Advancements in digital automation for smart grids have led to the
installation of measurement devices like phasor measurement units (PMUs),
micro-PMUs (μ-PMUs), and smart meters. However, a large amount of data
collected by these devices brings several challenges as control room operators
need to use this data with models to make confident decisions for reliable and
resilient operation of the cyber-power systems. Machine-learning (ML) based
tools can provide a reliable interpretation of the deluge of data obtained from
the field. For the decision-makers to ensure reliable network operation under
all operating conditions, these tools need to identify solutions that are
feasible and satisfy the system constraints, while being efficient,
trustworthy, and interpretable. This resulted in the increasing popularity of
physics-informed machine learning (PIML) approaches, as these methods overcome
challenges that model-based or data-driven ML methods face in silos. This work
aims at the following: a) review existing strategies and techniques for
incorporating underlying physical principles of the power grid into different
types of ML approaches (supervised/semi-supervised learning, unsupervised
learning, and reinforcement learning (RL)); b) explore the existing works on
PIML methods for anomaly detection, classification, localization, and
mitigation in power transmission and distribution systems, c) discuss
improvements in existing methods through consideration of potential challenges
while also addressing the limitations to make them suitable for real-world
applications