processed digitally to generate spectacular images, often in false colour, they all make an immediate and deep impact on the viewer’s imagination and understanding. Professor Jonathan Blackledge’s erudite but very useful new treatise Digital Image Processing: Mathematical and Computational Methods explains both the underlying theory and the techniques used to produce such images in considerable detail. It also provides many valuable example problems - and their solutions - so that the reader can test his/her grasp of the physical, mathematical and numerical aspects of the particular topics and methods discussed. As such, this magnum opus complements the author’s earlier work Digital Signal Processing. Both books are a wonderful resource for students who wish to make their careers in this fascinating and rapidly developing field which has an ever increasing number of areas of application. The strengths of this large book lie in: • excellent explanatory introduction to the subject; • thorough treatment of the theoretical foundations, dealing with both electromagnetic and acoustic wave scattering and allied techniques; • comprehensive discussion of all the basic principles, the mathematical transforms (e.g. the Fourier and Radon transforms), their interrelationships and, in particular, Born scattering theory and its application to imaging systems modelling; discussion in detail - including the assumptions and limitations - of optical imaging, seismic imaging, medical imaging (using ultrasound), X-ray computer aided tomography, tomography when the wavelength of the probing radiation is of the same order as the dimensions of the scatterer, Synthetic Aperture Radar (airborne or spaceborne), digital watermarking and holography; detail devoted to the methods of implementation of the analytical schemes in various case studies and also as numerical packages (especially in C/C++); • coverage of deconvolution, de-blurring (or sharpening) an image, maximum entropy techniques, Bayesian estimators, techniques for enhancing the dynamic range of an image, methods of filtering images and techniques for noise reduction; • discussion of thresholding, techniques for detecting edges in an image and for contrast stretching, stochastic scattering (random walk models) and models for characterizing an image statistically; • investigation of fractal images, fractal dimension segmentation, image texture, the coding and storing of large quantities of data, and image compression such as JPEG; • valuable summary of the important results obtained in each Chapter given at its end; • suggestions for further reading at the end of each Chapter. I warmly commend this text to all readers, and trust that they will find it to be invaluable. Professor Michael J Rycroft Visiting Professor at the International Space University, Strasbourg, France, and at Cranfield University, England

    Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study

    Get PDF
    Most of the research conducted on information technologies applied to music has been largely limited to a few mainstream styles of the so-called `Western' music. The resulting tools often do not generalize properly or cannot be easily extended to other music traditions. So, culture-specific approaches have been recently proposed as a way to build richer and more general computational models for music. This thesis work aims at contributing to the computer-aided study of rhythm, with the focus on percussion music and in the search of appropriate solutions from a culture specifc perspective by considering the Afro-Uruguayan candombe drumming as a case study. This is mainly motivated by its challenging rhythmic characteristics, troublesome for most of the existing analysis methods. In this way, it attempts to push ahead the boundaries of current music technologies. The thesis o ers an overview of the historical, social and cultural context in which candombe drumming is embedded, along with a description of the rhythm. One of the specific contributions of the thesis is the creation of annotated datasets of candombe drumming suitable for computational rhythm analysis. Performances were purposely recorded, and received annotations of metrical information, location of onsets, and sections. A dataset of annotated recordings for beat and downbeat tracking was publicly released, and an audio-visual dataset of performances was obtained, which serves both documentary and research purposes. Part of the dissertation focused on the discovery and analysis of rhythmic patterns from audio recordings. A representation in the form of a map of rhythmic patterns based on spectral features was devised. The type of analyses that can be conducted with the proposed methods is illustrated with some experiments. The dissertation also systematically approached (to the best of our knowledge, for the first time) the study and characterization of the micro-rhythmical properties of candombe drumming. The ndings suggest that micro-timing is a structural component of the rhythm, producing a sort of characteristic "swing". The rest of the dissertation was devoted to the automatic inference and tracking of the metric structure from audio recordings. A supervised Bayesian scheme for rhythmic pattern tracking was proposed, of which a software implementation was publicly released. The results give additional evidence of the generalizability of the Bayesian approach to complex rhythms from diferent music traditions. Finally, the downbeat detection task was formulated as a data compression problem. This resulted in a novel method that proved to be e ective for a large part of the dataset and opens up some interesting threads for future research.La mayoría de la investigación realizada en tecnologías de la información aplicadas a la música se ha limitado en gran medida a algunos estilos particulares de la así llamada música `occidental'. Las herramientas resultantes a menudo no generalizan adecuadamente o no se pueden extender fácilmente a otras tradiciones musicales. Por lo tanto, recientemente se han propuesto enfoques culturalmente específicos como forma de construir modelos computacionales más ricos y más generales. Esta tesis tiene como objetivo contribuir al estudio del ritmo asistido por computadora, desde una perspectiva cultural específica, considerando el candombe Afro-Uruguayo como caso de estudio. Esto está motivado principalmente por sus características rítmicas, problemáticas para la mayoría de los métodos de análisis existentes. Así , intenta superar los límites actuales de estas tecnologías. La tesis ofrece una visión general del contexto histórico, social y cultural en el que el candombe está integrado, junto con una descripción de su ritmo. Una de las contribuciones específicas de la tesis es la creación de conjuntos de datos adecuados para el análisis computacional del ritmo. Se llevaron adelante sesiones de grabación y se generaron anotaciones de información métrica, ubicación de eventos y secciones. Se disponibilizó públicamente un conjunto de grabaciones anotadas para el seguimiento de pulso e inicio de compás, y se generó un registro audiovisual que sirve tanto para fines documentales como de investigación. Parte de la tesis se centró en descubrir y analizar patrones rítmicos a partir de grabaciones de audio. Se diseñó una representación en forma de mapa de patrones rítmicos basada en características espectrales. El tipo de análisis que se puede realizar con los métodos propuestos se ilustra con algunos experimentos. La tesis también abordó de forma sistemática (y por primera vez) el estudio y la caracterización de las propiedades micro rítmicas del candombe. Los resultados sugieren que las micro desviaciones temporales son un componente estructural del ritmo, dando lugar a una especie de "swing" característico. El resto de la tesis se dedicó a la inferencia automática de la estructura métrica a partir de grabaciones de audio. Se propuso un esquema Bayesiano supervisado para el seguimiento de patrones rítmicos, del cual se disponibilizó públicamente una implementación de software. Los resultados dan evidencia adicional de la capacidad de generalización del enfoque Bayesiano a ritmos complejos. Por último, la detección de inicio de compás se formuló como un problema de compresión de datos. Esto resultó en un método novedoso que demostró ser efectivo para una buena parte de los datos y abre varias líneas de investigación
    corecore