

 Universidade de São Paulo

2015-11

StructMatrix: large-scale visualization of

graphs by means of structure detection and

dense matrices

International Conference on Data Mining Workshops, 15th, 2015, Atlantic City.
http://www.producao.usp.br/handle/BDPI/49789

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo

Biblioteca Digital da Produção Intelectual - BDPI

Departamento de Ciências de Computação - ICMC/SCC Comunicações em Eventos - ICMC/SCC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)

https://core.ac.uk/display/37526062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/49789

StructMatrix: large-scale visualization of graphs by means of
structure detection and dense matrices

Hugo Gualdron, Robson L. F. Cordeiro, Jose F Rodrigues Jr

University of Sao Paulo – ICMC, CS Department
Av Trab Sao-carlense, 400, Sao Carlos, SP, Brazil - 13566-590

{gualdron, robson, junio}@icmc.usp.br

Abstract—Given a large-scale graph with millions of nodes
and edges, how to reveal macro patterns of interest, like
cliques, bi-partite cores, stars, and chains? Furthermore, how
to visualize such patterns altogether getting insights from the
graph to support wise decision-making? Although there are
many algorithmic and visual techniques to analyze graphs,
none of the existing approaches is able to present the struc-
tural information of graphs at large-scale. Hence, this paper
describes StructMatrix, a methodology aimed at high-scalable
visual inspection of graph structures with the goal of revealing
macro patterns of interest. StructMatrix combines algorith-
mic structure detection and adjacency matrix visualization
to present cardinality, distribution, and relationship features
of the structures found in a given graph. We performed
experiments in real, large-scale graphs with up to one million
nodes and millions of edges. StructMatrix revealed that graphs
of high relevance (e.g., Web, Wikipedia and DBLP) have
characterizations that reflect the nature of their corresponding
domains; our findings have not been seen in the literature so
far. We expect that our technique will bring deeper insights into
large graph mining, leveraging their use for decision making.

Keywords-graph mining, fast processing of large-scale
graphs, graph sense making, large graph visualization

I. INTRODUCTION

Large-scale graphs refer to graphs generated by contempo-

rary applications in which users or entities distributed along

large geographical areas – even the entire planet – create

massive amounts of information; a few examples of those

are social networks, recommendation networks, road nets,

e-commerce, computer networks, client-product logs, and

many others. Common to such graphs is the fact that they are

made of recurrent simple structures (cliques, bi-partite cores,

stars, and chains) that follow macro behaviors of cardinality,

distribution, and relationship. Each of these three features

depends on the specific domain of the graph; therefore, each

of them characterizes the way a given graph is understood.

While some features of large graphs are detected by algo-

rithms that produce hundreds of tabular data, these features

can be better noticed with the aid of visual representations.

In fact, some of these features, given their large cardinality,

are intelligible, in a timely manner, exclusively with visual-

ization. Considering this approach, we propose StructMatrix,

a methodology that combines a highly scalable algorithm for

structure detection with a dense matrix visualization. With

StructMatrix, we introduce the following contributions:

1) Methodology: we introduce innovative graph process-

ing and visualization techniques to detect macro fea-

tures of very large graphs;

2) Scalability: we show how to visually inspect graphs

with magnitudes far bigger than those of previous

works;

3) Analysis: we analyze relevant graph domains, charac-

terizing them according to the cardinality, distribution,

and relationship of their structures.
The rest of the paper presents related works in Section II,

the proposed methodology in Section III, experimentation in

Section IV, and conclusions in Section V. Table I lists the

symbols used in our notation.

II. RELATED WORKS

A. Large graph visualization
There are many works about graph visualization, however,

the vast majority of them is not suited for large-scale.

Techniques that are based on node-link drawings cannot,

at all, cope with the needs of just a few thousand edges

that would not fit in the display space. Edge bundling [1]

techniques are also limited since they do not scale to millions

of nodes and also because they are able to present only

the main connection pathways in the graph, disregarding

potentially useful details. Other large-scale techniques are

visual in a different sense; they present plots of calculated

features of the graph instead of depicting their structural

information. This is the case of Apolo [2], Pegasus [3],

and OddBall [4]. There are also techniques [5] that rely on

sampling to gain scalability, but this approach assumes that

parts of the graph will be absent; parts that are of potential

interest.
Adjacency matrices in contrast to Node-Link diagrams

are the most recommended techniques for fine inspection

of graphs in scalable manner [6]; this is because they can

represent an edge for each pixel in the display. However,

even with one edge per pixel, one can visualize roughly a

few million edges. Works Matrix Zoom[7] and ZAME[8]

extend the one-edge-per-pixel approach by merging nodes

and edges through clustering algorithms, creating an adja-

cency matrix where each position represents a set of edges

2015 IEEE 15th International Conference on Data Mining Workshops

978-1-4673-8493-3/15 $31.00 © 2015 IEEE

DOI 10.1109/ICDMW.2015.205

493

on a hierarchical aggregation. The main challenge of using

clustering techniques is to find an aggregation algorithm

that produces a hierarchy that is meaningful to the user.

There are also matrix visualization layouts as MatLink [9]

and NodeTrix [10] combining Node-Link and adjacency

representations to increase readability and scalability, but

those approaches are not enough to visualize large-scale

graphs.

Net-Ray [11] is another technique working at large scale;

it plots the original adjacency matrix of one large graph in

the much smaller display space using a simple projection:

the original matrix is scaled down by means of straight

proportion. This approach causes many edges to be mapped

to one same pixel; this is used to generate a heat map that

informs the user of how many edges are in a certain position

of the dense matrix.

In this work, we extend the approach of adjacency matri-

ces, as proposed by Net-Ray, improving its scalability and

also its ability to represent data. In our methodology, we

introduce two main improvements: (1) our adjacency matrix

is not based on the classic node-to-node representation; we

first condense the graph as a collection of smaller structures,

defining a structure-to-structure representation that enhances

scalability as more information is represented and less

compression of the adjacency matrix is necessary; and (2)

our projection is not a static image but rather an interactive

plotting from which different resolutions can be extracted,

including the adjacency matrix with no overlapping – of

course, considering only parts of the matrix that fit in the

display.

B. Structure detection

The principle of StructMatrix is that graphs are made of sim-

ple structures that appear recurrently in any graph domain.

These structures include cliques, bipartite cores, stars, and

chains that we want to identify. Therefore, a given network

can be represented in an upper level of abstraction; instead

of nodes, we use sets of nodes and edges that correspond

to substructures. The motivation here is that analysts cannot

grasp intelligible meaning out of huge network structures;

meanwhile, a few simple substructures are easily understood

and often meaningful. Moreover, analyzing the distribution

of substructures, instead of the distribution of single nodes,

might reveal macro aspects of a given network.

Partitioning (shattering) algorithms
StructMatrix, hence, depends on a partitioning (shattering)

algorithm to work. Many algorithms can solve this problem,

like Cross-associations [12], Eigenspokes [13], and METIS

[14], and VoG [15]. We verified that VoG overcomes the

others in detecting simple recurrent structures considering a

limited well-known set.

Vog relies on the technique introduced by graph compres-

sion algorithm Slash-Burn by Kang and Faloutsos [16]. The

Figure 1: The vocabulary of graph structures considered in

our methodology. From (a) to (g), illustrative examples of

the patterns that we consider; we process variations on the

number of nodes and edges of such patterns.

idea of Slash-Burn is that, in contrast to random graphs or

lattices, the degree distribution of real-world networks obeys

to power laws; in such graphs, a few nodes have a very high

degree, while the majority of the nodes have low degree.

Kang and Faloutsos also demonstrated that large networks

are easily shattered by an ordered “removal” of the hub

nodes. In fact, after each removal, a small set of disconnected

components (satellites) appear, while the majority of the

nodes still belong to the giant connected component. That is,

the disconnected components were connected to the network

only by the hub that was removed and, by progressively

removing the hubs, the entire graph is scanned part by part.

Interestingly, the small components that appear determine a

partitioning of the network that is more coherent than cut-

based approaches [17]. The technique works for any power-

law graph without domain-specific knowledge or specific

ordering of the nodes.

For the sake of completeness and performance, we de-

signed a new algorithm that, following the Slash-Burn

technique, extends algorithm Vog with parallelism, opti-

mizations, and an extended vocabulary of structures, as

detailed in Section III-B. Our results demonstrated better

performance while considering a larger set of structures.

III. PROPOSED METHOD: STRUCTMATRIX

As we mentioned before, StructMatrix draws an adjacency

matrix in which each line/column is a structure, not a single

node; besides that, it uses a projection-based technique to

“squeeze” the edges of the graph in the available display

space, together with a heat mapping to inform the user of

how big are the structures of the graph. In the following, we

formally present the technique.

A. Overview of the graph condensation approach

For this work, we use a vocabulary of structures that

extends those of former works; it considers seven well-

known structures – see Figure 1 – found in the graph

mining literature: false stars (fs), stars (st), chains (ch),

near and full cliques (nc, fc), near and full bi-partite cores

(nb, fb). Shortly, we define the vocabulary of structures as

ψ = {fs, st, ch, nc, fc, nb, fb}.

494

Notation Description
G(V,E) graph with V vertices and E edges

S, Sx structure-set

n, |S| cardinality of S
M,mx,y StructMatrix

fc, nc full and near clique resp.

fb, nb full and near bipartite core resp.

st, fs, ch star, false star and chain resp.

ψ vocabulary (set) of structures

D(si, sj) Number of edges between structure

instances si and sj

Table I: Description of the major symbols used in this work.

False stars are structures similar to stars (a central node

surrounded by satellites), but whose satellites have edges

to other nodes, indicating that the star may be only a

substructure of a bigger structure – see Figure 1. A near-

clique or ε-near clique is a structure with 1− ε (0 < ε < 1)

percent of the edges that a similar full clique would have;

the same holds for near bipartite cores. In our case, we are

considering ε = 0.2 so that a structure is considered near
clique or near bipartite core, if it has at least 80 percent of

the edges of the corresponding full structure.

The rationale behind the set of structures ψ is that

(a) cliques correspond to strongly connected sets of in-

dividuals in which everyone is related to everyone else;

cliques indicate communities, closed groups, or mutual-

collaboration societies, for instance. (b) Chains correspond

to sequences of phenomena/events like those of “spread the

word”, according to which one individual passes his expe-

rience/feeling/impression/contact with someone else, and so

on, and so forth; chains indicate special paths, viral behavior,

or hierarchical processes. (c) Bipartite cores correspond to

sets of individuals with specific features, but with comple-

mentary interaction; bipartite cores indicate the relationship

between professors and students, customers and products,

clients and servers, to name a few. And, (d) stars correspond

to special individuals highly connected to many others; stars

indicate hub behavior, authoritative sites, intersecting paths,

and many other patterns.

Considering these motivations, our algorithm condenses

the graph in a dense adjacency matrix. To do so, it produces

a set with the instances of structures in ψ that were found in

the graph; this set of instances contains the same information

as that of the original graph but with vertices and edges

grouped as structures. Beyond that, the algorithm detects the

edges in between the structures, so that it becomes possible

to build a condensed adjacency matrix that informs which

structure is connected to each other structure.

B. StructMatrix algorithm

As mentioned earlier, our algorithm is based on a high-

degree ordered removal of hub nodes from the graph; the

goal is to accomplish an efficient shattering of the graph,

as introduced in Section II-B. As we describe in Algo-

rithm 1, our process relies on a queue, Φ, which contains

the unprocessed connected components (initially the whole

graph), and a set Γ that contains the discovered structures.

In line 4, we explore the fact that the problem is straight

parallelizable by triggering threads that will process each

connected component in queue Φ. In the process, we proceed

with the ordered removal of hubs – see line 5, which

produces a new set of connected components. With each

connected component, we proceed by detecting a structure

instance in line 7, or else, pushing it for processing in line

10. The detection of structures and the identification of their

respective types occur according to Algorithm 2, which uses

edge arithmetic to characterize each kind of structure.

Algorithm 1 StructMatrix algorithm

Require: Graph G = (E, V)
Ensure: Array Γ containing the structures found in G

1: Let be queue Φ = {G} and set Γ = {}
2: while Φ is not empty do
3: H =Pop(Φ) /*Extract the first item from queue Φ*/

4: SUBFUNCTION Thread(H) BEGIN /*In parallel*/

5: H ′ = “H without the 1% nodes with highest degree”

6: for each connected component cc ∈ H ′ do
7: if cc ∈ ψ using Algorithm 2 then
8: Add(Γ, cc)

9: else
10: Push(Φ, cc)

11: end if
12: end for
13: END Thread(H)

14: end while

Algorithm 2 Structure classification

Require: Subgraph H = (E, V); n = |V | and m = |E|
1: if m =

n(n−1)
2 then return fc

2: else if m > (1− ε) ∗ n(n−1)
2 then return nc

3: else if m < n2

4 and H = (E, Va ∪ Vb) is bipartite then
4: if m = |Va| ∗ |Vb| then return fb
5: else if m > (1− ε) ∗ |Va| ∗ |Vb| then return nb
6: else if |Va| = 1 or |Vb| = 1 then return st
7: else if m = n− 1 then return ch
8: end if
9: end ifreturn undefined structure

The StructMatrix algorithm, different from former works,

maximizes the identification of structures rather than favor-

ing optimum compression; it uses parallelism for improved

performance; and considers a larger set of structures. In

Section IV, we demonstrate these aspects through experi-

mentation.

495

Figure 2: Adjacency Matrix layout.

C. Adjacency Matrix Layout

A graph G = 〈V,E〉 with V vertices and E edges

can be expressed as a set of structural instances S =
{s0, s2, . . . , s|S|−1}, where si is a subgraph of G that is

categorized – see Figure 1 and Table I – according to the

function type(s) : S → ψ. To create the adjacency matrix

of structures, first we identify the set S of structures in the

graph and categorize each one. Following, we define n = |S|
to refer to the cardinality of S.

As depicted in Figure 2, each type of structure defines

a partition in the matrix, both horizontally and vertically,

determining subregions in the visualization matrix. In this

matrix, a given structure instance corresponds to a horizontal

and to a vertical line (w.r.t. the subregions) in which each

pixel represents the presence of edges (one or more) between

this structure and the others in the matrix. Therefore, the

matrix is symmetric and supports the representation of

relationships (edges) between all kinds of structure types.

Formally, the elements mi,j of a StructMatrix Mn×n, 0 <
i < (n− 1) and 0 < j < (n− 1) are given by:

mi,j =

{
1, if D(si, sj) > 0;
0 otherwise.

(1)

where D : S×S → N is a function that returns the number

of edges between two given structure instances. For quick

reference, please refer to Table I.

In this work, we focus on large-scale graphs whose cor-

responding adjacency matrices do not fit in the display. This

problem is lessened when we plot the structures-structures

matrix, instead of the nodes-nodes matrix. However, due

to the magnitude of the graphs, the problem persists. We

treat this issue with a density-based visualization for each

subregion formed by two types of structures (ψi, ψj), ψi ∈ ψ
and ψj ∈ ψ – for example, (fs, fs), (fs, st), ..., and so

on. In each subregion, we map each point of the original

matrix according to a straight proportion. We map the lower,

left boundary point (xmin, ymin) to the center of the lower,

left boundary pixel; and the upper, right boundary point

(xmax, ymax) to the center of the upper, right boundary

pixel. The remaining points are mapped as (x, y)→ (ρx, ρy)
for:

ρx = R(ψi, ψj) +
⌈
(Resx − 1) x−xmin

xmax−xmin
+ 1

2

⌉

ρy = R(ψi, ψj) +
⌈
(Rexy − 1) y−ymin

ymax−ymin
+ 1

2

⌉ (2)

where R : ψ × ψ → N is a function that returns the

offset (left boundary) in pixels of the region (ψi, ψj) and

Resx, Resy are the target resolutions. The more resolution,

the more details are presented, these parameters allow for

interactive grasping of details.

Each set of edges connecting two given structures is

then mapped to the respective subregion of the visualization

where the structures’ types cross. Inside each structure

subregion we add an extra information by ordering the

structure instances according to the number of edges that

they have to other structures; that is, by
|S|−1∑
i=0

D(s, si).

Therefore, the structures with the largest number of edges

to other structures appear first – more at the bottom left, less

at the top right, of each subregion as explained in Figure 2.

In the visualization, each horizontal/vertical line (w.r.t.

the subregions) corresponds to a few hundred or thousand

structure instances; and each pixel corresponds to a few

hundred or thousand edges. We deal with that by not plotting

the matrix as a static image, but as a dynamic plot that adapts

to the available space; hence, it is possible to select specific

areas of the matrix and see more details of the edges. It is

possible to regain details until reaching parts the original

plot, when all the edges are visible.

We plot one last information using color to express the

sum of nodes of two given connected structures. We use

a color map in which the smaller number of nodes is

indicated with bluish colors and the bigger number of nodes

is indicated with reddish colors. In addition, we use the

same information as used for color encoding to determine

the order of plotting: first we plot the edges of the smaller

structures (according to the number of nodes), and then

the edges of the bigger structures. This procedure assures

that the hotter edges will be over the cooler ones, and

that the interesting (bigger) structures will be spotted easier.

At this point the elements mi,j of a StructMatrix Mn×n,

0 < i < (n− 1) and 0 < j < (n− 1) are given by:

mi,j =

⎧⎪⎪⎨
⎪⎪⎩

C(NNodes(si) +NNodes(sj)),
if D(si, sj) > 0;

0 otherwise.

(3)

where NNodes : S → N is a function that returns

the number of nodes of a given structure instance; and

496

C : N → [0.0, 1.0] is a function that returns a continuous

value between 0.0 (cool blue for smaller structures) and 1.0

(hot red for bigger structures) according to the sum of the

number of nodes in the two connected structures. In our

visualization, we map the function C to a log scale and

then we apply a linear color scale to the data.

IV. EXPERIMENTS

Table II describes the graphs we use in the experiments.

Name Nodes Edges Description
DBLP 1,366,099 5,716,654 Collaboration network
Roads of PA 1,088,092 1,541,898 Road net of Pennsylvania
Roads of CA 1,965,206 2,766,607 Road net of California
Roads of TX 1,379,917 1,921,660 Road net of Texas
WWW-barabasi 325,729 1,090,108 WWW in nd.edu
Epinions 75,879 405,740 Who-trusts-whom network
cit-HepPh 34,546 420,877 Co-citation network
Wiki-vote 7,115 100,762 Wikipedia votes

Table II: Description of the graphs used in our experiments.

A. Graph condensations

Table III shows the condensation results of the structure

detection algorithm over each dataset, already considering

the extended vocabulary and structures with minimum size

of 5 nodes – less than 5 nodes could prevent to tell apart

the structure types. The columns of the table indicate the

percentage of each structure identified by the algorithm.

For all the datasets, the false star was the most common

structure; the second most common structure was the star,

and then the chain, especially observed in the road networks.

The improvement of the visual scalability of StructMatrix,

compared to former work Net-Ray, is as big as the amount

of information that is “saved” when a graph is modeled as

a structure-to-structure adjacency matrix, instead of a node-

to-node matrix.

B. Scalability

In order to test the processing scalability of StructMatrix, we

used a breadth-first search over the DBLP dataset to induce

subgraphs of different sizes – we created graphs ranging

from 50K edges up to 1.000K edges. For the scalability

experiment, we used a contemporary commercial desktop

(Intel i7 with 8 GB RAM). We compared the performance

between VoG and StructMatrix to detect simple recurrent

structures from a limited well-known set. Figure 5 shows

that StructMatrix and VoG are near-linear on the number of

edges of the input graph, however StructMatrix overcomes

VoG for all the graph sizes.

C. WWW and Wikipedia

In Figures 3 and 4, one can see the results of StructMatrix

for graphs WWW-barabasi (325,729 nodes and 1,090,108

edges) and Wikipedia-vote (7,115 nodes and 100,762 edges)

condensed as described in Table III. For graph WWW-

barabasi, Figure 3a shows the StructMatrix with linear

color encoding, and Figure 3b shows the StructMatrix with

(a) Normal scale.

(b) Log scale.

Figure 3: StructMatrix in the WWW-barabasi graph with

colors displaying the sum of the sizes of two connected

structures; in the graph, stars refer to websites with links

to other websites.

(a) Normal scale.

(b) Log scale.

Figure 4: StructMatrix in the Wikipedia-vote graph with

values displaying the sum of the sizes of two connected

structures; in this graph, stars refer to users who got/gave

votes from/to other users.

497

Graph fs st ch nc fc nb fb
DBLP 122,983 (76%) 7,585(5%) 3,096(2%) 2,656(2%) 24,551(15%) 14(<1%) -

WWW-barabasi 4,957(32%) 8,146(52%) 851(5%) 541(3%) 283(2%) 556(4%) 318(2%)

cit-HepPh 11,449(79%) 1,948(13%) 840(6%) 120(1%) 44 (4<1%) 35(<1%) 43(<1%)

Wikipedia-vote 1,112(65%) 564(33%) 29 (2%) - - 1(<1%) -

Epinions 4,518(52%) 2,725(31%) 1,247(14%) 28 (%) 21(%) 150(2%) 3(<1%)

Roadnet PA 11,825(23%) 22,934(45%) 13,748(27%) - - 2,668(5%) -

Roadnet CA 24,193(27%) 34,781(39%) 26,236(29%) - - 3,763(4%) -

Roadnet TX 15,595(25%) 27,094(43%) 17,457(28%) - - 2,468(4%) -

Table III: Structures found in the datasets considering a minimum size of 5 nodes.

Figure 5: Scalability of the StructMatrix and VoG tech-

niques; although VoG is near-linear to the graph edges,

StructMatrix overcomes VoG for all the graph sizes.

logarithmic color encoding. For the Wikipedia-vote graph,

the same visualizations are presented in Figures 4a and 4b.

We observe the following factors in the visualizations:

• the share of structures: WWW-barabasi presents a clear

majority of stars, followed by false stars, and chains,

while the Wikipedia-vote presents a majority of false

stars, followed by stars, and chains; in both cases,

stars strongly characterize each domain, as expected in

websites and in elections;

• the presence of outliers in WWW-barabasi, spotted in

red; and the presence of structures globally and strongly

connected in Wikipedia-vote, depicted as reddish lines

across the visualization;

• the notion that the bigger the structures, the more

connected they are – reddish (the bigger) structures

concentrate on the left (the more connected), especially

perceived in Wikipedia-vote;

• the effect of the logarithmic color scale; its use results

in a clearer discrimination of the magnitudes of the

color-mapped values, what helps to perceive the distri-

bution of the values; more skewed in WWW and more

uniform in Wikipedia.

The stars and false stars of the WWW graph in Figure

3b refer to sites with multiple pages and many out-links –

bigger sites are reddish, more connected sites to the left.

The visualization is able to indicate the big stars (sites)

that are well-connected to other sites (reddish lines), and

also the big sites that demand more connectivity – reddish

isolated pixels. The chains indicate site-to-site paths of

possibly related semantics, an occurrence not so rare for

the WWW domain. There is also a set of reasonably small,

interconnected sites that connect only with each other and

not with the others – these sites determine blank lines in the

visualization and their sizes are noticeable in dark blue at the

bottom-left corner of the star-to-star subregion. Such sites

should be considered as outliers because, although strongly

connected, they limit their connectivity to a specific set of

sites.

While the Wikipedia graph is mainly composed of stars,

just like the WWW graph, the Wikipedia graph is quite

different. Its structures are more interconnected defining a

highly populated matrix. That means that users (contribu-

tors) who got many votes to be elected as administrators

in Wikipedia, also voted in many other users. The sizes

of the structures, indicated by color, reveal the most voted

users, positioned at the bottom-left corner – the color pretty

much corresponds to the results of the elections: of the

2,794 users, only 1,235 users had enough votes to be elected

administrators (nearly 50% of the reddish area of the matrix).

There are also a few chains, most of them connected to

stars (users), especially the most voted ones – it becomes

evident that the most voted users also voted on the most

voted users. This is possibly because, in Wikipedia, the most

active contributors are aware of each other.

D. Road networks

On the road networks, if we consider the stars segment

(“st”), each structure corresponds to a city (the intersecting

center of the star); therefore, the horizontal/vertical lines

of pixels correspond to the more important cities that act

as hubs in the road system. Its StructMatrix visualization

– Figure 7 – showed an interesting pattern for all the

three road datasets: in the figure, one can see that the

relationships between the road structures is more probable in

structures with similar connectivity. This fact is observable

in the curves (diagonal lines of pixels) that occur in the

visualization – remember that the structures are first ordered

by type into segments, and then by their connectivity (more

498

(a) All types of structures.

(b) Only the fc-fc sub region with details.

Figure 6: DBLP Zooming on the full clique section.

connected first) in each segment.

Another interesting fact is the presence of some structures

heavily connected to nearly all the other structures; these

structures define horizontal lines of pixels in the visualiza-

tion and, due to symmetry, they also define vertical lines

of pixels. The same patterns were observed for roadnets

from California, Texas, and Pennsylvania. According to the

visualizations, roads are characterized by three patterns:

1) cities that connect to most of the other cities acting

as interconnecting centers in the road structure; these

cities are of different importance and occur in small

number – around 6 for each state that we studied;

2) there is a hierarchical structure dictated by the connec-

tivity (importance) of the cities; in this hierarchy, the

connections tend to occur between cities with similar

connectivity; one consequence of this fact is that going

from one city to some other city may require one to

first “ascend” to a more connected city; actually, for

this domain, the lines of pixels in the visualization

correspond to paths between cities, passing through

other cities – the bigger the inclination of the line, the

shorter the path (the diagonal is the longest path);

3) road connections that are out of the hierarchical pattern

– the ones that do not pertain to any line of pixels; such

connections refer to special roads that, possibly, were

built on specific demands, possibly not obeying to the

general guidelines for road construction.

From these visualizations and patterns, we notice that

the StructMatrix visualization is a quick way (seconds) to

represent the structure of graphs on the order of million-

nodes (intersections) and million-edges (roads). For the

specific domain of roads, the visualization spots the more

important cities, the hierarchy structure, outlier roads that

should be inspected closer, and even, the adequacy of the

roads’ inter connectivity. This last issue, for example, may

indicate where there should be more roads so as to reduce

the pathway between cities.

E. DBLP

In the StructMatrix of the DBLP co-authoring graph – see

Figure 6a – it is possible to see a huge number of false stars.

This fact reflects the nature of DBLP, in which works are

done by advisors who orient multiple students along time;

these students in turn connect to other students defining new

stars and so on. A minority of authors, as seen in the matrix,

concerns authors whose students do not interact with other

students defining stars properly said. The presence of full

cliques (fc) is of great interest; sets of authors that have co-

authorship with every other author. Full cliques are expected

in the specific domain of DBLP because every paper defines

a full clique among its authors – this is not true for all clique

structures, but for most of them.

In Figure 6b, we can see the full clique-to-full clique

region in more details and with some highlights indicated

by arrows. The Figure highlights some notorious cliques:

k1 refers to the publication with title “A 130.7mm 2-layer
32Gb ReRAM memory device in 24nm technology” with

47 authors; k2 refers to paper “PRE-EARTHQUAKES, an
FP7 project for integrating observations and knowledge on
earthquake precursors: Preliminary results and strategy”

with 45 authors; and k3 refers to paper “The Biomolecular
Interaction Network Database and related tools 2005 up-
date” with 75 authors. These specific structures were noticed

due to their colors, which indicate large sizes. Structures k1
and k3, although large, are mostly isolated since they do not

connect to other structures; k2, on the other hand, defines a

line of pixels (vertical and horizontal) of similarly colored

dots, indicating that it has connections to other cliques.

V. CONCLUSIONS

We focused on the problem of visualizing graphs so big

that their adjacency matrices demand much more pixels

than what is available in regular displays. We advocate that

these graphs deserve macro analysis; that is, analysis that

reveal the behavior of thousands of nodes altogether, and

not of specific nodes, as that would not make sense for

such magnitudes. In this sense, we provide a visualization

methodology that benefits from a graph analytical technique.

Our contributions are:

• Visualization technique: we introduce a processing

and visualization methodology that puts together algo-

499

Figure 7: StructMatrix with colors in log scale indicating the size of the structures interconnected in the road networks

of Pennsylvania (PA), California (CA) and Texas(TX). Again, stars appear as the major structure type; in this case they

correspond to cities or to major intersections.

rithmic techniques and design in order to reach large-

scale visualizations;

• Analytical scalability: our technique extends the most

scalable technique found in the literature; plus, it is

engineered to plot millions of edges in a matter of

seconds;

• Practical analysis: we show that large-scale graphs

have well-defined behaviors concerning the distribution

of structures, their size, and how they are related one

to each other; finally, using a standard laptop, our

techniques allowed us to experiment in real, large-

scale graphs coming from domains of high impact, i.e.,

WWW, Wikipedia, Roadnet, and DBLP.

Our approach can provide interesting insights on real-life

graphs of several domains answering to the demand that

has emerged in the last years. By converting the graph’s

properties into a visual plot, one can quickly see details

that algorithmic approaches either would not detect, or that

would be hidden in thousand-lines tabular data.

ACKNOWLEDGMENTS

We thank Prof. Christos Faloutsos and Dr. Danai Koutra, from
Carnegie Mellon University, for their valuable collaboration. Fur-

thermore, this work received support from Conselho Nacional de De-

senvolvimento Cientifico e Tecnologico (CNPq-444985/2014-0), Fundacao

de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP-2011/13724-1,

2013/03906-0, 2014/07879-0, 2014/21483-2), and Coordenacao de Aperfe-

icoamento de Pessoal de Nivel Superior (Capes).

REFERENCES

[1] D. Holten, “Hierarchical edge bundles: Visualization of ad-
jacency relations in hierarchical data,” IEEE TVCG, vol. 12,
no. 5, pp. 741–748, 2006.

[2] D. H. Chau, A. Kittur, J. I. Hong, and C. Faloutsos, “Apolo:
making sense of large network data by combining rich user
interaction and machine learning,” in SIGCHI Conf on Human
Factors in Computing Systems, 2011, pp. 167–176.

[3] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A
peta-scale graph mining system implementation and observa-
tions,” in Data Mining, 2009. ICDM’09. Ninth IEEE Int Conf
on. IEEE, 2009, pp. 229–238.

[4] L. Akoglu, M. McGlohon, and C. Faloutsos, “Oddball: Spot-
ting anomalies in weighted graphs,” in Adv. in Knowledge
Discovery and Data Mining. Springer, 2010, pp. 410–421.

[5] E. Bertini and G. Santucci, “By chance is not enough:
preserving relative density through nonuniform sampling,” in
Information Visualisation. IEEE, 2004, pp. 622–629.

[6] M. Ghoniem, J. Fekete, and P. Castagliola, “A comparison
of the readability of graphs using node-link and matrix-based
representations,” in IEEE InfoVis, 2004, pp. 17–24.

[7] J. Abello and F. van Ham, “Matrix zoom: A visual interface
to semi-external graphs,” in IEEE InfoVis, 2004, pp. 183–190.

[8] N. Elmqvist, T.-N. Do, H. Goodell, N. Henry, and J. Fekete,
“Zame: Interactive large-scale graph visualization,” in Paci-
ficVIS, 2008, pp. 215–222.

[9] N. Henry and J.-D. Fekete, “Matlink: Enhanced matrix visual-
ization for analyzing social networks,” in Int Conf on Human-
computer Interaction. Springer-Verlag, 2007, pp. 288–302.

[10] N. Henry, J. Fekete, and M. J. McGuffin, “Nodetrix: a hybrid
visualization of social networks,” IEEE TVCG, vol. 13, no. 6,
pp. 1302–1309, 2007.

[11] U. Kang, J.-Y. Lee, D. Koutra, and C. Faloutsos, “Net-
ray: Visualizing and mining billion-scale graphs,” in Adv in
Knowledge Discovery and Data Mining. Springer, 2014, pp.
348–361.

[12] D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos, and
G. Blelloch, “Netmine: New mining tools for large graphs,”
in SIAM-DM Workshop on Link Analysis, 2004.

[13] B. A. Prakash, A. Sridharan, M. Seshadri, S. Machiraju, and
C. Faloutsos, “Eigenspokes: Surprising patterns and scalable
community chipping in large graphs,” in Adv in Knowledge
Discovery and Data Mining. Springer, 2010, pp. 435–448.

[14] D. Lasalle and G. Karypis, “Multi-threaded graph partition-
ing,” in IEEE Int Symp on Parallel and Distributed Process-
ing, 2013, pp. 225–236.

[15] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos, “Vog:
Summarizing and understanding large graphs,” in Proc. SIAM
Int Conf on Data Mining (SDM), Philadelphia, PA, 2014.

[16] U. Kang and C. Faloutsos, “Beyond ’caveman communities’:
Hubs and spokes for graph compression and mining,” in
ICDM, 2011, pp. 300–309.

[17] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney,
“Statistical properties of community structure in large social
and information networks,” in WWW, 2008, pp. 695–704.

500

