277 research outputs found

    Connectivity of confined 3D Networks with Anisotropically Radiating Nodes

    Get PDF
    Nodes in ad hoc networks with randomly oriented directional antenna patterns typically have fewer short links and more long links which can bridge together otherwise isolated subnetworks. This network feature is known to improve overall connectivity in 2D random networks operating at low channel path loss. To this end, we advance recently established results to obtain analytic expressions for the mean degree of 3D networks for simple but practical anisotropic gain profiles, including those of patch, dipole and end-fire array antennas. Our analysis reveals that for homogeneous systems (i.e. neglecting boundary effects) directional radiation patterns are superior to the isotropic case only when the path loss exponent is less than the spatial dimension. Moreover, we establish that ad hoc networks utilizing directional transmit and isotropic receive antennas (or vice versa) are always sub-optimally connected regardless of the environment path loss. We extend our analysis to investigate boundary effects in inhomogeneous systems, and study the geometrical reasons why directional radiating nodes are at a disadvantage to isotropic ones. Finally, we discuss multi-directional gain patterns consisting of many equally spaced lobes which could be used to mitigate boundary effects and improve overall network connectivity.Comment: 12 pages, 10 figure

    Outage Performance of Multi-tier UAV Communication with Random Beam Misalignment

    Full text link
    By exploiting the degree of freedom on the altitude, unmanned aerial vehicle (UAV) communication can provide ubiquitous communication for future wireless networks. In the case of concurrent transmission of multiple UAVs, the directional beamforming formed by multiple antennas is an effective way to reduce co-channel interference. However, factors such as airflow disturbance or estimation error for UAV communications can cause the occurrence of beam misalignment. In this paper, we investigate the system performance of a multi-tier UAV communication network with the consideration of unstable beam alignment. In particular, we propose a tractable random model to capture the impacts of beam misalignment in the 3D space. Based on this, by utilizing stochastic geometry, an analytical framework for obtaining the outage probability in the downlink of a multi-tier UAV communication network for the closest distance association scheme and the maximum average power association scheme is established. The accuracy of the analysis is verified by Monte-Carlo simulations. The results indicate that in the presence of random beam misalignment, the optimal number of UAV antennas needs to be adjusted to be relatively larger when the density of UAVs increases or the altitude of UAVs becomes higher

    Studies on 6-sector-site deployment in downlink LTE

    Get PDF
    Mobile data traffic is expected to increase massively in the following years. Consequently, service operators are induced to increase the capacity of their networks continually to attract more subscribers and maximize their revenues. At the same time, they want to minimize operational costs and capital expenditures. Among the alternatives that aim to increase the network capacity, higher order sectorization, and in particular a six sectorized configuration, is nowadays attracting a lot of attention for LTE macro-cell deployments since a higher number of sectors per site results in improved site capacity and coverage. A six sectorized configuration is attractive for both roll-out phase and growth phase of the network. In the roll-out phase, the radio access network is planned with 6-sector sites instead of 3-sector sites with the advantage that less sites are needed for the same capacity and coverage requirements. In the growth phase, the six sectorized configuration can be used to upgrade existing 3-sector sites where the traffic grows beyond the current sites' capabilities. Therefore, no additional expensive and time consuming contracts need to be signed for the locations of the new sites, while the existing sites are used more efficiently. However, although potentially a 6-sector site can offer a double capacity than a 3-sector site, several factors prevent the capacity from growing proportionately to the number of sectors. Consequently, there is an uncertainty on whether the capacity gain is high enough to justify the extra costs of the additional equipment and, more specifically, whether the 6-sector-site deployment is more economically attractive than a 3-sector-site deployment. The aim of this report is to solve this uncertainty. First, we present the main factors that affect the capacity gain. Next, we quantify the impact of these factors on the capacity gain in downlink LTE with the use of a system level simulator. Finally, we use the results of the simulation study as inputs for an economic study to access the reasons for a possible deployment of 6-sector sites instead of 3-sector sites for LTE

    RF Coverage Planning And Analysis With Adaptive Cell Sectorization In Millimeter Wave 5G Networks

    Get PDF
    The advancement of Fifth Generation Network (5G) technology is well underway, with Mobile Network Operators (MNOs) globally commencing the deployment of 5G networks within the mid-frequency spectrum range (3GHz–6GHz). Nevertheless, the escalating demands for data traffic are compelling MNOs to explore the high-frequency spectrum (24GHz–100GHz), which offers significantly larger bandwidth (400MHz-800 MHz) compared to the mid-frequency spectrum (3GHz–6GHz), which typically provides 50MHz-100MHz of bandwidth. However, it is crucial to note that the higher-frequency spectrum imposes substantial challenges due to exceptionally high free space propagation loss, resulting in 5G cell site coverage being limited to several hundred meters, in contrast to the several kilometers achievable with 4G. Consequently, MNOs are faced with the formidable task of accurately planning and deploying hundreds of new 5G cells to cover the same areas served by a single 4G cell.This dissertation embarks on a comprehensive exploration of Radio Frequency (RF) coverage planning for 5G networks, initially utilizing a conventional three-sector cell architecture. The coverage planning phase reveals potential challenges, including coverage gaps and poor Signal-to-Interference-plus-Noise Ratio (SINR). In response to these issues, the dissertation introduces an innovative cell site architecture that embraces both nine and twelve sector cells, enhancing RF coverage through the adoption of an advanced antenna system designed with subarrays, offering adaptive beamforming and beam steering capabilities. To further enhance energy efficiency, the dissertation introduces adaptive higher-order cell-sectorization (e.g., nine sector cells and twelve sector cells). In this proposed method, all sectors within a twelve-sector cell remain active during peak hours (e.g., daytime) and are reduced to fewer sectors (e.g., nine sectors or six sectors per cell) during off-peak hours (e.g., nighttime). This dynamic adjustment is facilitated by an advanced antenna system utilizing sub-array architecture, which employs adaptive beamforming and beam steering to tailor the beamwidth and radiation angle of each active sector. Simulation results unequivocally demonstrate significant enhancements in RF coverage and SINR with the implementation of higher-order cell-sectorization. Furthermore, the proposed adaptive cell-sectorization method significantly reduces energy consumption during off-peak hours. In addition to addressing RF coverage planning, this dissertation delves into the numerous challenges associated with deploying 5G networks in the higher frequency spectrum (30GHz-300GHz). It encompasses issues such as precise cell site planning, location acquisition, propagation modeling, energy efficiency, backhauling, and more. Furthermore, the dissertation offers valuable insights into future research directions aimed at effectively surmounting these challenges and optimizing the deployment of 5G networks in the high-frequency spectrum
    • …
    corecore