54,928 research outputs found

    Statistical mechanics of topological phase transitions in networks

    Full text link
    We provide a phenomenological theory for topological transitions in restructuring networks. In this statistical mechanical approach energy is assigned to the different network topologies and temperature is used as a quantity referring to the level of noise during the rewiring of the edges. The associated microscopic dynamics satisfies the detailed balance condition and is equivalent to a lattice gas model on the edge-dual graph of a fully connected network. In our studies -- based on an exact enumeration method, Monte-Carlo simulations, and theoretical considerations -- we find a rich variety of topological phase transitions when the temperature is varied. These transitions signal singular changes in the essential features of the global structure of the network. Depending on the energy function chosen, the observed transitions can be best monitored using the order parameters Phi_s=s_{max}/M, i.e., the size of the largest connected component divided by the number of edges, or Phi_k=k_{max}/M, the largest degree in the network divided by the number of edges. If, for example the energy is chosen to be E=-s_{max}, the observed transition is analogous to the percolation phase transition of random graphs. For this choice of the energy, the phase-diagram in the [,T] plane is constructed. Single vertex energies of the form E=sum_i f(k_i), where k_i is the degree of vertex i, are also studied. Depending on the form of f(k_i), first order and continuous phase transitions can be observed. In case of f(k_i)=-(k_i+c)ln(k_i), the transition is continuous, and at the critical temperature scale-free graphs can be recovered.Comment: 12 pages, 12 figures, minor changes, added a new refernce, to appear in PR

    StructMatrix: large-scale visualization of graphs by means of structure detection and dense matrices

    Get PDF
    Given a large-scale graph with millions of nodes and edges, how to reveal macro patterns of interest, like cliques, bi-partite cores, stars, and chains? Furthermore, how to visualize such patterns altogether getting insights from the graph to support wise decision-making? Although there are many algorithmic and visual techniques to analyze graphs, none of the existing approaches is able to present the structural information of graphs at large-scale. Hence, this paper describes StructMatrix, a methodology aimed at high-scalable visual inspection of graph structures with the goal of revealing macro patterns of interest. StructMatrix combines algorithmic structure detection and adjacency matrix visualization to present cardinality, distribution, and relationship features of the structures found in a given graph. We performed experiments in real, large-scale graphs with up to one million nodes and millions of edges. StructMatrix revealed that graphs of high relevance (e.g., Web, Wikipedia and DBLP) have characterizations that reflect the nature of their corresponding domains; our findings have not been seen in the literature so far. We expect that our technique will bring deeper insights into large graph mining, leveraging their use for decision making.Comment: To appear: 8 pages, paper to be published at the Fifth IEEE ICDM Workshop on Data Mining in Networks, 2015 as Hugo Gualdron, Robson Cordeiro, Jose Rodrigues (2015) StructMatrix: Large-scale visualization of graphs by means of structure detection and dense matrices In: The Fifth IEEE ICDM Workshop on Data Mining in Networks 1--8, IEE

    High transitivity for more groups acting on trees

    Full text link
    We establish a new sharp sufficient condition for groups acting on trees to be highly transitive. This give new examples of highly transitive groups, including icc non-solvable Baumslag-Solitar groups, thus answering a question of Hull and Osin.Comment: Version 2 : correction of a mistake in an example from section 8.3 and general improvement of section 8.

    The failure tolerance of mechatronic software systems to random and targeted attacks

    Full text link
    This paper describes a complex networks approach to study the failure tolerance of mechatronic software systems under various types of hardware and/or software failures. We produce synthetic system architectures based on evidence of modular and hierarchical modular product architectures and known motifs for the interconnection of physical components to software. The system architectures are then subject to various forms of attack. The attacks simulate failure of critical hardware or software. Four types of attack are investigated: degree centrality, betweenness centrality, closeness centrality and random attack. Failure tolerance of the system is measured by a 'robustness coefficient', a topological 'size' metric of the connectedness of the attacked network. We find that the betweenness centrality attack results in the most significant reduction in the robustness coefficient, confirming betweenness centrality, rather than the number of connections (i.e. degree), as the most conservative metric of component importance. A counter-intuitive finding is that "designed" system architectures, including a bus, ring, and star architecture, are not significantly more failure-tolerant than interconnections with no prescribed architecture, that is, a random architecture. Our research provides a data-driven approach to engineer the architecture of mechatronic software systems for failure tolerance.Comment: Proceedings of the 2013 ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2013 August 4-7, 2013, Portland, Oregon, USA (In Print

    Eccentric connectivity index

    Full text link
    The eccentric connectivity index ξc\xi^c is a novel distance--based molecular structure descriptor that was recently used for mathematical modeling of biological activities of diverse nature. It is defined as ξc(G)=∑v∈V(G)deg(v)⋅ϵ(v)\xi^c (G) = \sum_{v \in V (G)} deg (v) \cdot \epsilon (v)\,, where deg(v)deg (v) and ϵ(v)\epsilon (v) denote the vertex degree and eccentricity of vv\,, respectively. We survey some mathematical properties of this index and furthermore support the use of eccentric connectivity index as topological structure descriptor. We present the extremal trees and unicyclic graphs with maximum and minimum eccentric connectivity index subject to the certain graph constraints. Sharp lower and asymptotic upper bound for all graphs are given and various connections with other important graph invariants are established. In addition, we present explicit formulae for the values of eccentric connectivity index for several families of composite graphs and designed a linear algorithm for calculating the eccentric connectivity index of trees. Some open problems and related indices for further study are also listed.Comment: 25 pages, 5 figure
    • …
    corecore