28,307 research outputs found

    Computing in the RAIN: a reliable array of independent nodes

    Get PDF
    The RAIN project is a research collaboration between Caltech and NASA-JPL on distributed computing and data-storage systems for future spaceborne missions. The goal of the project is to identify and develop key building blocks for reliable distributed systems built with inexpensive off-the-shelf components. The RAIN platform consists of a heterogeneous cluster of computing and/or storage nodes connected via multiple interfaces to networks configured in fault-tolerant topologies. The RAIN software components run in conjunction with operating system services and standard network protocols. Through software-implemented fault tolerance, the system tolerates multiple node, link, and switch failures, with no single point of failure. The RAIN-technology has been transferred to Rainfinity, a start-up company focusing on creating clustered solutions for improving the performance and availability of Internet data centers. In this paper, we describe the following contributions: 1) fault-tolerant interconnect topologies and communication protocols providing consistent error reporting of link failures, 2) fault management techniques based on group membership, and 3) data storage schemes based on computationally efficient error-control codes. We present several proof-of-concept applications: a highly-available video server, a highly-available Web server, and a distributed checkpointing system. Also, we describe a commercial product, Rainwall, built with the RAIN technology

    The Raincore Distributed Session Service for Networking Elements

    Get PDF
    Motivated by the explosive growth of the Internet, we study efficient and fault-tolerant distributed session layer protocols for networking elements. These protocols are designed to enable a network cluster to share the state information necessary for balancing network traffic and computation load among a group of networking elements. In addition, in the presence of failures, they allow network traffic to fail-over from failed networking elements to healthy ones. To maximize the overall network throughput of the networking cluster, we assume a unicast communication medium for these protocols. The Raincore Distributed Session Service is based on a fault-tolerant token protocol, and provides group membership, reliable multicast and mutual exclusion services in a networking environment. We show that this service provides atomic reliable multicast with consistent ordering. We also show that Raincore token protocol consumes less overhead than a broadcast-based protocol in this environment in terms of CPU task-switching. The Raincore technology was transferred to Rainfinity, a startup company that is focusing on software for Internet reliability and performance. Rainwall, Rainfinity’s first product, was developed using the Raincore Distributed Session Service. We present initial performance results of the Rainwall product that validates our design assumptions and goals

    Design and Evaluation of a Collective IO Model for Loosely Coupled Petascale Programming

    Full text link
    Loosely coupled programming is a powerful paradigm for rapidly creating higher-level applications from scientific programs on petascale systems, typically using scripting languages. This paradigm is a form of many-task computing (MTC) which focuses on the passing of data between programs as ordinary files rather than messages. While it has the significant benefits of decoupling producer and consumer and allowing existing application programs to be executed in parallel with no recoding, its typical implementation using shared file systems places a high performance burden on the overall system and on the user who will analyze and consume the downstream data. Previous efforts have achieved great speedups with loosely coupled programs, but have done so with careful manual tuning of all shared file system access. In this work, we evaluate a prototype collective IO model for file-based MTC. The model enables efficient and easy distribution of input data files to computing nodes and gathering of output results from them. It eliminates the need for such manual tuning and makes the programming of large-scale clusters using a loosely coupled model easier. Our approach, inspired by in-memory approaches to collective operations for parallel programming, builds on fast local file systems to provide high-speed local file caches for parallel scripts, uses a broadcast approach to handle distribution of common input data, and uses efficient scatter/gather and caching techniques for input and output. We describe the design of the prototype model, its implementation on the Blue Gene/P supercomputer, and present preliminary measurements of its performance on synthetic benchmarks and on a large-scale molecular dynamics application.Comment: IEEE Many-Task Computing on Grids and Supercomputers (MTAGS08) 200

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the rst six months. The project aim is to scale the Erlang's radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the e ectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    Development of an oceanographic application in HPC

    Get PDF
    High Performance Computing (HPC) is used for running advanced application programs efficiently, reliably, and quickly. In earlier decades, performance analysis of HPC applications was evaluated based on speed, scalability of threads, memory hierarchy. Now, it is essential to consider the energy or the power consumed by the system while executing an application. In fact, the High Power Consumption (HPC) is one of biggest problems for the High Performance Computing (HPC) community and one of the major obstacles for exascale systems design. The new generations of HPC systems intend to achieve exaflop performances and will demand even more energy to processing and cooling. Nowadays, the growth of HPC systems is limited by energy issues Recently, many research centers have focused the attention on doing an automatic tuning of HPC applications which require a wide study of HPC applications in terms of power efficiency. In this context, this paper aims to propose the study of an oceanographic application, named OceanVar, that implements Domain Decomposition based 4D Variational model (DD-4DVar), one of the most commonly used HPC applications, going to evaluate not only the classic aspects of performance but also aspects related to power efficiency in different case of studies. These work were realized at Bsc (Barcelona Supercomputing Center), Spain within the Mont-Blanc project, performing the test first on HCA server with Intel technology and then on a mini-cluster Thunder with ARM technology. In this work of thesis it was initially explained the concept of assimilation date, the context in which it is developed, and a brief description of the mathematical model 4DVAR. After this problem’s close examination, it was performed a porting from Matlab description of the problem of data-assimilation to its sequential version in C language. Secondly, after identifying the most onerous computational kernels in order of time, it has been developed a parallel version of the application with a parallel multiprocessor programming style, using the MPI (Message Passing Interface) protocol. The experiments results, in terms of performance, have shown that, in the case of running on HCA server, an Intel architecture, values of efficiency of the two most onerous functions obtained, growing the number of process, are approximately equal to 80%. In the case of running on ARM architecture, specifically on Thunder mini-cluster, instead, the trend obtained is labeled as "SuperLinear Speedup" and, in our case, it can be explained by a more efficient use of resources (cache memory access) compared with the sequential case. In the second part of this paper was presented an analysis of the some issues of this application that has impact in the energy efficiency. After a brief discussion about the energy consumption characteristics of the Thunder chip in technological landscape, through the use of a power consumption detector, the Yokogawa Power Meter, values of energy consumption of mini-cluster Thunder were evaluated in order to determine an overview on the power-to-solution of this application to use as the basic standard for successive analysis with other parallel styles. Finally, a comprehensive performance evaluation, targeted to estimate the goodness of MPI parallelization, is conducted using a suitable performance tool named Paraver, developed by BSC. Paraver is such a performance analysis and visualisation tool which can be used to analyse MPI, threaded or mixed mode programmes and represents the key to perform a parallel profiling and to optimise the code for High Performance Computing. A set of graphical representation of these statistics make it easy for a developer to identify performance problems. Some of the problems that can be easily identified are load imbalanced decompositions, excessive communication overheads and poor average floating operations per second achieved. Paraver can also report statistics based on hardware counters, which are provided by the underlying hardware. This project aimed to use Paraver configuration files to allow certain metrics to be analysed for this application. To explain in some way the performance trend obtained in the case of analysis on the mini-cluster Thunder, the tracks were extracted from various case of studies and the results achieved is what expected, that is a drastic drop of cache misses by the case ppn (process per node) = 1 to case ppn = 16. This in some way explains a more efficient use of cluster resources with an increase of the number of processes

    Towards Loosely-Coupled Programming on Petascale Systems

    Full text link
    We have extended the Falkon lightweight task execution framework to make loosely coupled programming on petascale systems a practical and useful programming model. This work studies and measures the performance factors involved in applying this approach to enable the use of petascale systems by a broader user community, and with greater ease. Our work enables the execution of highly parallel computations composed of loosely coupled serial jobs with no modifications to the respective applications. This approach allows a new-and potentially far larger-class of applications to leverage petascale systems, such as the IBM Blue Gene/P supercomputer. We present the challenges of I/O performance encountered in making this model practical, and show results using both microbenchmarks and real applications from two domains: economic energy modeling and molecular dynamics. Our benchmarks show that we can scale up to 160K processor-cores with high efficiency, and can achieve sustained execution rates of thousands of tasks per second.Comment: IEEE/ACM International Conference for High Performance Computing, Networking, Storage and Analysis (SuperComputing/SC) 200
    corecore