93 research outputs found

    Accelerated Solutions of Coupled Phase-Field Problems using Generative Adversarial Networks

    Full text link
    Multiphysics problems such as multicomponent diffusion, phase transformations in multiphase systems and alloy solidification involve numerical solution of a coupled system of nonlinear partial differential equations (PDEs). Numerical solutions of these PDEs using mesh-based methods require spatiotemporal discretization of these equations. Hence, the numerical solutions are often sensitive to discretization parameters and may have inaccuracies (resulting from grid-based approximations). Moreover, choice of finer mesh for higher accuracy make these methods computationally expensive. Neural network-based PDE solvers are emerging as robust alternatives to conventional numerical methods because these use machine learnable structures that are grid-independent, fast and accurate. However, neural network based solvers require large amount of training data, thus affecting their generalizabilty and scalability. These concerns become more acute for coupled systems of time-dependent PDEs. To address these issues, we develop a new neural network based framework that uses encoder-decoder based conditional Generative Adversarial Networks with ConvLSTM layers to solve a system of Cahn-Hilliard equations. These equations govern microstructural evolution of a ternary alloy undergoing spinodal decomposition when quenched inside a three-phase miscibility gap. We show that the trained models are mesh and scale-independent, thereby warranting application as effective neural operators.Comment: 18 pages, 21 figures (including subfigures). Will be submitted to the journal: "Computational Materials Science" soo

    Physics-Informed Machine Learning for Data Anomaly Detection, Classification, Localization, and Mitigation: A Review, Challenges, and Path Forward

    Full text link
    Advancements in digital automation for smart grids have led to the installation of measurement devices like phasor measurement units (PMUs), micro-PMUs (μ\mu-PMUs), and smart meters. However, a large amount of data collected by these devices brings several challenges as control room operators need to use this data with models to make confident decisions for reliable and resilient operation of the cyber-power systems. Machine-learning (ML) based tools can provide a reliable interpretation of the deluge of data obtained from the field. For the decision-makers to ensure reliable network operation under all operating conditions, these tools need to identify solutions that are feasible and satisfy the system constraints, while being efficient, trustworthy, and interpretable. This resulted in the increasing popularity of physics-informed machine learning (PIML) approaches, as these methods overcome challenges that model-based or data-driven ML methods face in silos. This work aims at the following: a) review existing strategies and techniques for incorporating underlying physical principles of the power grid into different types of ML approaches (supervised/semi-supervised learning, unsupervised learning, and reinforcement learning (RL)); b) explore the existing works on PIML methods for anomaly detection, classification, localization, and mitigation in power transmission and distribution systems, c) discuss improvements in existing methods through consideration of potential challenges while also addressing the limitations to make them suitable for real-world applications

    A mean-field games laboratory for generative modeling

    Full text link
    In this paper, we demonstrate the versatility of mean-field games (MFGs) as a mathematical framework for explaining, enhancing, and designing generative models. There is a pervasive sense in the generative modeling community that the various flow and diffusion-based generative models have some common foundational structure and interrelationships. We establish connections between MFGs and major classes of flow and diffusion-based generative models including continuous-time normalizing flows, score-based models, and Wasserstein gradient flows. We derive these three classes of generative models through different choices of particle dynamics and cost functions. Furthermore, we study the mathematical structure and properties of each generative model by studying their associated MFG's optimality condition, which is a set of coupled forward-backward nonlinear partial differential equations (PDEs). The theory of MFGs, therefore, enables the study of generative models through the theory of nonlinear PDEs. Through this perspective, we investigate the well-posedness and structure of normalizing flows, unravel the mathematical structure of score-based generative modeling, and derive a mean-field game formulation of the Wasserstein gradient flow. From an algorithmic perspective, the optimality conditions of MFGs also allow us to introduce HJB regularizers for enhanced training of a broad class of generative models. In particular, we propose and demonstrate an Hamilton-Jacobi-Bellman regularized SGM with improved performance over standard SGMs. We present this framework as an MFG laboratory which serves as a platform for revealing new avenues of experimentation and invention of generative models. This laboratory will give rise to a multitude of well-posed generative modeling formulations and will provide a consistent theoretical framework upon which numerical and algorithmic tools may be developed.Comment: 38 pages, 10 figures. Version 4 includes derivation of the score probability flo

    Deep Learning And Uncertainty Quantification: Methodologies And Applications

    Get PDF
    Uncertainty quantification is a recent emerging interdisciplinary area that leverages the power of statistical methods, machine learning models, numerical methods and data-driven approach to provide reliable inference for quantities of interest in natural science and engineering problems. In practice, the sources of uncertainty come from different aspects such as: aleatoric uncertainty where the uncertainty comes from the observations or is due to the stochastic nature of the problem; epistemic uncertainty where the uncertainty comes from inaccurate mathematical models, computational methods or model parametrization. Cope with the above different types of uncertainty, a successful and scalable model for uncertainty quantification requires prior knowledge in the problem, careful design of mathematical models, cautious selection of computational tools, etc. The fast growth in deep learning, probabilistic methods and the large volume of data available across different research areas enable researchers to take advantage of these recent advances to propose novel methodologies to solve scientific problems where uncertainty quantification plays important roles. The objective of this dissertation is to address the existing gaps and propose new methodologies for uncertainty quantification with deep learning methods and demonstrate their power in engineering applications. On the methodology side, we first present a generative adversarial framework to model aleatoric uncertainty in stochastic systems. Secondly, we leverage the proposed generative model with recent advances in physics-informed deep learning to learn the uncertainty propagation in solutions of partial differential equations. Thirdly, we introduce a simple and effective approach for posterior uncertainty quantification for learning nonlinear operators. Fourthly, we consider inverse problems of physical systems on identifying unknown forms and parameters in dynamical systems via observed noisy data. On the application side, we first propose an importance sampling approach for sequential decision making. Second, we propose a physics-informed neural network method to quantify the epistemic uncertainty in cardiac activation mapping modeling and conduct active learning. Third, we present an anto-encoder based framework for data augmentation and generation for data that is expensive to obtain such as single-cell RNA sequencing

    AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs

    Full text link
    Stochastic differential equations are an important modeling class in many disciplines. Consequently, there exist many methods relying on various discretization and numerical integration schemes. In this paper, we propose a novel, probabilistic model for estimating the drift and diffusion given noisy observations of the underlying stochastic system. Using state-of-the-art adversarial and moment matching inference techniques, we avoid the discretization schemes of classical approaches. This leads to significant improvements in parameter accuracy and robustness given random initial guesses. On four established benchmark systems, we compare the performance of our algorithms to state-of-the-art solutions based on extended Kalman filtering and Gaussian processes.Comment: Published at the Thirty-sixth International Conference on Machine Learning (ICML 2019
    corecore