68 research outputs found

    Constructing highly arc transitive digraphs using a layerwise direct product

    Full text link
    We introduce a construction of highly arc transitive digraphs using a layerwise direct product. This product generalizes some known classes of highly arc transitive digraphs but also allows to construct new such. We use the product to obtain counterexamples to a conjecture by Cameron, Praeger and Wormald on the structure of certain highly arc transitive digraphs.Comment: 16 page

    European Journal of Combinatorics Index, Volume 26

    Get PDF

    Distance Degree Regular Graphs and Theireccentric Digraphs

    Get PDF
    The eccentricity e(u) of a vertex u is the maximum distance of u to any other vertex of G.The distance degree sequence (dds) of a vertex v in a graph G = (V,E) is a list of the number of vertices at distance 1, 2, . . . , e(u) in that order, where e(u) denotes the eccentricity of v in G. Thus the sequence (di0 , di1 , di2 , . . . , dij , . . .) is the dds of the vertex vi in G where dij denotes number of vertices at distance j from vi. A graph is distance degree regular (DDR) graph if all vertices have the same dds. A vertex v is an eccentric vertex of vertex u if the distance from u to v is equal to e(u). The eccentric digraph ED(G) of a graph (digraph) G is the digraph that has the same vertex as G and an arc from u to v exists in ED(G) if and only if v is an eccentric vertex of u in G. In this paper, we consider the construction of new families of DDR graphs with arbitrary diameter. Also we consider some special class of DDR graphs in relation with eccentric digraph of a graph. Different structural properties of eccentric digraphs of DDR graphs are dealt herewith

    Distance Degree Regular Graphs and Distance Degree Injective Graphs: An Overview

    Get PDF
    The distance d ( v , u ) from a vertex v of G to a vertex u is the length of shortest v to u path. The eccentricity e v of v is the distance to a farthest vertex from v . If d ( v , u ) = e ( v ) , ( u ≠ v ) , we say that u is an eccentric vertex of v . The radius rad ( G ) is the minimum eccentricity of the vertices, whereas the diameter diam ( G ) is the maximum eccentricity. A vertex v is a central vertex if e ( v ) = r a d ( G ) , and a vertex is a peripheral vertex if e ( v ) = d i a m ( G ) . A graph is self-centered if every vertex has the same eccentricity; that is, r a d ( G ) = d i a m ( G ) . The distance degree sequence (dds) of a vertex v in a graph G = ( V , E ) is a list of the number of vertices at distance 1 , 2 , . . . . , e ( v ) in that order, where e ( v ) denotes the eccentricity of v in G . Thus, the sequence ( d i 0 , d i 1 , d i 2 , … , d i j , … ) is the distance degree sequence of the vertex v i in G where d i j denotes the number of vertices at distance j from v i . The concept of distance degree regular (DDR) graphs was introduced by Bloom et al., as the graphs for which all vertices have the same distance degree sequence. By definition, a DDR graph must be a regular graph, but a regular graph may not be DDR. A graph is distance degree injective (DDI) graph if no two vertices have the same distance degree sequence. DDI graphs are highly irregular, in comparison with the DDR graphs. In this paper we present an exhaustive review of the two concepts of DDR and DDI graphs. The paper starts with an insight into all distance related sequences and their applications. All the related open problems are listed

    Highly arc transitive digraphs

    Get PDF
    Unendliche, hochgradig bogentransitive Digraphen werden definiert und anhand von Beispielen vorgestellt. Die Erreichbarkeitsrelation und Eigenschaft–Z werden definiert und unter Verwendung von Knotengraden, Wachstum und anderen Eigenschaften, die von der Untersuchung von Nachkommen von Doppelstrahlen oder Automorphismengruppen herrühren, auf hochgradig bogentransitiven Digraphen untersucht. Seifters Theoreme über hochgradig bogentransitive Digraphen mit mehr als einem Ende, seine daherrührende Vermutung und deren sie widerlegende Gegenbeispiele werden vorgestellt. Eine Bedingung, unter der C–homogene Digraphen hochgradig bogentransitiv sind, wird angegeben und die Verbindung zwischen hochgradig bogentransitiven Digraphen und total unzusammenhängenden, topologischen Gruppen wird erwähnt. Einige Bemerkungen über die Vermutung von Cameron–Praeger–Wormald werden gemacht und eine verfeinerte Version vermutet. Die Eigenschaften der bekannten hochgradig bogentransitiven Digraphen werden gesammelt. Es wird festgestellt, dass einige, aber nicht alle unter ihnen Cayley–Graphen sind. Schließlich werden offen gebliebene Fragestellungen und Vermutungen zusammengefasst und neue hinzugefügt. Für die vorgestellten Lemmata, Propositionen und Theoreme sind entweder Beweise enthalten, oder Referenzen zu Beweisen werden angegeben.Infinite, highly arc transitive digraphs are defined and examples are given. The Reachability–Relation and Property-Z are defined and investigated on infinite, highly arc transitive digraphs using the valencies, spread and other properties arising from the investigation of the descendants of lines or the automorphism groups. Seifters theorems about highly arc transitive digraphs with more than one end, his conjecture on them and the counterexamples that disproved his conjecture, are given. A condition for C–homogeneous digraphs to be highly arc transitve is stated and the connection between highly arc transitive digraphs and totally disconnected, topological groups is mentioned. Some notes on the Cameron–Praeger–Wormald–Conjecture are made and a refined conjecture is stated. The properties of the known highly arc transitive digraphs are collected, some but not all of them are Cayley–graphs. Finally open questions and conjectures are stated and new ones are added. For the given lemmas, propositions and theorems either proofs or references to proofs are included

    A graph theoretic proof of the complexity of colouring by a local tournament with at least two directed cycles

    Get PDF
    In this paper we give a graph theoretic proof of the fact that deciding whether a homomorphism exists to a fixed local tournament with at least two directed cycles is NP-complete. One of the main reasons for the graph theoretic proof is that it showcases all of the techniques that have been built up over the years in the study of the digraph homomorphism problem

    A graph theoretic proof of the complexity of colouring by a local tournament with at least two directed cycles

    Get PDF
    In this paper we give a graph theoretic proof of the fact that deciding whether a homomorphism exists to a fixed local tournament with at least two directed cycles is NP-complete. One of the main reasons for the graph theoretic proof is that it showcases all of the techniques that have been built up over the years in the study of the digraph homomorphism problem
    • …
    corecore