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Abstract Kurzbeschreibung

Abstract

Infinite, highly arc transitive digraphs are defined and examples are given.
The Reachability–Relation and Property-Z are defined and investigated on
infinite, highly arc transitive digraphs using the valencies, spread and other
properties arising from the investigation of the descendants of lines or the
automorphism groups. Seifters theorems about highly arc transitive digraphs
with more than one end, his conjecture on them and the counterexamples that
disproved his conjecture, are given. A condition for C–homogeneous digraphs
to be highly arc transitve is stated and the connection between highly arc tran-
sitive digraphs and totally disconnected, topological groups is mentioned.
Some notes on the Cameron–Praeger–Wormald–Conjecture are made and
a refined conjecture is stated. The properties of the known highly arc transitive
digraphs are collected, some but not all of them are Cayley–graphs. Finally
open questions and conjectures are stated and new ones are added. For the
given lemmas, propositions and theorems either proofs or references to proofs are
included.

Kurzbeschreibung

Unendliche, hochgradig bogentransitive Digraphen werden definiert und
anhand von Beispielen vorgestellt. Die Erreichbarkeitsrelation und Eigen-
schaft–Z werden definiert und unter Verwendung von Knotengraden, Wach-
stum und anderen Eigenschaften, die von der Untersuchung von Nachkom-
men von Doppelstrahlen oder Automorphismengruppen herrühren, auf
hochgradig bogentransitiven Digraphen untersucht. Seifters Theoreme über
hochgradig bogentransitive Digraphen mit mehr als einem Ende, seine da-
herrührende Vermutung und deren sie widerlegende Gegenbeispiele werden
vorgestellt. Eine Bedingung, unter der C–homogene Digraphen hochgradig
bogentransitiv sind, wird angegeben und die Verbindung zwischen hochgrad-
ig bogentransitiven Digraphen und total unzusammenhängenden, topolo-
gischen Gruppen wird erwähnt. Einige Bemerkungen über die Vermutung
von Cameron–Praeger–Wormald werden gemacht und eine verfeinerte Ver-
sion vermutet. Die Eigenschaften der bekannten hochgradig bogentransitiven Di-
graphen werden gesammelt. Es wird festgestellt, dass einige, aber nicht alle unter
ihnen Cayley–Graphen sind. Schließlich werden offen gebliebene Fragestellun-
gen und Vermutungen zusammengefasst und neue hinzugefügt. Für die vorgestell-
ten Lemmata, Propositionen und Theoreme sind entweder Beweise enthalten,
oder Referenzen zu Beweisen werden angegeben.
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1 Preface

1. Preface

The topic of infinite highly arc transitive digraphs started with the paper [1]
by Cameron, Praeger and Wormald. The first parts of this paper were already
studied in a thesis by Primož Šparl written in slovenian language. Thus the
present thesis goes the other way round starting at the end of [1] where examples
and constructions are given. Afterwards, we work through the properties and
theorems, whose number of course increased since Primož Šparls thesis. This
makes sense as it is neither easy to imagine such graphs nor are there too many
known examples. First we look at what infinite highly arc transitive digraphs are
to get a picture of the objects we work with.
The object of the present thesis is to collect knowledge about highly arc transitive
digraphs rather than collecting proofs. Most of the statements are claimed and
have their proofs or references to their proofs in Section 5. The pages where the
proofs can be found are indicated with "→page".

1.1. Group Actions

Definition 1.1 (Group action) Let G be a group and S a set. Let every g ∈ G
define a bijection g : S → S. We say G acts on S if

1. ∀s ∈ S : 1(s) = s

2. ∀s ∈ S, g, h ∈ G : g(h(s)) = gh(s)

If G acts on S we write G �S.

For convenience, we do not denote the brackets unless there is room for mis-
understanding.

Definition 1.2 (Pointwise stabilizer) Let G �M and P ⊂ M . We define
the pointwise stabilizer of P in G by

StabG(P ):={g ∈ G | ∀x ∈ P : gx = x}

Take care to not mix up the pointwise stabilizer with the setwise stabilizer
which is defined as {g ∈ G | gP = P}.

Definition 1.3 (Restriction) If G �S and P ⊂ S such that the action of G
on S fixes P setwise, G also defines an action on P . Thus the pointwise stabilizer
of P is a normal subgroup of G and we can define the restriction of the group
action as

G

�

S|P :=G/StabG(P ).

Definition 1.4 (Orbit) Let G �

S. For s ∈ S the set Gs is called orbit of s
under the action of G.

1



1 Preface 1.2 Graph Theory

Remark 1.5 Being in the same orbit is an equivalence relation. Thus the orbits
of the action of G partition the set S.

Definition 1.6 (transitive, free) Let G �S.

1. The group action is said to be transitive, if it has only one orbit

∀s ∈ S : Gs = S.

2. A group action is said to be free, if only the identity fixes an element

∀g ∈ G, s ∈ S : g 6= id ⇒ gs 6= s.

Note that free group actions are often called semiregular instead.

Theorem 1.7 (orbit–stabilizer) Let a group G act on a set Ω. For every
x ∈ Ω the elements of its orbit Gx are in one–to–one correspondence with the
cosets of its stabilizer StabG(x). In particular

|Gx| = [G : StabG(x)]

→ 77

1.2. Graph Theory

There is an inexhaustible amount of definitions of graphs, digraphs, multi–
graphs and so on. Each tries to allow or avoid constructions like multiple
edges, loops, semi–edges, directions and so on. We just exemplarily give two
definitions which should be enough for this thesis. The first allowing only single
edges and loops, the second also multiple edges.

Definition 1.8 A digraph X is a pair (V (X), E(X)) where V (X) is a set (of
vertices) and E(X) ⊂ V (X)× V (X).

There are several problems with this definition. To mention just one of them,
there cannot be two edges (x, y) but there can be an edge (x, y) and an edge
(y, x), thus if one wants to use it to define undirected graphs by forgetting the
direction it yields graphs with at most two parallel edges (which can be either a
bug or a feature).

Definition 1.9 A digraph X is a quadruple (V (X), E(X), s, t) with V (X) and
E(X) arbitrary sets (with the exception that V (X) cannot be empty if E(X) is
nonempty) and s, t : E(X) → V (X) are functions, assigning to each edge an
initial- and a terminal vertex.

2



1 Preface 1.2 Graph Theory

This sounds like a pretty safe definition of a multi–digraph, and does the job
for a wide range of applications, but it often leads to very uncomfortable notation.
Thus for convenience the notation often pretends that edges are ordered pairs
of vertices, even if graphs were defined differently before. As these notational
problems are resolvable we will ignore them and jump between the definitions as
it suits – unless it could give room for misunderstanding.

Definition 1.10 (bipartite) A digraph X with

V (X) = V1∪̇V2

E(X) ⊆ V1 × V2

is called bipartite.

Remark 1.11 The definition above says that all the edges are directed from V1 to
V2. Thus one can understand V1 as source–partition and V2 as sink–partition.
Moreover, note that the underlying undirected graph is bipartite in the undirected
sense, but not every orientation on a bipartite graph yields a bipartite digraph.

Definition 1.12 (subgraphs) Let D = (V (D), E(D), s, t) be a digraph. Let
V (G) ⊆ V (D) and E(G) ⊆ E(D) be subsets of vertices and edges of D. If
G = (V (G), E(G), s|E(G) , t|E(G)) is a digraph, we call it subgraph of D (that
is, if s(E(G)) ⊂ V (G) and t(E(G)) ⊂ V (G).)
We say that a subgraph X is induced if E(X) = s−1(V (X)) ∪ t−1(V (X)) (that
is, if all the possible edges are contained). A set V of vertices induces the
unique induced subgraph X with vertex set V (X) = V . A set of edges induces the
subgraph that is induced by its covered vertices.
If S is a set of vertices and/or edges we denote the subgraph it induces by 〈S〉.

Definition 1.13 (Kn, Kn,m) Let N and M be sets, n = |N | and m = |M |. We
define the complete digraph Kn as

V (Kn) := N

E(Kn) := N ×N

and the complete bipartite digraph Kn,m as

V (Kn,m) := N ∪̇M
E(Kn,m) := N ×M

Note that this definition of Kn includes the loops at every vertex.

3



1 Preface 1.2 Graph Theory

Definition 1.14 (degree,valency,neighbours) Let X be a digraph with mul-
tiple edges and loops and x ∈ V (X).
The in–valency of x is the size of the set of edges terminating in x

δ−(x):= |{e ∈ E(X) | t(e) = x}|

The out–valency of x is the size of the set of edges starting in x

δ+(x):= |{e ∈ E(X) | s(e) = x}|

The valency of x is the sum of its in–valency and the out–valency

δ(x):=δ−(x) + δ+(x)

The in–neighbours of x are the vertices from which there is an edge to x

N−(x):={y ∈ V (X) | (y, x) ∈ E(X)}

The out–neighbours of x are the vertices to which there is an edge from x

N+(x):={y ∈ V (X) | (x, y) ∈ E(X)}

The neighbours of x are the vertices adjacent to x

N(x):=N+(x) ∪N−(x)

The in–degree is the size of the set of in–neighbours

d−(x):=
∣∣N−(x)

∣∣
The out–degree is the size of the set of out–neighbours

d+(x):=
∣∣N+(x)

∣∣
The degree is the size of the set of neighbours

d(x):= |N(x)|

Remark 1.15 Note that there will always be problems with these definitions.
Considering loops, a vertex could be its own in- and out–neighbour. As defined
here, a loop would at least add two to the valency of its vertex such that the
theorem that the sum of all degrees in a finite graph is even, stays true at least
true for the valency. Note also the notational abuse that illustrates the above
mentioned use of different definitions at the same time.

Definition 1.16 (walk, arc, path, ray, line, cycle) Let X be a digraph.

4



1 Preface 1.2 Graph Theory

1. A walk is a sequence of vertices (x0, . . . , xn) such that there is an edge
between xi and xi+1 (no matter if it is the edge (xi, xi+1) or (xi+1, xi)). If
the length is of importance we write n–walk. We understand a single vertex
as 0–walk.

2. An arc is a walk such that all the edges are directed in the same direction
ei = (xi, xi+1). We often denote an arc by its corresponding sequence of
edges rather then by its sequence of vertices ((e0, . . . , en−1) = (x0, . . . , xn)).
We write n–arc if we want to specify the length and understand a single
vertex as 0–arc. We denote the set of n–arcs of X by Arcn(X) or Arcn if
there is no room for misunderstanding.

3. A path (or n–path) is a walk that does not visit a vertex twice.

4. A directed path is an arc that does not visit a vertex twice.

5. A closed walk or arc is a walk or arc with the property that the initial
vertex coincides with the terminal vertex.

6. A cycle is a closed path in the above sense. We have to make the excep-
tion that the initial vertex is allowed to be visited a second time when the
path finally returns. A cycle is balanced if it has equally many forward
and backward edges (the choice of forward and backward obviously does not
matter in that sense).

7. A ray is an infinite sequence of vertices (x0, x1, . . . ) such that every finite
subsequence of neighbouring entries (that is (xij )j with ij+1 = ij + 1) is a
path.

8. A double–ray is a two way infinite sequence (. . . , x−1, x0, x1, . . . ) such that
every finite subsequence of neighbouring entries is a path.

9. A positive half–line is an infinite sequence of vertices (x0, x1, . . . ) such
that every finite subsequence of neighbouring entries is a directed path. We
speak of a negative half–line if the reverse such subsequences are directed
paths. If it is not necessary to distinguish or the positivity or negativity of
the half–line is clear from the context we just speak of half–lines.

10. A line is a two way infinite sequence (. . . , x−1, x0, x1, . . . ) such that every
finite subsequence of neighbouring entries is a directed path. We denote the
set of all lines of X by L(X).

Remark 1.17 The definitions of walks, arcs and paths often differ from author
to author. Usually the disagreement is about whether vertices or edges may not
be visited twice and how the properties are distributed on the notions.

5



1 Preface 1.2 Graph Theory

Definition/Lemma 1.18 (connected) A digraph is connected it there is a
walk between any two vertices. Being connected by a walk is obviously an equiv-
alence relation on the vertices. The partitions of this equivalence relation induce
connected subgraphs. We call them components. → 77

Definition 1.19 (descendants, predecessors) Let X be a digraph and x ∈
V (X). Let x⇒s be the set of vertices in X in which an s–arc terminates that
started in x, that is

x⇒s:={y ∈ V (X) | ∃ s–arc (x, . . . , y)}.

We define the descendants of x as the lot of these vertices:

x⇒:=
⋃
s∈N+

x⇒s

Analogously we define for the predecessors s⇒x and ⇒x of x.
Furthermore we define the descendants and predecessors of a set A ⊂ V (X) of
vertices canonically as

A⇒n :=
⋃
a∈A

a⇒n

A⇒ :=
⋃
a∈A

a⇒

n⇒A :=
⋃
a∈A

n⇒a

⇒A :=
⋃
a∈A

n⇒a.

Definition 1.20 (regular) A graph X is said to be regular, if every vertex has
the same degree. For a digraph D we ask all the in–degrees to be equal and all the
out–degrees to be equal (the in- and out–degree can be different). In that cases we
denote the degree with d(X), the in–degree with d−(D) and the out–degree with
d+(D) or if there is no room for misunderstanding just d, d− and d+ respectively.
Analogously we denote δ(X), δ−(D) and δ+(D) or again δ, δ+ and δ− for the
valencies.

Note 1.21 Most of the graphs we are going to consider agree on degree and
valency (i.e. have no loops or multiple edges). Hence we can safely speak of
valency but denote d...(. . .).

Definition 1.22 (homomorphism) Let X and Y be digraphs. A digraph ho-
momorphisms ϕ sloppily denoted ϕ : X → Y is a map

ϕ : V (X) ∪ E(X)→ V (Y ) ∪ E(Y )

6



1 Preface 1.2 Graph Theory

that takes vertices to vertices and edges to edges such that

(a, b) ∈ E(X) ⇒ (ϕ(a), ϕ(b)) ∈ E(Y ) and
ϕ((a, b)) = (ϕ(a), ϕ(b)).

Definition 1.23 (epimorphism) A homomorphism is called epimorphism if
it is surjective.

Definition 1.24 (isomorphism) A bijective homomorphism is called isomor-
phism if its reverse is a homomorphism as well. If there is an isomorphism
between two graphs X and Y , we call them isomorphic and write X ∼= Y .

Definition/Lemma 1.25 (automorphism) An isomorphism φ : G→ G from
a graph G onto itself is called automorphism. The set of automorphisms to-
gether with the composition is a group which we denote by AutG. → 77

Remark 1.26 Usually one defines graph–homomorphisms on the vertices only.
This ends up in problems thinking about what one wants to be an epimorphism
and what not. Thus the above three definitions read a bit unfamiliar on first sight.

We will need covering projections in a different way as they are usually
defined. First we give the standard definition.

Definition 1.27 (covering projection) Let X and Y be digraphs and φ : X →
Y be an epimorphism, such that for all x ∈ V (X) the restriction φ|N(x) : N(x)→
N(φ(x)) is an isomorphism. Then X is called covering digraph of Y and φ
covering projection.

Remark 1.28 In [1] the authors define covering projections in a different way.
The reason for that is the following: Consider a 2- or 3–cycle, we desire to
allow a line to wind around this cycle forever – the standard definition from
above allows that only if the cycle–length is greater or equal 4. We thus weaken
the requirements by splitting N(x) into N−(x) and N+(x). That results in the
definition below which we are going to use.

Definition 1.29 (covering projection) Let X and Y be digraphs and φ : X →
Y be an epimorphism, such that for all x ∈ V (X) the restrictions φ|N−(x) :

N−(x) → N−(φ(x)) and φ|N+(x) : N+(x) → N+(φ(x)) are isomorphisms. Then
X is called covering digraph of Y and φ covering projection.

Definition 1.30 (end) An end is an equivalence class of rays under the equiv-
alence relation that two rays are equivalent, if there is a third ray that meets both
in infinitely many vertices.

7



1 Preface 1.2 Graph Theory

Remark 1.31 (end) There are different equivalent definitions of ends. We
mention two more

1. Two rays are considered equivalent if there are infinitely many disjoint walks
connecting them.

2. Two rays are considered equivalent if there is no finite set of vertices that
separates them.

Definition 1.32 (thin, thick) If an end contains only finitely many disjoint
rays it is called thin. Otherwise we call it thick.

Cayley–graphs are visualizations of groups respecting the chosen generators.
A group can have different (non–isomorphic) Cayley–graphs. Sometimes it is
convenient to choose for every used generator also the inverse in order to end up
with an undirected graph.

Definition 1.33 (Cayley–graph) Given a group G generated by the elements
g1, . . . , gn ∈ G. The Cayley–graph Cay(G, {g1, . . . , gn}) is defined by

V (Cay(G, {g1, . . . , gn})) = G

E(Cay(G, {g1, . . . , gn})) = {(g, h) ∈ G×G | ∃i ∈ [n] : ggi = h}

One can decide whether a given graph is a Cayley–graph using the closed
path property.

Proposition 1.34 A graph G is a Cayley–graph if and only if there is an edge-
colouring c : E(X)→ C (where C is a set of colours) such that

1. Every vertex is incident to exactly one incoming and outgoing edge of each
colour.

2. ( closed path property) If a walk w = (e1, . . . , en) starting at a vertex
x ∈ V (G) returns to x after n steps, the walks wy = (ey1, . . . , e

y
n) starting at

an arbitrary vertex y ∈ V (G) and agreeing on colour and direction with w
(c(ei) = c(eyi ) and eyi is a forward edge exactly if ei is) return to y after n
steps. → 77

Definition 1.35 (Group action on a graph) We say that a group G acts on
a graph X if there is a homomorphism ϕ : g → AutX. We write G �X.

Definition 1.36 (free) A group G acts free on a graph X if its action G �

X
restricted to V (X) is free as a group action on a set.

Definition 1.37 (transitive) Let G �

X be a group action on a graph. It is
transitive if the induced group action of a set on V (X) is transitive. The graph
X is said to be transitive if the action AutX �

X is transitive.

8



1 Preface 1.2 Graph Theory

A famous theorem about Cayley–graphs was introduced by Sabidussi.

Theorem 1.38 (Sabidussi) A graph X is a Cayley–graph of a group G if and
only if there is an action G �

X that is free and transitive. → 77

Definition 1.39 (arc transitive) Let G �X be a group action on a digraph.
It is arc transitive if the action it induces on E(X) is transitive. The digraph
X is said to be arc transitive if the action AutX �

X is arc transitive.

Definition 1.40 (s–arc transitive) Let G �

X be a group action on a digraph.
It is s–arc transitive if the action it induces on Arcs is transitive and Arcs is not
empty. The digraph X is said to be s–arc transitive if the action AutX �

X
is s–arc transitive.

Definition 1.41 (highly arc transitive) Let G �

X be a group action on a
digraph. It is highly arc transitive if it is s–arc transitive for all s ∈ N+. The
digraph X is said to be highly arc transitive if the action AutX �X is highly
arc transitive.

Remark 1.42 The title of [1] (Infinite highly arc transitive digraphs and . . . )
suggests that one could think also about finite, highly arc transitive digraphs, but
indeed, the only connected, finite digraphs which are highly arc transitive are
directed cycles. For suppose G is finite and highly arc transitive. If it does not
contain a directed cycle it does not contain an arc of length |V (G)|+ 1 and thus
is not highly arc transitive. Thus it contains a directed cycle C1. Now suppose
it has an edge that is not an edge of the cycle. If the edge connects two vertices
of the cycle, G contains a shorter directed cycle, what immediately contradicts
the highly arc transitivity. Thus there must be a vertex x in the cycle that has
either an additional in- or out–edge that starts/ends outside the cycle (other would
contradict the connectedness). Because of highly arc transitivity this edge must
lie on a second directed cycle C2 of the same length that differs from C1 at least
on the vertex following x. Thus a map that takes the arc (C1, C2) to the arc
(C1, C1) is not injective, thus not an automorphism contradicting the highly arc
transitivity. Thus G cannot contain an edge other than the edges of C1. Since it
is connected it has also no vertices outside C1. Thus it is C1.

Remark 1.43 The condition Arcs 6= ∅ in Definition 1.40 actually is important.
Otherwise i.e. the Kn,n with a source- and a sink–partition would be highly arc
transitive because the condition would be empty satisfied for s > 1. But actually
we do not want Kn,n to be highly arc transitive.

Remember that arcs unlike paths may use the same edge multiple times. Thus
any digraph that contains a directed cycle contains arcs of arbitrary length.
Before we now turn to the examples and constructions section we have a short
look at some examples of s–arc transitivity.

9



1 Preface 1.2 Graph Theory

Example 1.44

1. The digraph in Figure 1 is 1–arc transitive but not 2–arc transitive, as the
red 2–arc cannot be mapped to the green 2–arc by an automorphism.

Figure 1: two way infinite, 1–arc transitive digraph

2. The digraph in Figure 2 is 2–arc transitive but not 1–arc transitive. Obvi-
ously the only two 2–arcs can be mapped to each other by the only nontrivial
automorphism, but the inner and outer edges cannot be exchanged.

Figure 2: evil finite digraph

3. The K4 in Figure 3 is 1–path transitive. Thinking on the tetrahedron it is
obvious, that it is also 2–path transitive, as any 2–path can be thought of
as an angle of one of the triangles. Then already the group of rotational
symmetries (the A4) acts transitively on the angles. Thus the full symmetry
group (the S4) acts transitively on the 2–paths as it can flip the angles.
However, there are non–returning 3–paths which cannot be mapped to the
triangles, thus the K4 is not 3–path transitive.

Figure 3: K4 - undirected

Thus the different transitivities are not just specializations of each other, but
really different properties. A lot of work was done on transitivity of finite graphs.
We will not look closer on these but turn now to highly arc transitive digraphs.
Nevertheless we keep in mind that bad things like in Figure 2 may occur.

Remark 1.45 Finally we remark that infinite, connected, transitive graphs have
either 1, 2 or infinitely many ends. There exist a couple of different versions
of this well known theorem. It holds under much weaker assumptions and can
give more information about the set of ends. Here it is just mentioned because
it obviously holds for highly arc transitive digraphs as well. Thus we can keep in
mind that they always have 1, 2 or infinitely many ends.
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2 Examples and Constructions

2. Examples and Constructions

2.1. The line Z

The Cayley–graph of (Z,+) with the generator 1 is a highly arc transitive digraph.
We define it as the integer line and draw it from left to right.

Definition 2.1 (Integer line) The integer line is the digraph Z given by

V (Z) := Z
E(Z) := {(x, x+ 1) | x ∈ Z}.

Proposition 2.2 Z is highly arc transitive. → 62

Figure 4: The integer line Z

2.2. Trees

The second obvious example for highly arc transitive digraphs are regular directed
trees.

Definition 2.3 (Tree) A tree is a graph/digraph without cycles.

Figure 5 shows a tree with in–valency 1 and out–valency 2 on the left side and
a tree with in–valency 2 and out–valency 3 on the right side.

Proposition 2.4 A regular tree T is highly arc transitive. → 62

2.3. Z–like digraphs

One can understand Z as infinitely manyK1,1s glued together to a line. Following
this idea we construct Z–like digraphs.

2.3.1. Kn,n–lines

Construction 2.5 We construct a two way infinite line of Kn,ns by gluing to-
gether infinitely many Kn,ns in the canonical way. As vertex set of the new
digraph LKn,n we use

V (LKn,n):=Z× Zn.
Then we draw Kn,n between the layers, thus the edge set is

E(LKn,n):={((k, x), (k + 1, y)) | k ∈ Z, x, y ∈ Zn}.

Definition 2.6 We call the digraph LKn,n from Construction 2.5 the Kn,n–line.

Proposition 2.7 For every positive integer n ∈ N+ the Kn,n–line is highly arc
transitive. → 62
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2 Examples and Constructions 2.3 Z–like digraphs

Figure 5: regular trees with d− = 1, d+ = 2 and d− = 2, d+ = 3

Figure 6: K4,4–line

12



2 Examples and Constructions 2.3 Z–like digraphs

2.3.2. Kn,n–tubes

We are going to give an infinite class of highly arc transitive digraphs that was
first considered by McKay and Praeger and mentioned in [1] but seems to have
been forgotten afterwards. A special case was rediscovered in [9]. The author
generalized this idea to regain the original class.
The following construction uses voltage assignments and derived graphs fol-
lowing the approach from [9]. Therefore we first need to define voltage graphs.

Definition 2.8 (voltage assignment) Let X be a digraph and G be a group.
A voltage assignment is a function α : E(X) → G (i.e. every edge of X is
coloured with a group element g ∈ G).

Definition 2.9 (derived graph) Let X be a digraph and α : E(X) → Zn (for
n ∈ N+) a voltage assignment. We define the derived digraph X̃ by

V (X̃) := V (X)× Zn
E(X̃) := {((v0, k), (v1, k + α((v0, v1)))) | (v0, v1) ∈ E(X)}

That is we replace every vertex with n new vertices putting labels 0 to n − 1
on them. Then wherever there is an edge in X, we put n edges between the
corresponding sets of new edges. The voltage assignment tells us, to which label
we put the edge starting at label 0. We add the other edges in cyclic order.

Construction 2.10 (Kn,n–tube) Let n,m ∈ N be integers. Consider the group
of voltages Zmn and the graph Z. Replace every edge in Z by n edges, all having
the same initial and terminal vertex as the replaced edge had. Now we assign
voltages to every edge in the following way. The edges between the vertices x and
x + 1 get the voltages 0, the x mod m–th standard base vector from Zmn and all
its multiples (as illustrated in Figure 7). Finally we consider the derived graph
from this voltage assignment, denoting it by Tube(n,m).

(0,...,0)

(0,...,0,1)

...
(0,...,0,n−1)

(0,...,0)

(0,...,0,1,0)

...
(0,...,0,n−1,0)

(0,...,0)

(1,0,...,0)

...
(n−1,0,...,0)

(0,...,0)

(0,...,0,1)

...
(0,...,0,n−1)

Figure 7: Voltage assignment

Definition 2.11 (Kn,n–tube) The digraph Tube(n,m) from Construction 2.10
is called m–periodic Kn,n–tube.
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2 Examples and Constructions 2.4 Line digraphs

Remark 2.12 One can understand the Kn,n–tube in the following way. In every
layer there are nm vertices which can be labeled by the nm elements of Zmn (i.e. by
the at most m–digited numbers of base n). Edges only run between neighbouring
layers (from layer x to layer x + 1). There they run precisely between vertices
whose labels differ in at most the x mod m–th digit. This idea is illustrated in the
Figures 8, 9 and 10. It results in nm−1 Kn,ns which lie "parallel" in every layer,
that motivated the name Kn,n–tube.
McKay and Praeger described the same thing with labels from the m–th power of
an arbitrary n–sized set and put edges whenever the label in the next layer was a
right shift of the current one.

Proposition 2.13 For n,m ∈ N+ the Tube(n,m) is highly arc transitive. → 63

Figure 8: Tube(2, 2)

Figure 9: Tube(3, 2)

Figure 10: Tube(4, 2)

2.4. Line digraphs

First, we recall the definition of the linegraph.

14



2 Examples and Constructions 2.5 Universal covering digraphs

Definition 2.14 (Line digraph) Given a digraph X, the line digraph L is
defined by

V (L) := E(X)

E(L) := {(e1, e2) | ∃x : e1 = (·, x) ∧ e2 = (x, ·)}

Example 2.15 The line digraph of a regular tree with in- and out–valency 2
consists of K2,2s. Figure 11 shows this line digraph in blue and the underlying
tree in gray.

Figure 11: Linegraph of the 2–in–2–out–regular tree

Proposition 2.16 If a digraph D is highly arc transitive and connected then so
is its line digraph. → 63

We will encounter some more constructions alike. Particularly in the next
subsection we provide a very important example of a subgraph of a line digraph.

2.5. Universal covering digraphs

We now come to the most important graph from [1]. We are going to construct a
digraph DL(∆) from a bipartite digraph ∆ and a tree T (which depends on ∆).

15



2 Examples and Constructions 2.5 Universal covering digraphs

Figure 12: A bipartite digraph ∆ and its tree T

Construction 2.17 (DL(∆)) We start with an arbitrary bipartite digraph ∆
consisting of the source partition ∆− and the sink partition ∆+. Let n = |∆−|
and m = |∆+|. We consider the regular tree T with in–valency d−(T ) = n and
out–valency d+(T ) = m.

Now we consider the line digraph of T and define an appropriate subgraph.

Wherever a vertex v of T has been, there appears a Kn,m in the line digraph.
We replace all these Kn,ms by copies of ∆. Therefore we need to choose which
edges to drop, or more intuitively, which to take:
For v ∈ T let v− be the set of in–edges of v and v+ the set of out–edges of v. We
choose bijections φ+

v : ∆+ → v+ and φ−v : ∆− → v−. Now we choose for every
edge in (x, y) ∈ ∆ and every v ∈ T the edge (φv(x), φv(y)) to be in E(DL(∆)).

Definition 2.18 (Universal covering digraph) The digraph DL(∆) defined
in Construction 2.17 with

V (DL(∆)) := E(T )

E(DL(∆)) :=
⋃
v∈T

{(φ+
v (x), φ−v (y))|x = (·, v), y = (v, ·)}

is called universal covering digraph of ∆, if ∆ is connected and 1–arc tran-
sitive.

Proposition 2.19

(1) The structure of a universal covering digraph does not depend on the choices
of φab .
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Figure 13: The line digraph of T

Figure 14: DL(∆)
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2 Examples and Constructions 2.6 Ordered field digraphs

(2) Universal covering digraphs are highly arc transitive. → 63

2.6. Ordered field digraphs

A quite boring example that illustrates that highly arc transitive digraphs can
be pretty structureless, is an order digraph of an ordered field.

Definition 2.20 (ordered field) An ordered field (F,+, ·,≤) is gained from
a field (F,+, ·) by adding an order relation ≤ such that (F,≤) is totally ordered
and

1. ∀a, b, c ∈ F : a ≤ b ⇒ a+ c ≤ b+ c

2. ∀a, b ∈ F : 0 ≤ a ∧ 0 ≤ b ⇒ 0 ≤ ab

Proposition 2.21 The ordered field digraph D of any ordered field (F,≤)

V (D) := F

E(D) := {(x, y) ∈ F × F | x ≤ y}

is highly arc transitive. → 64

Remark 2.22 Note that ordered fields have characteristic 0 and thus are infinite.

2.7. The alternating–cycle digraph

There are different ways of defining the alternating–cycle digraph. For the present
thesis it will be sufficient to define it as a Cayley–graph of a certain group.

Definition 2.23 (alternating–cycle digraph) For n ≥ 3 we define the alter-
nating–cycle digraph as

AC(n):=Cay(〈L,R | (RL−1)n, ((RL−1)
n−1

2 R)2〉, {L,R})

Proposition 2.24 Let n ≥ 3 be an odd integer. Then the graph AC(n) is highly
arc transitive. → 64

Figure 15 shows the alternating–cycle digraph for n = 5.
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Figure 15: AC(5)

2.8. The Evans–graph

The Evans–graph was introduced in [6]. Evans just called it "an infinite highly
arc–transitive digraph". It is constructed from countably many trees. In order
to do so we will need the definition of independent sets.

Definition 2.25 (Independent set) Let D be a digraph. A set {d1, . . . , dn} ⊂
V (D) is said to be independent if no v ∈ V (D) is a descendant of more than
one di.

Construction 2.26 (Evans–graph) We start with a tree T with constant out–
valency n. We are going to construct a chain of digraphs X0 ⊂ X1 ⊂ . . . whose
limit

X =
⋃
i∈N

Xi

will be our desired digraph.
First we set

X0 = T.

In the i–th step we construct Xi from Xi−1 by attaching a copy Ti of T in a
certain way. Namely, we will identify an independent set and all its descendants
in Ti with an independent set and all its descendants in Xi−1. Therefore we need
to specify an order of attaching.
Indeed, we will only need finite independent sets. There are only countably many
such in T . Thus there are only countably many independent sets in every Xi (by
induction). Thus there are only countably many independent sets in X (because
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2 Examples and Constructions 2.9 k–arc–digraphs

there are only countably many Xis). Let I be this set and ϕ : I → N an enumer-
ation which exists because I is countable.
Now there are countably many injective mappings φ : ϕ−1(m)→ T which take an
arbitrary independent set ϕ−1(m) to an independent set in T . Thus the set

Φ:={φ : ϕ−1(m)→ T |m ∈ N, Im (φ) independent}
is countable and we can choose an enumeration

ν : Φ→ N

in a way that the domain of ν−1(j) is contained in Xi−1 with 0 < i ≤ j. This
condition ensures, that during the construction the independent set we choose lies
in a digraph that already exists. If it was violated, we would try to attach a copy
of T to say X17 having constructed only say X12. The existence of such a ν can
easily be guaranteed because there are already infinitely many independent sets in
X0 = T .
Now we finish the construction with the identification of the domain and the
image of ν−1(i) by ν−1(i) in the i–th step. The descendants of the independent
elements in the attached copy can be identified with the descendants in Xi−1 in
the canonical way (or they can just be deleted as they will disappear either way).

Definition 2.27 (Evans–graph) The digraph X defined in Construction 2.26
is called Evans–graph of out–valency n.

Proposition 2.28 The Evans–graph of any out–valency n ∈ N+ is highly arc
transitive. → 64

Remark 2.29 For n = 1 the Evans–graph is the tree with out–valency 1 and
countably infinite in–valency, thus it is not very interesting. But it is still inter-
esting to note that its in–valency is not 2. This is what one could assume as there
is only one kind of independent sets in Z (namely a single vertex). But still there
are infinitely many vertices in Z each of which is an independent set.

2.9. k–arc–digraphs

Given an highly arc transitive digraph we construct a new one by choosing k–arcs
as edges.

Construction 2.30 Let D be a highly arc transitive digraph. We construct Dk

with the same vertex set as D. We choose the edge set

E(Dk):={(x, y) ∈ V (Dk)
2 | There is a k–arc in D from x to y}

Proposition 2.31 Dk from Construction 2.30 is highly arc transitive. → 64

Remark 2.32 Dk may not be connected, even if D was connected. I.e. the
k–arc–digraph of Z consists of k copies of Z. Thus this construction does not
necessarily end up with a new digraph.
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2 Examples and Constructions 2.10 s–arc–k–arc–digraphs

Figure 16: An edge of Dk

2.10. s–arc–k–arc–digraphs

Again we construct a highly arc transitive digraph from a given one.

Construction 2.33 Let D be a highly arc transitive digraph. For k ≥ 2s and
s ≥ 1 we construct a digraph Ds,k which has the set of s–arcs of D as vertex set.

V (Ds,k):={(d0, . . . , ds) | (di, di+1) ∈ E(D)}

We put an edge for every k–arc from the initial s–arc to the terminal s–arc.

E(Ds,k) := {((a0, . . . , as), (b0, . . . , bs)) ⊂ V (Ds,k)
2 |

∃(c0, . . . , ck) : (ci, ci+1) ∈ E(D), aj = cj, bl = ck−s+l}

wherever i, j and l make sense.

Figure 17: Edges of Ds,k

Proposition 2.34 Ds,k from Construction 2.33 is highly arc transitive. → 64

Remark 2.35 Ds,k may not be connected, even if D was connected.

2.11. The DeVos–Mohar–Šámal–digraph

Matt DeVos, Bojan Mohar and Robert Šámal constructed in [5] an interesting
family of highly arc transitive digraphs which together with [2] answers a question
from [1] best possible. For every integer product d it gives a digraph with d+ =
d− = d with a certain property.
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Construction 2.36 (DeVos–Mohar–Šámal–digraph) Let n,m ≥ 3 be inte-
gers. We first construct an undirected tree T . Trees are bipartite. We call one
partition A and the other B and choose the a ∈ A to be n–valent and the b ∈ B
to be m–valent. Now we construct the digraph DMS(n,m) with vertex set

V (DMS(n,m)):=E(T )

and use a set of paths as edge set. Namely, we use the set of 3–paths of T with
initial vertex in A. We understand the 3–path (e1, e2, e3) in T as edge (e1, e3) in
DMS(n,m) (as Figure 18 illustrates).

Figure 18: DMS(3, 3)

Definition 2.37 The digraph DMS(n,m) defined in Construction 2.36 is called
DeVos–Mohar–Šámal–digraph.

Proposition 2.38 Let n,m ≥ 3 be integers, then the digraph DMS(n,m) is
highly arc transitive. → 64

2.12. The Hamann–Hundertmark–digraph

While characterizing C–homogeneous digraphs with more then one end Matthias
Hamann and Fabian Hundertmark came up with a class of graphs which turned
out to be highly arc transitive.
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2 Examples and Constructions 2.12 The Hamann–Hundertmark–digraph

Construction 2.39 (Hamann–Hundertmark) Let n ≥ 2 be an integer and
κ ≥ 3 a cardinal. We start with a bipartite, undirected tree Tκ,n with natural
bipartition V (Tκ,n) = A∪B. Let the vertices in A have valency n and the vertices
in B valency κ. We construct a graph HH that has the edge set of Tκ,n as vertex
set

V (HH):=E(Tκ,n).

For every a ∈ A we bijectively assign values from Zn to its incident edges.
This defines an edge–colouring c : E(Tκ,n) → Zn and is well defined since ev-
ery edge e in E(Tκ,n) is incident to a unique vertex ae ∈ A (i.e. these edge–
neighbourhoods partition the edge set E(Tκ,n)). As edge set for HH we use a
set of paths. Namely, we use the set of 3–paths (e1, e2, e3) with initial vertex in A
and c(e2) + 1 = c(e3). We understand the arc (e1, e2, e3) in Tκ,n as edge (e1, e3)
in HH (as Figure 19 illustrates).

Figure 19: HH(4, 3)

Definition 2.40 (Hamann–Hundertmark–digraph) Let n ≥ 2 be an integer
and κ ≥ 3 a cardinal. The digraph HH(κ, n) from Construction 2.39 is called
Hamann–Hundertmark–digraph.

Proposition 2.41 Let n ≥ 2 be an integer and κ ≥ 3 a cardinal. The digraph
HH(κ, n) from Construction 2.39 is highly arc transitive. → 64
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2 Examples and Constructions 2.13 Tensor–products

2.13. Tensor–products

We will define the tensor–product (also called conjunction) of two digraphs and
see, that the tensor–product of two highly arc transitive digraphs is again highly
arc transitive.

Definition 2.42 (Tensor–product) Given to digraphs C and D, we define the
tensor product C ⊗D by

V (C ⊗D) := V (C)× V (D)

E(C ⊗D) := {((c1, d1), (c2, d2)) | (c1, c2) ∈ E(C), (d1, d2) ∈ E(D)}

Proposition 2.43 If C and D are highly arc transitive, so is C ⊗D. Indeed if
C and D are s–arc transitive, so is C ⊗D. → 64

It is possible to weaken the requirements on D in the above proposition if C
has an additional property, see Proposition 4.23.

Proposition 2.44 Let C be highly arc transitive and n be the cardinality of any
nonempty set. Then C ⊗Kn is highly arc transitive. → 64

Remark 2.45

1. The name tensor product comes from the adjacency matrix of C ⊗D which
is the tensor or Kronecker product of the adjacency matrices of C and D.

2. Obviously C⊗D and D⊗C are isomorphic (that is by the symmetry of the
definition).

3. [1] claims that C ⊗ D is connected if and only if both C and D are. This
is wrong as example 2.46 illustrates.

Example 2.46 Figure 20 shows the local view of the tensor–product LK2,2 ⊗
LK2,2. Indeed, the tensor–product is a set of infinitely many copies of LK4,4.

2.13.1. Sequences digraphs

Now we come to a more involved construction that was introduced in [1]. We use
two way infinite sequences as vertices and put edges in between them if a certain
kind of shift transforms the one into the other.

Construction 2.47 We start with a connected bipartite digraph ∆ with source
partition ∆− and sink partition ∆+. We choose fixed elements δ1 ∈ ∆− and
δ2 ∈ ∆+. Now we define the digraph S(∆, δ1, δ2). First we define the vertex set
to be the set of two way infinite sequences x = (. . . , x−1, x0, x1, . . .) with
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2 Examples and Constructions 2.13 Tensor–products

Figure 20: LK2,2 ⊗ LK2,2

1. n < 0: xn ∈ ∆1 but almost all xn = δ1

2. n ≥ 0: xn ∈ ∆2 but almost all xn = δ2

The edge set of S(∆, δ1, δ2) is defined by a right–shift, that respects ∆ at index 0

E(S(∆, δ1, δ2)):={(x, y) | ∀i 6= 0 : xi−1 = yi and (x−1, y0) ∈ E(∆)}

Definition 2.48 (Sequences digraph) The digraph S(∆, δ1, δ2) from con-
struction 2.47 is called sequences digraph of the bipartite digraph ∆ with re-
spect to δ1 and δ2.

Proposition 2.49 Let ∆ = ∆− ∪∆+ be a bipartite, connected, 1–arc transitive
digraph with δ1 ∈ ∆− and δ2 ∈ ∆+ then Z ⊗ S(∆, δ1, δ2) is highly arc transitive
and connected. → 64

Remark 2.50

1. If ∆ contains the edge (δ1, δ2) the sequences digraph S(∆, δ1, δ2) with the
"zero–sequence" 0:=(. . . , δ1, δ2, . . . ) contains the loop (0,0). Unfortunately
this loop is not guaranteed what makes the proof of the above proposition a
little more involved.

2. The sequences digraph itself is far away from being highly arc transitive (it
is not even transitive).

3. In the above proposition the result remains true if instead of Z a highly arc
transitive digraph with an epimorphism onto Z is used. See Theorem 4.20.

Example 2.51 As it is actually not all that easy to understand what is going
on in this sequences digraph construction, we will have a look at the local view of
four small examples starting with the trivial ones
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2 Examples and Constructions 2.13 Tensor–products

1. If we start with ∆ = K1,1, there is only one possible sequence. Thus the
sequences digraph is just a single loop L. But Z ⊗ L = Z.

2. The first nontrivial example with ∆ = K1,2 yields a result which is surprising
on first sight. The sequences digraph S(K1,2, 0, 0) shown in Figure 21 does
not look too promising to get a highly arc transitive digraph out of it. But
as Figure 22 demonstrates, the digraph Z ⊗ S(K1,2, 0, 0) is the infinite tree
with in–valency 1 and out–valency 2.

00000 10000

11000

01000

11100

01100

10100

00100

11110
01110
10110
00110
11010
01010
10010
00010

Figure 21: S(K1,2, 0, 0)

Figure 22: Z ⊗ S(K1,2, 0, 0)

3. Once we have more than one vertex in both partitions of ∆, the resulting
graphs get much more involved. First we have a look at the situation in the
case ∆ = K2,2. If we do not move more than three steps away from the zero–
sequence this example has a very beautiful and symmetric embedding that
on first sight might suggest that such graphs are easy to draw, but that hope
vanishes immediately when considering any larger views. Again Figure 23
shows the local view of the sequences digraph S(K2,2, 0, 0) and Figure 24
shows the arising highly arc transitive digraph. It consists of K2,2s which
for easier detection are coloured.
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00000000 0000001000000100

00000110

00001000

00001010

00001100

00001110

00010000

00010100

00011000

00011100

00100000

00101000

00110000

00111000

01000000

01010000

01100000

01110000

Figure 23: S(K2,2, 0, 0)

Figure 24: Z ⊗ S(K2,2, 0, 0)

4. Finally, we draw Z ⊗ S(K2,3, 0, 0) which is the smallest nontrivial, asym-
metric example. Here, it is already nontrivial to arrange the vertices of
the sequences digraph in a way to not immediately lose the overview. Thus
Figure 25 only looks two shifts away from the zero–sequence – any larger
image would be very involved and confusing. As above in the following fig-
ure the local view of the arising highly arc transitive digraph is shown. Not
surprisingly it consists of K2,3s which again are coloured.

000200001200

000220

000020

000210

011000

000120

001100 000110

010000 001000 000000 000100 000010

Figure 25: S(K2,3, 0, 0)

2.13.2. Rational–circles digraphs

The graph Z ⊗S(Kn,m, δ1, δ2) can also be gained from a very different approach.
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2 Examples and Constructions 2.13 Tensor–products

Figure 26: Z ⊗ S(K2,3, 0, 0)

Construction 2.52 Let u, v ∈ N with gcd (u, v) = 1. Then

Au,v = { w

umvn
| w,m, n ∈ Z}

is a subgroup of (Q,+). Obviously, Z is a normal subgroup of Au,v and so one
can think of Au,v/Z as "rational circles". Now we define the digraph D(u, v) with
the vertex set

V (D(u, v)):=Z× Au,v/Z.
We define a group G = 〈g, h〉 generated by

g : (n, r) 7→ (n+ 1, r)

h : (n, r) 7→ (n, r +
(u
v

)n
)

and consider its action on the set of possible edges V (D(u, v))2. We choose the
edge set to be the orbit containing ((0, 0), (1, 0)):

E(D(u, v)):=G(((0, 0), (1, 0)))

It turns out, that G ⊂ AutD(u, v) acts transitively on the s–arcs. But we are
not going into detail on that because we can kill the topic by recognizing the
following theorem.

Theorem 2.53 If u, v ∈ N are relatively prim then

D(u, v) ∼= Z ⊗ S(Ku,v, δ1, δ2)

→ 66
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2 Examples and Constructions 2.14 Diestel–Leader graphs

2.14. Diestel–Leader graphs

The Diestel–Leader graphs were introduced in [15]. They are constructed
from two regular trees. If both are binary, the resulting graph is a Cayley–graph
of the lamplighter group on Z. But we will not focus on that in the present thesis.

Construction 2.54 (Diestel–Leader) We start with a tree A with in–valency
1 and out–valency n and a second tree B with in–valency m and out–valency
1. Then we choose epimorphisms φA : A → Z and φB : B → Z. The sets
φ−1
A (n) ∪ φ−1

B (n) are called horocycles. Every pair of vertices a ∈ V (A) and
b ∈ V (B) which are in the same horocycle is a vertex of the digraph DLn,m. Set

V (DLn,m):={(a, b) | a ∈ V (A), b ∈ V (B), φA(a) = φB(b)}.

Finally, we put edges between vertices if both their coordinates are adjacent in the
underlying trees

E(DLn,m):={((a, b), (c, d)) | (a, c) ∈ E(A), (b, d) ∈ E(B)}.

Definition 2.55 (Diestel–Leader) The digraph DLn,m from construction 2.54
is called Diestel–Leader graph with valencies n and m.

Remark 2.56

1. Be aware of the slightly dangerous notation as the Diestel–Leader graph
DLn,m and the universal covering digraph DL(∆) almost produce a nota-
tional conflict.

2. The Diestel–Leader graph DL2,2 is a Cayley–graph of the lamplighter group
on Z. But for n 6= m they are not even quasi–isometric to any Cayley–
graph. Thus they answer a question by Woess whether there are transitive
graphs which are not quasi–isometric to any Cayley–graph.

Proposition 2.57 The Diestel–Leader graph DLn,m is highly arc transitive.→ 65

2.14.1. Broom–graphs

Diestel–Leader graphs are also known as broom–graphs with a different approach
and construction. It is quite similar to the construction of the Evans–graph since
we are again going to glue trees together.

Construction 2.58 (Broom–graph) We start with a regular tree T with in–
valency d− = 1 and out–valency d+ = n ≥ 2 and choose an epimorphism φ : T →
Z. We will glue "upper halfs" of T onto it. Therefore let an upper half be the
subgraph G induced by {x ∈ V (T ) | φ(x) ≤ 0} (Any other integer would yield an
isomorphic graph.). G can be thought of as T truncated at a horocycle.
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2 Examples and Constructions 2.15 Pancake–tree

At every horocycle Hi:={x ∈ V (T ) | φ(x) = i} of T we attach a copy Gi of G by
identifying Hi with the bottom horocycle of Gi in the canonical way. We call the
resulting graph D1.
In the next step we attach copies Gi,j of G at every non–bottom horocycle of every
Gi in the same way to get D2. Similarly we get Dm from Dm−1 by attaching
copies Gi1,...,im at every non–bottom horocycle of every Gi1,...,im−1. (By referring
to horocycles here we have to take care that we really mean horocycles of G... and
not horocycles of Dk.)
Finally we define Bn as the limit

Bn:=
⋃
k∈N+

Dk.

Remark 2.59

1. The trivial case n = 1 would yield an upward binary tree (with in–valency
2 and out–valency 1).

2. From the view of any vertex x, the broom–graphs look like trees in both
directions. x⇒ induces a subtree with out–valency n whereas ⇒x induces a
subtree with in–valency 2.

3. Obviously, one is not bound to attach a single tree at the horocycles. Indeed
we can choose any m ∈ N and attach m copies of G at each horocycle and
call the resulting digraph Bn,m+1. The above subgraph ⇒x will then be a tree
with in–valency m+ 1.

Definition 2.60 The digraph Bn from Construction 2.58 and the digraph Bn,m

from Remark 2.59 are called broom–graph with out–valency n (and in–valency
m, respectively).

As mentioned above we finally remark Theorem 2.61.

Theorem 2.61 The Diesel–Leader graph is isomorphic to the broom–graph.

DLn,m ∼= Bn,m

→ 66

2.15. Pancake–tree

2.15.1. Quadratic pancake–tree

The quadratic pancake–tree was invented in [2] as example of an highly arc tran-
sitive digraph with thick and thin ends. It could be easily described as D(∆) for
∆ the bipartite directed grid. Nevertheless, we are going to present the intuitive
construction from [2].
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2 Examples and Constructions 2.15 Pancake–tree

Construction 2.62 (Quadratic pancake–tree) We start with defining the
bipartite directed grid (the pancake). The undirected grid has vertices from Z2

and edges between vertices which are equal in the one and neighbouring in the
other component. Every vertex has a well defined distance to (0, 0) and with that
arising a parity. Thus every edge connects a vertex of odd parity with a vertex
of even parity. We orientate every edge from even to odd to get the pancake as
shown in Figure 27.

Figure 27: quadratic pancake

We are now going to glue infinitely many copies of the pancake together. We
start by attaching a pancake to every vertex of an initial pancake by identifying
the vertex with a vertex of the other parity of the attached pancake.
Then we iteratively glue pancakes to all the vertices of the new graph which have
no attached pancake yet. As a limit we get the pancake–tree.

Definition 2.63 The graph from the above Construction 2.62 is called
quadratic pancake–tree.

Proposition 2.64 The quadratic pancake–tree is highly arc transitive. → 66

2.15.2. Hexagon pancake–tree

Obviously every other infinite, bipartite, 1–arc transitive, connected, one–ended
digraph could be used as ∆ and would yield the same properties we are looking
for (see later), but there is just one more plain one. Thus we mention it here
separately.

Construction 2.65 (Hexagon pancake–tree) We define the hex–pancake on
Z2. We start again with an undirected graph on the vertex set Z2. We put vertical
edges between vertices which agree on the first component and which are neigh-
bouring in the second. Then we add edges ((i, 2j), (i+ 1, 2j + 1)). The distance
from (0, 0) gives again a well defined parity and the rest of the construction runs
analogously to Construction 2.62.
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2 Examples and Constructions 2.15 Pancake–tree

Figure 28 shows on the left the hex–pancake as defined above and on the right
the intuitive hex–pancake.

Figure 28: hex–pancake

Definition 2.66 The digraph from the above Construction 2.65 is called hexa-
gon pancake–tree.

Proposition 2.67 The hexagon pancake–tree is highly arc transitive. → 66
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3 Introduction

3. Introduction

3.1. Overview

The research on highly arc transitive digraphs was started with [1] by Cameron,
Praeger and Wormald who defined associated digraphs for 1–arc transitive
digraphs and the universal covering digraphs. They investigated Property Z
and finally presented some constructions for new highly arc transitive digraphs.
They stated some questions and conjectures that gave rise to further research
over the past 20 years, but still highly arc transitive digraphs are far from being
understood. Still we are far away form characterizing them or at least interesting
classes of them.
The main theorem about universal covering digraphs presented in [1] understands
the class of digraphs with the same associated digraph as a category and finds
the universal covering digraph to be projective in that category.
In [11] Praeger investigates the connection between the valencies on the one
and Property Z and universal reachability relation on the other hand. This
work was continued by Evans in [6] where he found a highly arc transitive
digraph with finite out–valency that has universal reachability relation, and by
Malnič, Marušič, Seifter and Zgrablič in [7], where they presented a locally finite
highly arc transitive digraph that has neither universal reachability relation nor
Property Z. Finally DeVos, Mohar and Šámal clarified in [5] for which in- and
out–valencies highly arc transitive digraphs with universal reachability relation
exist and for which not.
Möller investigated lines and their descendants in highly arc transitive digraphs
in [4]. He finds that highly arc transitive digraphs which are covered by the
descendants of one of their lines can be epimorphic mapped onto a tree with
finite fibres in a unique way. Furthermore he finds the spread of a locally finite
highly arc transitive digraph to be an integer.
In the same year (2002), Möller published [12] where he found a connection
between highly arc transitive digraphs and Willis ’ structure theory about totally
disconnected, topological groups. This topic was picked up by Malnič, Marušič,
Seifter and Zgrablič in [7] where they presented two proofs about topological
groups that are lead using highly arc transitive digraphs.
In [2], Seifter studied transitive graphs with more than one end. He found
that highly arc transitive digraphs can simultaneously have thin and thick ends
but not both kinds can contain half–lines. Moreover he discovered that 2–arc
transitive digraphs with prime–degrees and a connected D–cut (Dunwoody–
structre–cut) must already be highly arc transitive. Moreover he showed for
1–arc transitive digraphs with different in- and out–degree where the larger
one is a prime that they also have to be highly arc transitive. These theorems
motivated him to conjecture that connected, locally finite digraphs with more
than one end that are 2–arc transitive are already highly arc transitive. This
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conjecture was disproved by Mansilla in [10] by finding a family of strictly 2–arc
transitive digraphs. In the present thesis we even conjecture that certain families
of digraphs are strictly k–arc transitive digraphs for every positive integer k.
Recently, in [13] Hamann and Hundertmark characterized C–homogeneous
digraphs with more than one end. C–homogeneous digraphs are related to
highly arc transitive digraphs in the sense, that they are highly arc transitive
if they contain no triangles. Their work does not characterize any classes of
highly arc transitive digraphs, but gives rise to an interesting family of highly
arc transitive digraphs, which seems to be the second known family that has
neither Property Z nor universal reachability relation – the first such was given
by Malnič, Marušič, Seifter and Zgrablič in [7].
In [8], Seifter and Imrich recognized that already connected, transitive, two–
ended graphs are spanned by a set of lines. A fact that might be helpful in trying
to prove the conjecture from [1] that two–ended, highly arc transitive digraphs
consist of Kn,ns. Krön, Seifter and the author did not succeed in proving that
but made some notes which are presented in Section 4.2.8.

In the following we present the needed notions for the topics mentioned
above.

3.1.1. Reachability

First we are going to define an equivalence relation on the edges of a digraph.
We will use it to define an associated digraph for every 1–arc transitive digraph
and form in that way association classes. Therefore we first need the notion of
an alternating walk.

Definition 3.1 (alternating walk) An alternating walk is a sequence of
vertices (x0, . . . , xn) such that there is a sequence of edges of alternating direc-
tions between the vertices. That is that there are edges (x2k, x2k+1) ∈ E(D)
pointing forward and edges (x2k+2, x2k+1) ∈ E(D) pointing backward or edges
(x2k+1, x2k) ∈ E(D) pointing backward and edges (x2k+1, x2k+2) ∈ E(D) pointing
forward.

Remark 3.2 Note that the two cases in the definition above do not exclude each
other.

Definition 3.3 (Reachability–Relation) Let D be a digraph. Two edges e1, e2

of D are reachable from each other if there exists an alternating walk starting
with e1 and ending with e2. We write e1Ae2.

Remark 3.4

1. The Reachability–Relation obviously is an equivalence relation since
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• A single edge is always an alternating walk, thus it is reflexive.
• The inverse walk must be alternating as well, thus it is symmetric.
• Given two alternating walks which agree on one terminating edge, its
concatenation is again an alternating walk, thus the reachability rela-
tion is also transitive, thus an equivalence relation.

2. We denote the corresponding equivalence classes by A(e) and the induced
subgraph by 〈A(e)〉.

Definition/Lemma 3.5 (associated digraph) If D is 1–arc transitive then
the digraphs 〈A(e)〉 are isomorphic for all e ∈ E(D). We call this digraph the
associated digraph and denote it by ∆(D) → 77

Example 3.6 In Section 2 we presented examples whose figures make it easy to
see the associated digraphs.

1. Figures 8, 9 and 10 show Kn,n–tubes with associated digraph Kn,n.

2. The associated digraph of the universal covering digraph DL(∆) is ∆ (see
Figure 14).

3. The associated digraphs of the tensor–products with sequences digraphs are
shown coloured in Figures 22, 24 and 26.

We will be interested in the class

Definition 3.7 (association class) Let ∆ be a connected, bipartite, 1–arc tran-
sitive digraph. We define the association class of ∆ as

D(∆):= {D | D digraph,∆(D) = ∆}
Remark 3.8 Definition 3.7 is due to [1]. It does not exclude ∆ from D(∆).
But we will need the digraphs in D(∆) to contain arcs of arbitrary length. To
guarantee that we will consider D(∆) as the class above without ∆.

3.1.2. Property Z

Cameron, Praeger and Wormald noticed, that all highly arc transitive digraphs
they considered in [1] could be epimorphicly mapped onto the integer line and
formalized this property.

Definition 3.9 (Property Z) A digraph D is said to have Property Z if there
exists an epimorphism φ : D → Z onto the integer line as defined in 2.1.

Obviously in a digraph with Property Z every A(e) is mapped to a single
edge of Z. Thus if the reachability relation was universal, Property Z would be
excluded and vice verse. The questions arose if there are highly arc transitive
digraphs without Property Z or even with universal reachability relation. Indeed
there are such digraphs, even digraphs without any of these properties (so kind
of in between these extreme cases) were found.
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3.1.3. Spread and bounded automorphisms

Cameron, Praeger and Wormald studied the connection between Property Z and
the spread of a highly arc transitive digraph in [1]. Later Möller proved in his
paper about descendants [4] that the spread of an highly arc transitive digraph
is an integer. For technical reasons we also include the definition of bounded
automorphism as it is of importance in [4].

Definition 3.10 (Spread) Let D be a transitive digraph with finite out–valency
d+(D) and finite in–valency d−(D) and let x ∈ V (D). We define the out–spread
of D as

s+(D) := limsup k→∞
k
√
|x⇒k|

and analogously the in–spread as

s−(D) := limsup k→∞
k
√
|k⇒x|.

Definition 3.11 (bounded automorphism) Let D be a connected digraph.
An automorphism g ∈ Aut(D) is bounded if there is a constant C such that

∀x ∈ V (D) : dist (x, g(x)) ≤ C.

3.1.4. Categories

The universal covering digraph defined in [1] is a projective object in an associa-
tion class. We need some terminology of categories to formulate this result.

Definition 3.12 (Category) A category C(ob (C),Mor (C), ◦) consists of a
class of objects ob (C), a class of morphisms Mor (C), which contains mor-
phisms f : a → b where a, b ∈ ob (C) (specifying the morphisms between two
objects we denote Mor (a, b)) and a composition ◦ : Mor (a, b) × Mor (b, c) →
Mor (a, c) such that

• ∀f ∈ Mor (a, b), g ∈ Mor (b, c), h ∈ Mor (c, d) : f ◦ (g ◦ h) = (f ◦ g) ◦ h

• ∀x ∈ ob (C) ∃Ix ∈ Mor (x, x) ∀f ∈ Mor (x, ·) ∀g ∈ Mor (·, x) :
Ix ◦ f = f ∧ g ◦ Ix = g

Remark 3.13 The neutral morphism often is more intuitively introduced with

Ia ◦ f = f = f ◦ Ib for f ∈ Mor (a, b),

but that leads to an even worse mess of quantifiers in the formalization.

Definition 3.14 (projective object) An object p ∈ ob (C) of the category C
is called projective, if

∀h ∈ Mor (p, c) ∀g ∈ Mor (b, c) ∃h′ ∈ Mor (p, b) : h′ ◦ g = h.

That is, if for all g and h there is a h′ such that the diagram in Figure 29
commutes.
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p

cb

h

g

h′
	

Figure 29: morphisms of an projective object

3.1.5. Cuts

Seifter deals in [2] with graphs with more than one end, cuts play an important
role there. We are using edge cuts here. Dunwoody and Krön recently came up
with vertex cuts which already found application on C–homogeneous digraphs,
which are also mentioned in the present thesis. But we will not use vertex cuts
here, for more information on these see the references in [13].

Definition 3.15 (cut, crossing cuts, tight cut, connected cut) Let X be
a graph, A ⊂ V (X) and B = V (X) \ A.

1. The set F of edges that connect A and B is called a cut. A and B are
called sides of F .

2. If the induced graphs 〈A〉 and 〈B〉 are connected then the cut F is called a
tight cut.

3. Let F1 and F2 be two cuts of X with sides A1, B1 and A2, B2 respectively.
If the sets A1 ∩A2, A1 ∩B2, B1 ∩A2 and B1 ∩B2 are all nonempty we say
that the cuts F1 and F2 cross.

4. If a cut F induces a connected subgraph 〈F 〉 the cut is said to be connected.

Definition 3.16 (D–cut) Let X be an infinite, connected graph and F a finite,
tight cut with two infinite sides. F is called D–cut if it does not cross any g(F )
for g ∈ AutX.

The following result by Dunwoody gave rise to the notion of a D–cut.

Theorem 3.17 (Dunwoody) Every infinite, connected graph X which has a
finite cut with infinite sides also has a D-cut. → 77

3.1.6. C–homogeneous digraphs

In a very recent work [14] Hamann and Hundertmark classified C–homogeneous
digraphs with more than one end. This is interesting for the present thesis be-
cause C–homogeneous digraphs without triangles are highly arc transitive. Nev-
ertheless, it is not really a step towards a classification of highly arc transitive
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digraphs, but it provides us with another example. Hamann and Hundertmark
give an interesting class of graphs (actually subgraphs of the DeVos–Mohar–
Šámal–digraphs) that has neither Property Z nor universal reachability relation.

Definition 3.18 (C–homogeneous) A graph X or digraph D is called C–ho-
mogeneous if every isomorphism between two finite, induced subgraphs extends
to an automorphism.

Remark 3.19

1. s–arcs are subgraphs but not necessarily induced. A C–homogeneous digraph
in which all s–arcs are induced is obviously highly arc transitive.

2. Note that C–homogeneity is a very different notion for graphs and digraphs
because the isomorphisms look very different.

Definition 3.20 (C–homogeneous types) Let X be a C–homogeneous di-
graph.

1. If the underlying undirected graph is C–homogeneous, X is of Type I.

2. If the underlying undirected graph is not C–homogeneous, X is of Type
II.

3.1.7. Topological Groups

In [12], Möller discovered a connection between highly arc transitive digraphs and
Willis ’ structure theory of totally disconnected topological groups. This idea is
picked up again in [3], where two more proofs in that area are presented that use
highly arc transitive digraphs.

Definition 3.21 (topological group) Let (G, ◦) be a group and τ a topology
on G. Then G is called a topological group with topology τ if ◦ : G×G→ G
is continuous with respect to τ .

Definition 3.22 (tidy) Let G be a locally compact, totally disconnected group,
g ∈ G an element and U < G compact and open. Set

U+ :=
∞⋂
i=0

giUg−i

U− :=
∞⋂
i=0

g−iUgi.

U is tidy for g if
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1. U = U+U− = U−U+ and

2.
⋃∞
i=0 g

iU+g
−i and

⋃∞
i=0 g

−iU−g
i are both closed in G.

Definition 3.23 (scale function) Let G be a locally compact, totally discon-
nected group. The scale function of G is given by

s(g):= min{
[
U : U ∩ g−1Ug

]
| U < G compact, open}

Definition 3.24 (FC− element) Let G be a totally disconnected, locally com-
pact group. An element g ∈ G is called a FC− element if the conjugacy class
of g has compact closure in G.

Definition 3.25 Let G be a topological group. An element g ∈ G is called peri-
odic if the cyclic subgroup 〈g〉 < G has compact closure in G. Set P (G) the set
of all periodic elements of G.

3.2. Questions

In [1], Cameron, Praeger and Wormald stated some questions each of which
subsequently led to further investigation. In this subsection we will quote these
questions.

3.2.1. Universality?

Question 3.26 (1.2) Are there any locally finite highly arc transitive digraphs
for which the reachability relation A is universal?

Answer 3.27 Yes. See Proposition 4.24.

3.2.2. Property Z?

Question 3.28 (1.3) Are there any highly arc transitive digraphs (apart from
directed cycles) in D(∆), which do not have a digraph homomorphism onto Z?

Answer 3.29 Yes. See Theorem 4.31.

3.2.3. Are covering projections isomorphisms?

Question 3.30 (2.10) Must a covering projection φ : D → D of a connected
locally finite digraph D be an isomorphism?

Answer 3.31 Open.
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3.2.4. Spread > 1 and Property Z

Question 3.32 (3.8) Given a real number c > 1, are there any highly arc tran-
sitive digraphs with out–spread or in–spread c which do not have Property Z?

Answer 3.33 There are only highly arc transitive digraphs with integer spread.
See Theorem 4.32.
For every n ∈ N+ there is an Evans–graph with out–spread n. One can consider
an inverse Evans–graph for the in–spread.

3.2.5. Finite fibres – the Cameron–Praeger–Wormald–Conjecture

Question 3.34 (3.9) Let D be a connected highly arc transitive digraph with
finite out–valency (respectively, in–valency) such that the out–spread (respectively,
in–spread) of D is 1. Let D have Property Z with φ : D → Z.
Is it true, that the inverse Image φ−1(0) of 0 is finite?

Answer 3.35 No.
The regular tree with arbitrary in–valency d− and out–valency d+ = 1 is a coun-
terexample.

Conjecture 3.36 (3.3) If D is a connected highly arc transitive digraph in D(∆)
with Property Z, and φ : D → Z is a digraph epimorphism such that the inverse
image φ−1(0) of 0 is finite, then ∆ is a complete bipartite digraph.

Answer 3.37 Open.
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4. Statements

This section splits into four parts. First we collect some lemmas in Section 4.1
before coming to the main results in Section 4.2. We continue by collecting the
properties of known highly arc transitive digraphs in Section 4.3. Section 4.2.8
is the only part of the thesis whose proofs are not shifted to Section 5. This is
because the tiny results there are new, whereas the object of the rest of the thesis
was to collect examples and facts with minor concern on proofs. We conclude
with a short view on open questions in Section 4.4.

4.1. Useful lemmas

4.1.1. Associated digraphs and reachability

We start off with a basic result about association digraphs.

Proposition 4.1 Let D be a connected 1–arc transitive digraph.

(1) ∆(D) is connected and 1–arc transitive.

(2) Exactly one of the following is true:

(a) The reachability-relation is universal.

(b) ∆(D) is bipartite. → 71

4.1.2. Covering projections

The upcoming lemma gave rise to Question 3.30. Is transitivity really a necessary
assumption?

Lemma 4.2 Let X be a connected, locally finite digraph. If X is transitive or
1–arc transitive then every covering projection φ : X → X is an isomorphism.
→ 72

From the above lemma we get a corollary that we are going to formulate as a
lemma about how covering projections behave on associated digraphs ∆. This
will later be a key step to the main theorem about universal covering digraphs
and covering projections.

Lemma 4.3 Let ∆ be a connected, locally finite, 1–arc transitive, bipartite di-
graph, X, Y ∈ D(∆) and φ : X → Y a covering projection. Then for every edge
e ∈ E(C) the restriction φ|A(e) : 〈A(e)〉 → 〈A(φ(e))〉 is an isomorphism. → 72
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4.1.3. Property Z

Lemma 4.4 is formulated as a step of a proof in [1] in a more technical way. It is
given as a lemma here because it provides us with a very important condition in
order to prove or disprove that a digraph has Property Z.

Lemma 4.4 A digraph D has Property Z if and only if all its cycles are balanced.
→ 72

The universal covering digraph is the "least connected" digraph in its associ-
ation class. It has Property Z because all its cycles must stay inside the same
reachability class.

Lemma 4.5 If ∆ is a connected, 1–arc transitive, bipartite digraph, then DL(∆)
has Property Z. → 72

We also formulate as lemma that Property Z and universal reachability relation
are opposing properties.

Lemma 4.6 If D is a connected, 1–arc transitive digraph then it cannot have
universal reachability relation and Property Z simultaneously. → 72

4.1.4. Paths and alternating walks

On first sight it might seem typical for highly arc transitive digraphs that all
arcs between the two fixed vertices have the same length. But indeed there are
counterexamples that are not locally finite e.g. the ordered field digraph that
even has arcs of every length between any two vertices.

Lemma 4.7 Let D be a connected, highly arc transitive digraph with finite out–
valency and let x, y ∈ V (D) such that y ∈ x⇒. Then either all directed paths from
x to y have the same length d or D is a directed cycle. → 72

We find a technical condition using a setwise stabilizer of a vertex set that does
not fix any vertices in it and which has only subgroups with a big enough index.
This condition excludes the existence of certain alternating walks and thus can
be used to disprove the universality of the reachability relation.

Lemma 4.8 Let D be a digraph with d−(D) = d+(D) = d. Let e = (x, y) be an
edge of D and Ω ⊆ V (D)\{x, y} and let H ≤ AutD be a group of automorphisms
with HΩ = Ω but ∀v ∈ Ω ∃h ∈ H : hv 6= v. Let finally all A < H|Ω have index
[A : H|Ω] ≥ d. Then there is no alternating walk with initial vertex in e and
terminal vertex in Ω. → 72
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4.1.5. Lines and descendants

The automorphism group of an highly arc transitive digraph acts transitively not
just on the s–arcs but also on the lines. Moreover every line can be shifted by an
automorphism. Remember that we defined L(D) as the set of lines in a digraph
D.

Lemma 4.9 Let D be an infinite, locally finite, highly arc transitive digraph and
L = (. . . , x−1, x0, x1 . . . ) a line. Then

1. Aut(D) �L(D) transitively.

2. ∀k ∈ Z ∃g ∈ Aut(D) ∀i ∈ Z : g(xi) = xi+k → 73

We collect some properties of the descendants of a line in a highly arc transitive
digraph.

Lemma 4.10 Let D be an infinite, locally finite, highly arc transitive digraph
and L ∈ L(D). Then

1. d+(〈L⇒〉) = d+(D)

2. 〈L⇒〉 is highly arc transitive.

3. 〈L⇒〉 has more than one end.

4. 〈L⇒〉 has Property Z. → 73

We can use bounded automorphisms to gain information about the ends of a
highly arc transitive digraph.

Lemma 4.11 Let D be a locally finite, infinite, highly arc transitive digraph and
let L be a line in D. Let g ∈ Aut(D) be a bounded automorphism. Then

1. Let L1, L2 ⊂ L⇒ be two positive half–lines with L1 = g(L2), then L1 and L2

lie in the same end.

2. If there is a vertex v ∈ V (D) such that g(v) ∈ v⇒ then D is two–ended.
→ 73

Given a line in a highly arc transitive digraph the following lemma says basically
that if we cannot "see away" from the end of the line in the one direction, that
we see the entire graph in the other direction.

Lemma 4.12 Let D be a connected, locally finite, highly arc transitive digraph
and L ∈ L(D).

1. If L⇒ is two–ended then D = ⇒L.

2. If ⇒L is two–ended then D = L⇒. → 73
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4.1.6. Spread

If the in- and out–valency do not agree then the digraph must spread fast.

Lemma 4.13 Let D be a transitive, locally finite digraph. If d−(D) 6= d+(D)
then in–spread or out–spread must be greater than 1. → 73

4.1.7. Cuts

In [2] Seifter comes up with an interesting observation about D–cuts

Lemma 4.14 Let D be a connected, locally finite, 2–arc transitive digraph. Then
no D–cut contains a 2–arc. → 73

4.2. Theorems

4.2.1. Universal covering digraphs and covering projections

First we legitimate the name "universal covering digraph" by explaining the cov-
ering projections.

Theorem 4.15 Let ∆ be a connected, bipartite, 1–arc transitive digraph.

1. The universal covering digraph DL(∆) lies in the class D(∆).

2. DL(∆) is a covering digraph for each digraph X ∈ D(∆).

3. Let X ∈ D(∆), then for any pair of s–arcs a1 ⊂ DL(∆), a2 ⊂ X there
exists a covering projection φa1,a2 : DL(∆)→ X that takes a1 to a2. → 73

Let A and B be classes of graphs and denote with Cov (A,B) the class of
covering projections from graphs in A to graphs in B, then we can formulate the
following result

Theorem 4.16 Consider the category (D(∆),Cov (D(∆),D(∆)), ◦) where ∆ is
connected, locally finite, bipartite and 1–arc transitive. Then DL(∆) is a projec-
tive object. → 74

4.2.2. Property Z versus universal reachability relation

Property Z and having universal reachability relation exclude each other, as we
have seen in Lemma 4.6. So for highly arc transitive digraphs they are opposing
properties. In this section we collect some facts and conditions about these two
notions. We start with a sufficient condition for having Property Z.
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Theorem 4.17 Let D be a connected, highly arc transitive digraph with finite
out–valency, such that the out–spread of D is 1, then D has Property Z. (The
same holds for the in–spread.) → 74

If we control both spreads we get the following condition. Compare these two
results (4.17, 4.18) with Question 3.34

Theorem 4.18 Let D be a connected, highly arc transitive digraph with in–spread
and out–spread both 1. Then every epimorphism φ : D → Z has finite fibres.→ 74

In [11], Praeger gives a strong result if the in- and out–valencies differ.

Theorem 4.19 Let D be an infinite, connected, transitive and 1–arc transitive
digraph with finite in- and out–valencies. If d−(D) 6= d+(D) then D has Property
Z with infinite fibres. → 74

In Section 2, we already saw some highly arc transitive digraphs with Property
Z. One family of such graphs was only remarked there (Remark 2.50) because
Property Z was defined in Section 3. Here is the corresponding theorem.

Theorem 4.20 Let ∆ = ∆− ∪ ∆+ be a connected, 1–arc transitive, bipartite
digraph and let δ1 ∈ ∆−, δ2 ∈ ∆+ and let D be a highly arc transitive, connected,
digraph with Property Z. Then D ⊗ S(∆, δ1, δ2) is connected and highly arc
transitive with Property Z. → 74

More generally (not considering highly arc transitivity), the following result is
true.

Proposition 4.21 Let D be a digraph with Property Z and G be any nonempty
digraph. Then D ⊗G has Property Z. → 74

Remark 4.22 Note that if both D and G have Property Z then D⊗G cannot be
connected. If there is an edge ((d1, g1), (d2, g2)) ∈ E(D⊗G) then φ(d1)+1 = φ(d2)
and φ(g1) + 1 = φ(g2) and thus φ(d1) + φ(g1) + 2 = φ(d2) + φ(g2). That means
that edges can only run between vertices of D ⊗ G if they have the same parity
and thus there are at least two components.
Also note that it follows that the sequences digraph never has Property Z. We
earn a method to disprove Property Z by proving the connectedness of a tensor–
product.

Another proposition that would also fit in Section 2.13 is stated here for the
same reason.

Proposition 4.23 If D is a digraph, C is highly arc transitive with Property Z
and Z⊗D is highly arc transitive, then C⊗D is highly arc transitive. The same
holds for s–arc transitive. → 64
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Let us see what we can on the other hand say about highly arc transitive
digraphs with universal reachability relation. In particular, if there are any such
digraphs.

Proposition 4.24

1. There are highly arc transitive digraphs with universal reachability relation.

2. There are highly arc transitive digraphs with finite out–spread and universal
reachability relation.

3. There are locally finite, highly arc transitive digraphs with universal reach-
ability relation. → 74

Initially, it was not clear if locally finite, highly arc transitively digraphs with
universal reachability relation existed. Thus it was attempted to disprove that.
That way some conditions were made up that excluded the universal reachability
relation.

Theorem 4.25 Let D be a connected, locally finite, highly arc transitive digraph.
Then

1. If d−(D) 6= d+(D) then D does not have universal reachability relation.

2. If d−(D) = d+(D) is prime then D does not have universal reachability
relation.

3. If d−(D) = d+(D) = 1 then either D is a directed cycle or D ∼= Z and thus
does not have universal reachability relation. → 74

Theorem 4.26 Let p be a prime and D a 2–arc transitive digraph with in- and
out–valency p. Then D does not have universal reachability relation. → 75

Theorem 4.27 Let D be a 1–arc transitive digraph with d−(D) = d+(D) = d >
1. Let e = (x, y) ∈ E(D) be an edge of D such that StabAutD(e)|y⇒1 contains
a nontrivial subgroup K which has no nontrivial permutation representation of
degree less than d (that is every permutation π of V (D) induced by the action
of K on V (D) has the property that if πn = id for some n < d then already
π = id ). Then the reachability relation of D is not universal. → 75

After the first examples for Proposition 4.24 were found the question arose if
one could do better than Theorem 4.25. This was answered by DeVos, Mohar
and Šámal in [5] by constructing a family of graphs with universal reachability
relation.
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Theorem 4.28 For every pair of integers n,m > 1 there is a connected, highly
arc transitive digraph D with d+(D) = d−(D) = nm that has universal reachabil-
ity relation. → 75

Möller proved the following theorem that implies Property Z. Alike Property Z
it uses an epimorphism onto an underlying structure – this time a tree T rather
than the integer line.

Theorem 4.29 Let D be a locally finite, highly arc transitive digraph such that
there is an L ∈ L with L⇒ = V (D). Let T be the tree with in–valency d−(T ) = 1
and finite out–valency d+(T ) = t. Then there exists an epimorphism φ : D → T .
Moreover, φ induces a group action of Aut(D) on T in a natural way, i.e. for
every g ∈ Aut(D) there is an automorphism gT :=φ◦g of T . In that sense Aut(D)
acts transitive on the s–arcs of T for all s ∈ N. Moreover the fibres φ−1(x) are
finite and of equal size for all x ∈ V (T ). → 75

Corollary 4.30

1. Let in the above situation L⇒ have in–valency d− and out–valency d+. Then

t =
d+

d−

2. Either L⇒ has exactly two ends or its in- and out–valency differ. → 75

We have already seen, that Property Z and universal reachability relation ex-
clude each other. For some time only highly arc transitive digraphs with either
the one or the other property were known. Thus it was interesting to find some-
thing in between.

Theorem 4.31 There are highly arc transitive digraphs without Property Z and
without universal reachability relation. → 75

4.2.3. Spread

Möller observed that the spread of highly arc transitive digraphs is an integer.

Theorem 4.32 Let D be a locally finite, highly arc transitive digraph with out–
spread s+(D). Then s+(D) ∈ N. (The same holds for the in–spread.) → 75

He also came up with another observation concerning the connection between
the spread and lines (compare Lemma 4.12).

Theorem 4.33 Let D be a connected, locally finite, highly arc transitive digraph
with in–spread s− and out–spread s+.

1. s− = 1 ⇐⇒ ∃L ∈ L(D) : L⇒ = V (D) ⇐⇒ ∀L ∈ L(D) : L⇒ = V (D)

2. s+ = 1 ⇐⇒ ∃L ∈ L(D) : ⇒L = V (D) ⇐⇒ ∀L ∈ L(D) : ⇒L = V (D)
→ 75
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4.2.4. Automorphism groups

It does not necessarily take the full automorphism group to act highly arc tran-
sitive on a highly arc transitive digraph. Considering the stabilizer of an edge we
can give a pretty small group that already acts highly arc transitively.

Theorem 4.34 Let D be a connected, infinite, highly arc transitive digraph and
H ≤ Aut(D) be a group of automorphisms such that H acts highly arc transitively
on D. Let x ∈ V (D) and e = (x, y) be an edge of D and g ∈ Aut(D) with
g(x) = y. Then 〈StabH(e) ∪ {g}〉 acts highly arc transitively on D. → 75

4.2.5. Ends, cuts, prime–degree and the Seifter–Conjecture

Seifter found a highly arc transitive digraph that simultaneously has thick and
thin ends. Actually it is a universal covering digraph with an infinite ∆ that
contains a thick end. The point is that thin and thick ends cannot contain half–
lines simultainously. As we know from Möller the automorphism group of a
highly arc transitive digraphs acts transitive on the lines and thus transitively
on the forward directed and backward directed ends. But we have no idea what
happens with the ends that do not contain a half–line.

Theorem 4.35 There are infinite, locally finite, connected, highly arc transitive
digraphs with both thin and thick ends. → 75

Theorem 4.36 There are no infinite, locally finite, connected, highly arc tran-
sitive digraphs with both thin, directed and thick, directed ends. → 76

In [2], Seifter investigated graphs with more than one end. He found the
following condition taking advantage of the prime–degree. Note that a graph
that has a D–cut has at least two ends.

Theorem 4.37 Let D be a connected, 2–arc transitive digraph with d+(D) =
d−(D) prime that has a connected D–cut F . Then D is highly arc transitive.
→ 76

He also found the following related condition. Note that there are one–ended
graphs fulfilling the requirements of Theorem 4.38 e.g. the Diestel–Leader graph
DLd−,d+ .

Theorem 4.38 Let D be a connected 1–arc transitive digraph with prime out–
valency d+ ∈ P and in–valency 1 ≤ d− < d+. Then D is highly arc transitive.
→ 76

Theorem 4.37 motivated Norbert Seifter to conjecture:
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Conjecture 4.39 (Seifter) A connected, locally finite 2–arc transitive digraph
with more than one end is highly arc transitive.

This conjecture was disproved by Sònia Mansilla in [11] by finding a family of
sharply 2–arc transitive digraphs. There she stated without proof.

Theorem 4.40 Let Γn be the digraph defined by

V (Γn) = Zn × Zn × Z
E(Γn) = {((i, j, k), (j, i, k + 1)) , ((i, j, k), (j, i+ 1, k + 1)) | (i, j, k) ∈ V (Γn)}

for n ≥ 3. Then Γn is a connected 2–regular sharply 2–arc transitive digraph with
Property Z. → 76

It was up to the author to recognize that Γn can be gained from Tube(n, 2) by
replacing the Kn,ns with alternating cycles. From there it is straight forward to
conjecture that the same construction with a Tube(n, k) yields a sharply k–arc
transitive digraph. In that sense Theorem 4.37 is best possible.

4.2.6. C–homogeneous digraphs

Hamann and Hundertmark recently classified the C–homogeneous digraphs with
more than one end. In doing so they recognized that some of them are highly arc
transitive.

Theorem 4.41 A connected C–homogeneous digraph with more than one end
that does not contain a triangle is highly arc transitive. → 76

Theorem 4.42 A connected C–homogeneous digraph of Type II with more than
one end does not contain a triangle. Thus it is highly arc transitive. → 76

4.2.7. Highly arc transitive digraphs and topological groups

In this section we will state four results which describe the connection between
topological groups and highly arc transitive digraphs or which can be proven
using highly arc transitive digraphs. Indeed Willis ’ Theorem can be understood
in terms of automorphism groups of graphs. We will state it first.

Theorem 4.43 (Willis) Let G be a locally compact, totally disconnected group
and g ∈ G. Then U < G is tidy if and only if

s(g) =
[
U : U ∩ g−1Ug

]
where s(g) is the scale function of g. → 76
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We summarize the connection between topological groups and highly arc tran-
sitive digraphs in the following theorem.

Theorem 4.44 Let G be a locally compact, totally disconnected group, g ∈ G an
element and U < G compact and open. Let Ω = G/U . Let v0 ∈ Ω be a point and
define vi = gi(v0). Set e = (v0, v1) ∈ Ω2. Consider the digraph D with

V (D) := Ω

E(D) := Ge ⊂ Ω2.

1. If U = U+U− = U−U+ then D is highly arc transitive.

2. If U is tidy for g then v0
⇒ is a tree. → 76

Finally we state two theorems which can be proven using highly arc transitive
digraphs.

Theorem 4.45 Let G be a totally disconnected, locally compact group with scale
function s : G→ R. If g is an FC− element in G then

s(g) = 1 = s(g−1).

→ 76

Theorem 4.46 Let G be a totally disconnected, locally compact group and P (G)
the set of periodic elements in G. Then P (G) is closed in G. → 76

4.2.8. Notes on the Cameron–Praeger–Wormald–Conjecture

We will have a look at Conjecture 3.36 in this section. Therefore we will start
with quoting a useful result from [8].

Definition 4.47 (boundary) Let D be a digraph and C ⊂ V (D). The bound-
ary ∂C of C is the set vertices in V (D) \ C which are adjacent to a vertex in
C

∂C:=(
⋃
x∈C

N(x)) \ C.

Definition 4.48 (strip) A strip is a graph X which contains a connected set
C ⊂ V (X) such that there exists an automorphism α ∈ Aut(X) such that 0 <
|∂C| <∞, α(C ∪ ∂C) ⊆ C and |C \ α(C)| <∞.

Remark 4.49 We are interested in locally finite, connected, highly arc transitive
digraphs D with Property Z and finite fibres. Let φ : D → Z satisfy Property Z.
Take C = φ−1({n | n > 0}) then ∂C = φ−1(0) is finite. By highly arc transitivity
there is an automorphism that takes an vertex from φ−1(0) into φ−1(1) and by
Property Z it takes C ∪ ∂C into C. Hence the graphs we are interested in are
strips. Moreover, they are transitive and thus we are going to apply the upcoming
proposition.
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Proposition 4.50 (Imrich, Seifter) A transitive, locally finite strip X is
spanned by finitely many disjoint lines. To these paths there exists an α ∈ Aut(X)
of infinite order leaving these lines invariant.

Additionally, we will need a tiny result about the degree of such a graph.

Lemma 4.51 If D is a connected, locally finite, highly arc transitive digraph with
Property Z, and φ : D → Z is a digraph epimorphism such that the inverse image
φ−1(0) of 0 is finite, then d+(D) = d−(D).

Proof
All the fibres have the same size r (this is obvious by Property Z and transitivity).
By transitivity we have that all the in–degrees are equal (d− say) and vice versa
all the out–degrees are d+. Then there are r · d+ edges starting in φ−1(n) and
r · d− edges terminating in φ−1(n + 1). But since these sets are equal we have
r · d− = r · d+. �

Remark 4.52 We could prove this lemma alternatively as corollary of Theo-
rem 4.19

First, we derive some technical lemmas.

Lemma 4.53 (join and meet) If D is a connected, highly arc transitive di-
graph with Property Z, and φ : D → Z is a digraph epimorphism such that the
inverse image φ−1(0) of 0 is finite and x, y ∈ φ−1(0) then x and y have a common
descendant (i.e. x⇒ ∩ y⇒ 6= ∅) and predecessor (i.e. ⇒x ∩ ⇒y 6= ∅).

Proof
By Proposition 4.50 D is spanned by finitely many disjoint lines. Every x ∈
φ−1(0) is contained in exactly one of these lines. We show that there is a directed
path from any x ∈ φ−1(0) to every line.
We assume otherwise, that there is a set M of lines which cannot be reached
from x with a directed path. Then there are no edges from V (D) \ M to M
since otherwise by Proposition 4.50 there would be such edges arbitrarily far in
positive direction and thus there would be a path from x that extends toM what
we chose not to be the case. Thus there are edges from M to V (D) \M since
otherwise the graph would not be connected. We consider such an edge from
M ∩ φ−1(a) to (V (D) \M) ∩ φ−1(a + 1). By Lemma 4.51 there is an in- and
out–degree d thus there are |M | ·d edges leavingM∩φ−1(a). Because of Property
Z and the fact that there are no edges from V (D) \M to M , these are the only
edges that could end in M ∩ φ−1(a + 1). But one of them does not do so. Thus
there are at most |M | · d− 1 edges terminating in M ∩ φ−1(a+ 1) contradicting
that all the vertices there have in–degree d. Thus M is empty.
We can prove the result for the predecessors analogously. �
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Lemma 4.54 (exhaustion) If D is a connected, highly arc transitive digraph
with Property Z, and φ : D → Z is a digraph epimorphism such that the inverse
image φ−1(0) of 0 is finite and x ∈ φ−1(0) then there is an n ∈ V (Z) such that
φ−1(n) ⊂ x⇒.

Proof
We recognize in the proof above, that once we reache a line we can keep on
running on it. Thus once we reache the last line we reache a neighbourhood of
the sink end that is completely contained in x⇒. �

The same results are obviously true for φ−1(−n) and ⇒x.
A simple counting argument yields Conjecture 3.36 for prime fibre–sizes:

Proposition 4.55 (prime case) If D is a connected, highly arc transitive di-
graph in D(∆) with Property Z, and φ : D → Z is a digraph epimorphism such
that |φ−1(0)| = p is a prime, then D = Z ⊗Kp and thus ∆ = Kp,p.

Proof
Choose x ∈ φ−1(0). By Lemma 4.54 there is an n ∈ N such that φ−1(n) ⊂ x⇒.
Let n be minimal with that property. Considering the out–degree d there are
exactly dn n–arcs starting in x all of which terminate in φ−1(n). We chose n in a
way, that in every vertex in φ−1(n) at least one of these arcs terminates. Because
D is highly arc transitive, there must terminate equally many of these n–arcs in
every vertex. But then d must equal p because otherwise |φ−1(n)| = p is not a
prime factor of d and thus no divisor of dn. �

Corollary 4.56 (valency) If D is a connected, highly arc transitive digraph in
D(∆) with Property Z, and φ : D → Z is a digraph epimorphism such that
|φ−1(0)| = r, then the out–valency (respectively in–valency) d must contain all
the prime factors of r.

Proof
Let otherwise be p a prime factor of r that does not divide d. In the argument
form the proof above we find that p does not divide dn and so r cannot divide
dn. �

Let us summarize the situation. If D is a connected, highly arc transitive
digraph with Property Z and in- and out–degree d, fibre–size |φ−1(0)| = r and
∆ = ∆+ ∪∆− with partitionsize |∆+| = |∆−| = n.
We know

d ≤ n ≤ r

∀p ∈ P : p | r ⇒ p | d
n | r
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The graphs from Construction 2.10 show that n < r is possible. Conjecture 3.36
says that d = n. However, we do not even have d | n.
If r is a prime, we have d = n = r. But if only r = p2, then the above does not
exclude n = p2, d = p as Tube(p, 2) illustrates.

4.3. Properties

In this subsection we investigate the properties of the highly arc transitive di-
graphs we defined in Section 2.

4.3.1. The integer line Z

The integer line is the most trivial case of an highly arc transitive digraph.

Proposition 4.57 Let Z be the line as in Definition 2.1.

1. Z has Property Z.

2. Z ∈ D( ) and thus the reachability relation is not universal on Z.

3. Z is locally finite with d− = d+ = 1.

4. Z has out–spread s+ = 1 and in–spread s− = 1.

5. Z has two thin ends.

6. Z = Cay((Z,+), 1) is a Cayley–graph. → 66

4.3.2. Trees

The automorphism groups of trees can act on them with maximal freedom be-
cause they contain no cycles. Therefore trees are the ideal candidates not just for
being highly arc transitive but also for the substructure of highly arc transitive
digraphs. The universal covering digraph, the Evans-graph, the Diestel–Leader
graph, the DeVos–Mohar–Šámal–digraph and the Hamann–Hundertmark–di-
graph are all constructed using trees. The substructure of the alternating–cycle
digraph is a tree as well and since Z is a tree also the Kn,n–tubes come from a
tree. Just the sequences digraphs and the ordered field digraph are far away from
being trees.
The properties of regular trees are almost as easy as the ones of Z. Before we
look at them we need to define alternating trees:

Definition 4.58 (Alternating Tree) The alternating tree AT (n,m) is the
bipartite tree with in–valency n for every vertex in the sink–partition and out–
valency m for every vertex in the source–partition.
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Proposition 4.59 Let T be a regular directed tree with in–valency d−(T ) > 0
and out–valency d+(T ) > 0.

1. T has Property Z.

2. T has as associated digraph the alternating tree AT (d−(T ), d+(T )) and thus
the reachability relation on T is not universal.

3. The in- and out–spread of T correspond to its valencies.

4. If T � Z then T has at least (depending on the valencies) continuum many
thin ends.

5. T is a Cayley–graph if and only if d−(T ) = d+(T ). → 66

4.3.3. Kn,n–tubes

Kn,n–tubes were first considered by McKay and Praeger to show that there are
indeed graphs satisfying the Cameron–Praeger–Wormald–Conjecture i.e. have
two thin ends, Property Z (with φ) and have associated digraph Kn,n with n 6=
|φ−1(0)|. Later, they were rediscovered as an example that showed that two
vertices x, y ∈ φ−1(a) can meet arbitrary late i.e. that the distance d(x, x⇒ ∩ y⇒)
(respectively d(y, x⇒ ∩ y⇒)) can be arbitrary large. E.g. for n ≥ 2 in Tube(n,m)
these distances can be up to

m = d((0, (0 . . . 0)), (0, (0 . . . 0))⇒ ∩ (0, (1 . . . 1))⇒)

= d((0, (1 . . . 1)), (0, (0 . . . 0))⇒ ∩ (0, (1 . . . 1))⇒).

Proposition 4.60 Let Tube(n,m) be as in Definition 2.11.

1. Tube(n,m) has Property Z with finite fibres.

2. Tube(n,m) ∈ D(Kn,n) and thus the reachability relation on Tube(n,m) is
not universal.

3. Tube(n,m) is locally finite with in- and out–valency n and has in- and
out–spread 1.

4. Tube(n,m) has two thin ends. → 67

4.3.4. Tube(n,m)⊗Kk

In the Tube(n,m) the different A(e) have at most one vertex in common. We can
blow up these intersections arbitrarily by tensoring. The result is again a highly
arc transitive digraph with two ends. The author conjectures that all highly arc
transitive, two–ended digraphs with Property Z are of the form Tube(n,m)⊗Kk.
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Proposition 4.61 Let Tube(n,m) be as in Definition 2.11.

1. Tube(n,m)⊗Kk has Property Z with finite fibres.

2. Tube(n,m) ⊗ Kk has associated digraph Knk,nk and thus the reachability
relation on Tube(n,m)⊗Kk is not universal.

3. Tube(n,m) ⊗Kk is locally finite with in- and out–valency nk and has in-
and out–spread 1.

4. Tube(n,m)⊗Kk has two thin ends. → 67

4.3.5. DL(∆)

The universal covering digraph was invented in [1]. It is a projective object in
the category of 1–arc transitive digraphs which contain arcs of arbitrary length.

Proposition 4.62 Let DL(∆) be the universal covering digraph as in Defini-
tion 2.18. Let δ− be in the source–partition and δ+ in the sink–partition of ∆.

1. DL(∆) has Property Z.

2. DL(∆) ∈ D(∆) and thus the reachability relation on DL(∆) is not univer-
sal.

3. DL(∆) takes the valencies d+(DL(∆)) = d+(δ−) and d−(DL(∆)) = d−(δ+)
from ∆ and thus is locally finite if and only if ∆ is.

4. DL(∆) has in–spread d−(∆) and out–spread d+(∆).

5. If ∆ 6= then DL(∆) has at least continuum many ends. If ∆ is finite
these are all thin.

6. Depending on ∆ there are DL(∆)s which are Cayley–graphs and such that
are not. → 68

4.3.6. Ordered field digraph

The ordered field digraph is one of the few known highly arc transitive digraphs
which is constructed without the use of trees.

Proposition 4.63 Let D be the ordered field digraph as in Proposition 2.21.

1. D has universal reachability relation. Thus it does not have Property Z and
it is its own associated digraph.

2. D is not locally finite.

3. D has one thick end.

4. D is a Cayley–graph. → 68
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4.3.7. Alternating–cycle digraph

The alternating–cycle digraph was the first known locally finite, highly arc transi-
tive digraph without Property Z. Its reachability relation is not universal, thus it
is one of the few known highly arc transitive digraphs in between these properties.

Proposition 4.64 Let AltCyc(n) be as in Definition 2.23.

1. AltCyc(n) has neither Property Z nor universal reachability relation.

2. AltCyc(n) is locally finite with in- and out–valency 2 and in- and out–spread
2. Indeed, 〈x⇒ ∪ {x}〉 is a rooted binary tree for every x ∈ V (AltCyc(n)).

3. AltCyc(n) ∈ D(AC(n)).

4. AltCyc(n) is a Cayley–graph. → 68

4.3.8. Evans–graph

The Evans–graph was constructed as an example of a highly arc transitive digraph
with finite out–spread and without Property Z. Its reachability relation is even
universal. Only the in–valency is infinite.

Proposition 4.65 Let X be the Evans–graph as in Definition 2.27 with n > 1.

1. X has universal reachability relation and thus it is its own associated digraph
and does not have Property Z.

2. X is not locally finite, but has finite out–valency n and out–spread n. Indeed
x⇒ is a rooted n–out–valent tree for every vertex x ∈ V (X).

3. X has one thick end.

4. X is not a Cayley–graph. → 69

4.3.9. DeVos–Mohar–Šámal–digraph

The DeVos–Mohar–Šámal–digraph is a locally finite digraph with universal reach-
ability relation. Its construction yields digraphs with universal reachability rela-
tion for all valencies which do not exclude it (d+ = d− not prime).

Proposition 4.66 Let DMS(n,m) be the DeVos–Mohar–Šámal–digraph as de-
fined in 2.37.

1. DMS(n,m) has universal reachability relation and thus is its own associated
digraph and does not have Property Z.

2. DMS(n,m) is locally finite with in- and out–valency (n− 1)(m− 1).

3. DMS(n,m) has infinitely many thin ends. → 69
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4.3.10. Hamann–Hundertmark–digraph

The Hamann–Hundertmark–digraphs appear as a class of digraphs in the charac-
terization of C–homogeneous digraphs that happens to be highly arc transitive.
After the alternating–cycle digraph it is only the second known class of digraphs
between Property Z and universal reachability relation. Its associated digraph
is the complement of a perfect matching (a set of disjoint edges which cover the
entire vertex set).

Definition 4.67 Let PM be a perfect matching in Kc,c where c is a cardinal.
We define CPc as the subgraph of Kc,c which misses the edges of PM .

Proposition 4.68 Let HH(κ, n) be the Hamann–Hundertmark–digraph as in
Definition 2.40.

1. HH(κ, n) does not have Property Z.

2. HH(κ, n) has associated digraph CPκ and thus its reachability relation is
not universal.

3. HH(κ, n) has in- and out–valency κ−1, thus it is locally finite if κ is finite.

4. HH(κ, n) has infinitely many thin ends. HH(κ, n) has also thick ends, if κ
is infinite. → 69

4.3.11. Z ⊗ S(∆, δ1, δ2)

The tensor–product of Z and a sequences digraph was the first highly arc transi-
tive digraph constructed by the authors of [1]. Its construction is one of the rare
ones that does not use trees.

Proposition 4.69 Let S(∆, δ1, δ2) be the sequences digraph as in Definition 2.48.

1. Z ⊗ S(∆, δ1, δ2) has Property Z and thus the reachability relation is not
universal on it.

2. Z ⊗ S(∆, δ1, δ2) has associated digraph ∆.

3. Z ⊗ S(∆, δ1, δ2) is locally finite. It has in–valency d−(∆) and out–valency
d+(∆). → 70

In Example 2.51 we saw that Z ⊗ S(∆, δ1, δ2) can be a tree (in which case the
answer is trivial) or not.
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4.3.12. Diestel–Leader graph

The Diestel–Leader graphs are well known from research in different areas. It is
locally finite but has only one end.

Proposition 4.70 Let DLn,m be the Diestel–Leader graph as in Definition 2.55.

1. DLn,m has Property Z and thus the reachability relation is not universal on
it.

2. DLn,m is locally finite with in–valency and in–spread m and out–valency
and out–spread n.

3. DLn,m has Km,n as associated digraph.

4. DLn,m has one thick end. → 70

4.3.13. Pancake–tree

The pancake–trees are special universal covering digraphs which were considered
in [2] because they have thin and thick ends.

Proposition 4.71 For the hexagon pancake–tree and the quadratic pancake–tree
we have

1. The pancake–tree has Property Z.

2. The pancake–tree has the pancake as associated digraph and its reachability
relation is not universal.

3. The pancake–tree is locally finite with in- and out–valency and in- and out–
spread either all 3 or 4. Indeed x⇒ is either a 3- or 4–out–valent tree.

4. The pancake–tree has both infinitely many thin and infinitely many thick
ends.

5. The pancake–tree is a Cayley–graph. → 71

4.3.14. Summary of Properties

Table 1 shows a summary of which graphs have which properties. With ∞ we
denote an appropriate infinite cardinal, n, m, k, d− and d+ denote positive inte-
gers the latter the in- and out–valencies. With κ we mean an arbitrary cardinal
greater or equal 3 and ∆ = ∆− ∪ ∆+ is as usual a 1–arc transitive, bipartite,
connected digraph. Finally δ− ∈ ∆− and δ+ ∈ ∆+.
Empty cells mean that the property is not determined (e.g. not all trees are
locally finite). Dots mean that the cell has not yet been dealt.
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Table 1: Highly arc transitive digraphs and their properties
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4.4. Conjectures and open Questions

First we mention, that the Cameron–Praeger–Wormald–Conjecture 3.36 is still
open.

Conjecture 4.72 (Cameron–Praeger–Wormald) If D is a connected highly
arc transitive digraph in D(∆) with Property Z, and φ : D → Z is a digraph
epimorphism such that the inverse image φ−1(0) of 0 is finite, then ∆ is a complete
bipartite digraph.

From Section 2 we know Tube(n,m) as an example for digraphs with complete
bipartite associated digraph. Also from Section 2 we know about tensor–products.
We recognize that Tube(n,m)⊗Kk has the same property.

Conjecture 4.73 Let D ∈ D(∆) be a connected, highly arc transitive digraph
with Property Z, and let φ : D → Z be a digraph epimorphism such that the
inverse image φ−1(0) of 0 is finite. Then D is of the form D ∼= Tube(n,m)⊗Kk.

The Questions 3.30 is still open. We also restate it here.

Question 4.74 (2.10) Does a covering projection of a connected locally finite
digraph have to be an isomorphism?

We state two sets of new canonical questions.

Question 4.75 Clarify the properties of the known highly arc transitive digraphs.
That is fill in the unknown cells in Table 1. E.g. it would be interesting under
which circumstances Z ⊗ S(∆, δ1, δ2) is a Cayley–graph.

Question 4.76 Section 2 presents some constructions to gain new highly arc
transitive digraphs from given ones: Line digraph, Tensor–products, k–arc–di-
graphs and s–arc–k–arc–digraphs (all these were already known to Cameron,
Praeger and Wormald).

1. Under which circumstances do these constructions yield new highly arc tran-
sitive digraphs? E.g. the tensor–product of two Kn,n–lines is a graph that
consists of infinitely many copies of a different Kn,n–line; that should not
be considered new.

2. Which of the properties listed in Table 1 are preserved by which of these
constructions under which circumstances?

Furthermore the author recognized an interesting sequence of proper subgraphs
and asks:
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Question 4.77 If we choose the κ in the definition of the Hamann–
Hundertmark–digraph HH(κ, n) finite, we can assign a second set of labels to
the edges which represent cyclic orders with respect to the κ–valent partition. If
we put the same condition for the first two edges of the 3–path with these labels as
we did for the last two edges, we end up with a disconnected digraph that consists
of infinitely many copies of Z which cover the vertex set of HH. We denote this
digraph by ∞Z. Consider the sequence of proper subgraphs

∞Z ⊂ HH(n,m) ⊂ DMS(n,m).

All these digraphs are highly arc transitive and have the same vertex set. The
sequence starts with ∞Z having Property Z, continues with HH(n, n) having
neither Property Z nor universal reachability relation, ending with DMS(n, n)
having universal reachability relation. Thus it is a sequence running from the one
extreme to the other.
Are there more such or similar sequences? Where do these sequences come from
and is there a pattern to generate them?
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5. Proofs

In this section we present details on some statements claimed so far. Since the
main goal of this thesis is to collect as many facts as possible about highly arc
transitive digraphs, the amount of statements presented is quite huge. Thus
proofs are not provided for all of them. But for completeness for all of them at
least a reference is given where a proof can be found.

5.1. Proofs for highly arc transitivity

Proof of Proposition 2.2
This follows directly from the definition. �

Proof of Proposition 2.4
The automorphism group of T is generated by two kinds of operations:

• The shift along an arbitrary but fixed line L. This is one generator.

• The permutations of in–subtrees and out–subtrees at an arbitrary but fixed
vertex x ∈ L. These are as many generators as you need to generate the
Sn and the Sm.

Start with a s–arc a that contains x. We first consider the part of a which is
contained in x⇒ and permute it into the subtree containing a part of L. Then we
shift downwards and permute again. By iteration we get the whole "upper" part
of the arc a into L. We than shift back to x and perform the same procedure
in the other direction. We end up with that s–arc a lying on L starting in
x. Now assume that a doses not contain x. Then it is contained in a subtree
which can be permuted into the subtree containing a part of L. By a shift the
distance between x and the a can be reduced. Since the distance must be finite,
by iteration at one point the arc a will contain x and we can perform as above.
Thus any s–arc can be mapped by an automorphism to the s–arc contained in
L starting in x. Thus the automorphism group acts transitively on Arcs. �

Figure 30 shows the generators of the automorphism group of a regular tree
with d+ = d− = 2. On the left the shift along a line is shown. The green edges
are taken to the green edges and take their subtrees with them. The blue edges
do just the same. On the right the "backward"–permutations will flip the green
edges and the "forward"–permutations will flip the blue edges.

Proof of Proposition 2.7
This follows from Proposition 2.13. �
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Figure 30: generators of the automorphism group of a tree

Proof of Proposition 2.13
First we notice, that Tube(n,m) is transitive by circularly permuting the
digits and digit values of the labels. Then we observe that the stabilizer
StabAut(Tube(n,m))

⇒x acts transitively on the out–neighbours x⇒1 of x for every
x ∈ V (Tube(n,m)) (this is just by label–permutation in the entire "right–half"
of Tube(n,m)).
We can shift every initial vertex of any arc to the initial vertex of any other
arc by transitivity. And then we can inductively flip the edges of the one arc
onto the other and simultaneously keeping the previous edges on it by the above
property. �

Proof of Proposition 2.16
A proof can be found in [1] Lemma 4.1 (a) on page 389. �

Proof of Proposition 2.19

1. This is mentioned but not proved in [1] between Definition 2.1. and Theo-
rem 2.2 on page 380. But it follows pretty straight forward from the 1–arc
transitivity of ∆ and the tree–structure earned from the underlying tree.

2. The universal covering digraph DL(∆) lies in the class D(∆). Thus we
apply Theorem 4.15 (2) to get φ : DL(∆) → DL(∆) that takes any s–arc
to an arbitrary s-arc. Since every vertex separates DL(∆) its cycles must
stay in one A(e). Hence they are all alternating. Using Lemma 4.3 it
follows that φ is an isomorphism.
Details can be found in [1] Theorem 2.3. �
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Proof of Proposition 2.21
Every arc in the ordered field digraph consists of strictly increasing vertices.
Thus it can be thought of as a finite sequence of strictly increasing elements of
F . But any order preserving map from a finite sequence of strictly increasing
elements of F onto another sequence of the same size can be extended to an
order preserving bijection from F onto itself. But that immediately indicates an
automorphism of the ordered field digraph. Hence its automorphism group acts
highly arc transitive on it. �

Proof of Proposition 2.24
The proof is provided in [7]. �

Proof of Proposition 2.28
A proof is given in [6] Theorem 2.6 on page 238. �

Proof of Proposition 2.31
A proof can be found in [1] Lemma 4.1 (b) on page 389. �

Proof of Proposition 2.34
A proof can be found in [1] Lemma 4.1 (c) on page 389. �

Proof of Proposition 2.38
The proof is provided in [5]. �

Proof of Proposition 2.41
The Hamann–Hundertmark–digraph is connected and C–homogeneous of Type
II. A proof for that can be found in [13] Theorem 7.6 on pages 19 to 21. Thus
by Theorem 4.42 it is highly arc transitive. �

Proof of Proposition 2.43
A proof can be found in [1] Lemma 4.3 (a) on page 390. �

Proof of Proposition 4.23
A proof can be found in [1] Lemma 4.3 (b) on page 390. �

Proof of Proposition 2.44
A proof can be found in [1] Theorem 4.5 on page 391. �

Proof of Proposition 2.49
A proof can be found in [1] Theorem 4.8 on page 393. We include a proof for the
connectedness, because the corresponding argument in [1] is wrong.
If S(∆, δ1, δ2) has a loop at the "zero–sequence" 0:=(. . . , δ1, δ1, δ2, δ2, . . . ) then
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Z ⊗ S(∆, δ1, δ2) will contain a line

L:=(li)i = (. . . , (−1,0), (0,0), (1,0), . . . ).

Otherwise we have to construct a double–ray R which contains the vertices of
L as subsequence. For it is sufficient to construct walks from li to li+1. We
denote general entries on the negative half of the sequences with •j and on the
non–negative half with ∗k. Every edge (•j, ∗k) of ∆ induces amongst others an
edge

((i, (. . . , δ1, •j, δ2, δ2, . . . )), (i+ 1, (. . . , δ1, δ1, ∗k, δ2, . . . )))

in Z ⊗ S(∆, δ1, δ2). For that reason it is also true that Z ⊗ S(∆, δ1, δ2) ∈ D(∆).
Since ∆ is connected we find an alternating walk from δ1 to δ2 starting and ending
with an forward edge. This alternating walk indicates an alternating walk

((i, (. . . , δ1, •j, δ2, δ2, . . . )), . . . , (i+ 1, (. . . , δ1, δ1, ∗k, δ2, . . . )))

in Z ⊗ S(∆, δ1, δ2). The concatenation of all these walks yields our desired R.
We prove that from every vertex in Z⊗S(∆, δ1, δ2) there is a walk with terminal
vertex li for some i. For we consider an arbitrary vertex v which has the form

v = (i, (. . . , δ1, •−n, . . . , •−1, ∗0, . . . , ∗m, δ2, . . . )).

Using the right–shift as defined we find an arc to a vertex w coming from a
sequence that is constant δ1 on its negative half and thus has the form

w = (i+ n, (. . . , δ1, ∗−n, . . . , ∗m, δ2, . . . )).

With the above argument we find a walk

((i+n, (. . . , δ1, ∗−n, . . . , ∗m, δ2, . . . )), . . . , (i+n−1, (. . . , δ1, ∗1−n, . . . , ∗m, δ2, . . . ))).

Iteration results in a walk

(v, . . . , (i−m, (. . . , δ1, δ2, . . . )) = li−m)

which terminates on R. �

Proof of Proposition 2.57
Constructions of the broom–graph can be found in [4] Example 1 on page 152
or [9] Example 4.10 on page 1579. However, the proof is not explicitly given in
either of the papers.
Considering the defining trees of the Diestel–Leader graph, actions on them
induce actions on DLn,m. These actions generate a subgroup G ⊂ Aut(DLn,m)
which acts highly arc transitively on DLn,m. �
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Proof of Proposition 2.64
The quadratic pancake–tree is the universal covering digraph of the quadratic
pancake and thus it is highly arc transitive. �

Proof of Proposition 2.67
The hexagon pancake–tree is the universal covering digraph of the hex–pancake
and thus it is highly arc transitive. �

5.2. Isomorphy–proofs

Proof of Theorem 2.53
A proof can be found in [1] Theorem 4.12. on pages 394 and 395. �

Proof of Theorem 2.61
We just give a sketch of the proof. Given a line L in the Bn,m we gain trees
⇒L and L⇒ which will correspond to the trees used in the construction of the
Diestel–Leader graph. We can map the broom–graph canonically to this trees
(i.e. using the canonical embedding in R3) to gain coordinates. These coordi-
nates correspond to the pairs in the horocycle construction of the Diestel–Leader
graph. It immediately turns out that the edges of the broom graph are in the
same positions as asked for the Diestel–Leader graph. �

5.3. Property–proofs

Proof of Proposition 4.57

1. Obvious with φ = id .

2. As the in- and out–valencies are both 1, no edge can be equivalent to any
edge but itself.

3. – 6. are immediate from the definitions. �

Proof of Proposition 4.59

1. T has no cycles. Hence all cycles are balanced. Thus T has Property Z by
Lemma 4.4.

2. Since T has Property Z with φ, φ maps ∆ to a single edge of Z

φ(∆) = = ({i, i+ 1}, {(i, i+ 1)})

where φ−1(i) is the source partition of ∆ and φ−1(i+ 1) the sink partition.
Obviously the vertices in the source partition have out–valency d+ and the
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vertices in the sink partition in–valency d−. Since T is cycleless so is ∆.
But that already forces ∆ to be the alternating tree AT(d−, d+).

3. This again follows from the fact that T has no cycles.

4. Any two non–identical rays in T can be separated by a finite set of vertices,
either a single vertex on the shortest path connecting the rays or the inter-
section of the rays. If T is locally finite, rays in T can be understood as
infinite sequences of digits in Zd++d− and thus there is obviously a bijection
between the rays of T and the real interval [0, 1].

5. Every Cayley–graph has equal in- and out–valency. On the other hand the
tree with d− = d+ is the Cayley–graph of the free group on d+ letters. �

Proof of Proposition 4.60

1. TheKn,n–tube Tube(n,m) is derived from a Property Z graph in a Property
Z respecting way.

2. The Kn,ns arise directly from the construction.

3. Since the associated digraph is Kn,n, the valencies must be n. The spreads
must be 1 since Tube(n,m) has Property Z with finite fibres.

4. Any fibre is a finitely separating set. Both components are infinite, thus
there are at least two ends. Obviously the rays in either component cannot
be separated as the fibres are finite and the components connected. Hence
there are exactly two ends. These are thin because again the fibres are
finite. �

Proof of Proposition 4.61

1. By Proposition 4.21 the tensor–product respects Property Z. The fibres
stay the same (in the one component), therefore their sizes are just multi-
plied by the size of the second factor.

2. The vertices of the associated digraph must have vertices of the associated
digraph of Tube(n,m) in the first entry. Since we tensor with Kk all the
possible edges appear. Hence Knk,nks are generated.

3. The valencies are nk because the associated digraph is Knk,nk. The fibres
stay finite by tensoring, thus the spread must stay 1.

4. The argument is the same as in the proof of Proposition 4.60 (4). �
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Proof of Proposition 4.62

1. That is Lemma 4.5.

2. By construction.

3. This follows immediately from (2).

4. All cycles in DL(∆) are inside an A(e) for some edge e (that is by the
structure inherited from the underlying tree). By the construction, all out–
neighbours xi of a vertex x have all their outgoing edges in a different
A(ei). Thus x⇒ is a tree and out–spread and out–valency are equal. The
same argument holds for the in–spread.

5. These are the ends of the underlying tree. As DL(∆) is sharply 1–vertex–
connected, they are thin. If ∆ is finite no ray can stay in a ∆ forever and
DL(∆) cannot contain any further ends.

6. DL( ) = Z = Cay((Z,+), {1}) is a Cayley–graph. On the other hand
in- and out–valency of the universal covering digraph are not necessarily
equal (e.g. DL(K1,2) is not a Cayley–graph). �

Proof of Proposition 4.63

1. All elements of F are comparable. Hence for any two different edges the
initial vertex of the one is comparable with the terminal vertex of the other.
It is possible, that the terminal vertex of one of the edges is the initial
vertex of the other, but then the other terminal and initial vertex have to
be different. Therefore there is an edge from an initial vertex of one to the
terminal vertex of the other edge. Hence they lie on an alternating 3–path.

2. Any vertex is comparable with all the other infinitely many vertices and
thus has an edge to all of them.

3. Any two vertices are adjacent. Hence rays cannot be separated.

4. The underlying field as additive group acts transitively and freely on
the ordered field digraph. By Sabidussi’s Theorem 1.38 the ordered field
digraph is its Cayley–graph, namely the one generated by all non–zero
elements. �

Proof of Proposition 4.64

1. The second relation indicates an unbalanced cycle, hence it does not have
Property Z. Since it has in and out–valency 2 its reachability relation is
not universal by Theorem 4.26.
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2. The valencies follow directly from the definition of AltCyc(n) as Cayley–
graph. For every x ∈ V (AltCyc(n)) the descendants form a tree since
otherwise there would be two arcs that meet twice. This would induce
another relation in the presentation which is not there.

3. Every edge lies on an alternating cycle by construction. Every vertex has
in- and out–valency 2. Hence at no vertex of the alternating cycle an
alternating walk can leave the cycle. Thus ∆ is the alternating cycle.

4. This follows directly from the definition. �

Proof of Proposition 4.65

1. For any two vertices x and y in the Evans–graph there is a vertex z that is
independent of both. Note that x and y are not necessarily independent,
thus the set {x, y, z} is not guaranteed to be independent, but the sets {x, z}
and {y, z} are. By construction a tree was attached at x and y in a way
that the incoming edges have the same initial vertex. Actually infinitely
many such trees were attached. The same holds for y and z. We get an
alternating 4–walk from x to y. Hence, every pair of edges with terminal
vertices x and y lies on an alternating 6–walk.

2. This follows immediately from the construction.

3. There are even infinitely many vertices independent from two arbitrary
vertices. Thus they are connected by infinitely many disjoint 4–walks. So
there is no way to separate rays finitely.

4. d+ 6= d−. �

Proof of Proposition 4.66

1. A proof can be found in [5].

2. This follows directly from the definition.

3. Since all the edges come from 3–arcs, every vertex in the underlying tree
yields a finite separator of DMS(n,m) (namely the set of vertices which
come from the incident edges). Hence there is a correspondence between
the ends of the underlying tree and the ends of DMS(n,m). �

Proof of Proposition 4.68
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1. For every a ∈ A there is a surrounding cycle C of length 3n with 3 consec-
utive edges in an A(e). The first and last of these 3 edges must be forward
say. The same holds for the first and last edge of the neighbouring A(ei)s,
otherwise they would be within the same A(e). Thus C has 2n forward and
n backward edges.

2. For b ∈ B we have κ possible initial vertices and κ possible terminal vertices.
Every initial vertex produces all but one edges, namely the one terminal
vertex, which is its A–neighbour, is missing.

3. This follows from 2.

4. Since all the edges come form 3–arcs, every vertex with finite degree in
the underlying tree yields a finite sepatator of HH(κ, n) (as in the above
proof). Hence every end in the underlying tree yields an end of HH(κ, n).
If κ is infinite there is a countable subset in the source–partition of CP(κ)
which we can enumerate with (0−, 1−, . . . ). We enumerate the correspond-
ing elements in the sink–partition with (0+, 1+, . . . ) (corresponding means
adjacent in the underlying perfect matching). Then there are disjoint rays
(p−, p

2
+, p

3
−, . . . ) for all primes p. These rays are all in the same end (by

infinitely many disjoint paths between any pair of them) and thus every
CP(κ) contains a thick end.

Proof of Proposition 4.69

1. This follows from Proposition 4.21

2. A proof is claimed in [1] Theorem 4.8 (b). The argument is given in the
proof of Proposition 2.49

3. This follows directly from 2. �

Proof of Proposition 4.70

1. This follows directly from the fact that the defining trees have Property Z.

2. In forward direction the digraph looks like the forward defining tree and thus
takes its out–valency and out–spread. The same holds for the backward
direction.

3. Considering the construction of the broom–graph and asking what is at-
tached to x⇒1 this is immediate.

4. First we notice that a ray that leaves every bounded set in the Diestel–
Leader graph has a φ–image that leaves every bounded set in Z. That
implies that a ray either hits infinitely many horocycles that are φ–mapped

70



5 Proofs 5.4 Statement–proofs

to positive integers or infinitely many to negative integers, or both. Any
two vertices on the same horocycle can be connected with a path that does
not hit more horocycles than the coordinates of the vertices are apart –
thinking with the vertices of the defining trees as coordinates. That means
that any two positive rays can be connected with another path, that stays
in a bounded set, outside any bounded set. Thus there are infinitely many
disjoint paths connecting the rays and thus they are in the same end. The
same holds for negative rays. Thus we are left with finding a forward
and a backward ray that cannot be separated finitely. But taking a line
and considering the smallest cycles that run a certain distance on it, the
other part of the cycles yield infinitely many disjoint paths connecting the
positive and negative half of the line. �

Proof of Proposition 4.71

1. It is a universal covering digraph, thus it has Property Z by Lemma 4.5.

2. This follows directly from the construction.

3. This again is immediate.

4. The thin ends are the ones of the underlying tree of the universal covering
digraph. The thick ends are the pancakes.

5. The quadratic pancake–tree is a Cayley–graph of the group

〈{a, b, c, d}, ad−1bc−1 = ac−1bd−1 = 1〉.

For the hexagon pancake–tree we have the group

〈{a, b, c}, ac−1ba−1cb−1 = ab−1ca−1bc−1 = 1}〉.

Easier than checking that these groups indeed induce the pancake–tree, one
could alternatively use the closed path property from 1.34. �

5.4. Statement–proofs

Due to the large amount of statements in Sections 4.1 and 4.2 we just include
some of their proofs and only references for the others.

Proof of Proposition 4.1

1. Any automorphism of D that takes an edge e into A(e) must stabilize
A(e) setwise. Since D is 1–arc transitive its automorphism group induces
a G ⊂ Aut(A(e)) which acts 1–arc transitive on A(e).
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2. If D contains a loop then because of 1–arc transitivity every edge has to
be a loop. Since D it connected it has then only one vertex and thus its
reachability relation is universal. Thus we assume that D has no loops.
Assume that ∆(D) is not bipartite. Then it contains a 2–arc (e1, e2). Con-
sider the vertex v in the middle of this 2–arc. All its in–edges e1,i must be
in A(e1) and all its out–edges e2,i in A(e2). But A(e1) = A(e2). Because of
1–arc transitivity there are automorphisms e1 7→ e2, e1 7→ e2,i, e2 7→ e1 and
e2 7→ e1,i with which we can extend the associated digraph beyond the in-
and out–neighbours of v. Inductively the reachability relation is universal
since D is connected.

A similar proof can be found in [1] Proposition 1.1 on page 379. �

Proof of Lemma 4.2
A proof can be found in [1] Lemma 2.8 on page 382. �

Proof of Lemma 4.3
A proof can be found in [1] Corollary 2.9 on page 282. �

Proof of Lemma 4.4
A proof can be found in [1] proof of Theorem 3.6 on pages 386 and 387. �

Proof of Lemma 4.5
A proof can be found in [1] Lemma 3.2 (a) on page 385. �

Proof of Lemma 4.6
Suppose φ : D → Z is a homomorphism. It takes some eD 7→ eZ . Every
alternating walk must be entirely mapped to a single edge. If D has universal
reachability relation then every edge in D must map to eZ . Thus φ cannot be
epimorphic.
A different proof can be found in [1] Lemma 3.2 (b) on page 385. �

Proof of Lemma 4.7
A proof can be found in [1] Proposition 3.10 on page 388. �

Proof of Lemma 4.8
Let (e, f) = (x, y, z) be an alternating walk. The orbit Hz must be contained in
N+(y)\{x} (respectivelyN−(y)\{x}) and hence it has less than d elements. Thus
by Theorem 1.7 [H : StabH(x)] < d. Thus we also have

[
H|Ω : StabH|Ω(x)

]
< d.

From our prerequisite we therefore have H|Ω = StabH|Ω(x). But that means that
StabH(x) fixes no element of Ω because we assumed that H does so. Inductively
we obtain that for all x ∈ A(e) the stabilizer StabH(x) fixes no element of Ω.
Finally we indirectly assume that there exist an alternating walk starting with
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e and terminating with an x ∈ Ω. We get that H|Ω = StabH|Ω(x) fixes x
contradicting the assumption that the elements of Ω are moved.
A similar proof with different notation can be found in [3] Proposition 3.2 on
page 25. �

Proof of Lemma 4.9
A proof can be found in [4] Lemma 1 on page 148. �

Proof of Lemma 4.10
A proof can be found in [4] Lemmas 3 and 4 on pages 149 and 150. �

Proof of Lemma 4.11
A proof can be found in [3] Proposition 2.4. �

Proof of Lemma 4.12
A proof can be found in [3] Lemma 2.5. �

Proof of Lemma 4.13
Without loss of generality we assume that d+(D) > d−(D). Consider a vertex x ∈
V (D). There are d+(D)

∣∣x⇒k∣∣ edges with initial vertex in x⇒k and d−(D)
∣∣x⇒k+1

∣∣
edges with terminal vertex in x⇒k+1. Obviously we have

d−(D)
∣∣x⇒k+1

∣∣ ≥ d+(D)
∣∣x⇒k∣∣

and thus ∣∣x⇒k+1
∣∣ ≥ ∣∣x⇒k∣∣ d+(D)

d−(D)
.

Inductively we get

∣∣x⇒k+1
∣∣ ≥ ∣∣x⇒1

∣∣ (d+(D)

d−(D)

)k
= d+(D)

(
d+(D)

d−(D)

)k
.

Thus the out–spread is greater or equal d
+(D)
d−(D)

> 1. A similar proof can be found
in [4] Lemma 6 on pages 155 and 156. �

Proof of Lemma 4.14
A proof can be found in [2] Lemma 2.4 on page 1534. �

Proof of Theorem 4.15

1. This follows from the construction.

2. This will follow by 3.
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3. The idea of the proof is to simply construct the covering projection induc-
tively. Starting at the initial edge of the s–arc one uses the isomorphisms
between the A(e)s to built the covering projection along the target s–arc
and finally on the whole digraph. Then one checks that the result indeed
is a covering projection.

For details see [1] Theorems 2.2 and 2.3 on pages 380 and 381. �

Proof of Theorem 4.16
The idea of the proof is again to inductively define the required covering
projection from the given ones and checking that the result is indeed a covering
projection. The construction runs along the underlying tree of DL(∆) using
Lemma 4.3 in every step on the next reached A(e). For details see [1] Theorem
2.6 on pages 382 and 383. �

Proof of Theorem 4.17
A proof can be found in [1] Theorem 3.6 on pages 386 to 388. �

Proof of Theorem 4.18
A proof can be found in [4] Theorem 3 on pages 155 and 156. �

Proof of Theorem 4.19
A proof can be found in [11]. �

Proof of Theorem 4.20
A proof can be found in [1] Corollary 4.9 on page 393. �

Proof of Proposition 4.21
This is immediate from the definition of the tensor product. �

Proof of Proposition 4.24

1. The ordered field digraph has universal reachability relation.

2. The Evans–graph has universal reachability relation and finite out–spread.

3. The DeVos–Mohar–Šámal–digraph has universal reachability relation and
finite spread. �

Proof of Theorem 4.25

1. This is by Theorem 4.19 and Lemma 4.6

2. This is by Theorem 4.26.
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3. This is evident. �

Proof of Theorem 4.26
Since D is 2–arc transitive the stabilizer of an edge e = (x, y) acts transitively on
the out–neighbours of y. Since d+(D) = |N+(y)| is a prime, there is a subgroup
A ⊆ StabAut(D)(e) such that A|N+(D)

∼= Zp. Thus we can apply Lemma 4.8 with
Ω = N+(y) and the reachability relation cannot be universal.
A similar proof can be found in [3] Theorem 3.3 on page 25. �

Proof of Theorem 4.27
Since K has degree greater or equal d, there is a subgroup K̄ < StabAut(D)(e)
with degree greater or equal d. We can apply Lemma 4.8 with Ω = N+(y)
andH = K̄. A similar proof can be found in [3] Theorem 3.4 on pages 25 and 26.�

Proof of Theorem 4.28
The DMS(n+ 1,m+ 1) is such a graph. A proof can be found in [5]. �

Proof of Theorem 4.29
A proof can be found in [4] Theorem 1 on page 151. �

Proof of Corollary 4.30

1. A proof can be found in [4] Lemma 5 pages 153 and 154.

2. A proof can be found in [4] in the remark after Lemma 5 on page 154. �

Proof of Theorem 4.31
The alternating–cycle digraph is such a graph. See Theorem 4.26 and Lemma
4.4 �

Proof of Theorem 4.32
A proof can be found in [4] Theorem 2 on page 154. �

Proof of Theorem 4.33
A proof can be found in [3] Theorem 2.6 on page 24. �

Proof of Theorem 4.34
A proof can be found in [3] Proposition 2.7 on page 24. �

Proof of Theorem 4.35
The pancake trees are such graphs. �
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Proof of Theorem 4.36
A proof can be found in [2] Proposition 2.2 on page 1534. �

Proof of Theorem 4.37
A proof can be found in [2] Theorem 3.1 on page 1536. �

Proof of Theorem 4.38
The digraph D is 1–arc transitive. We will prove by induction that it is (k + 1)–
arc transitive and thus highly arc transitive. Therefore we consider a k–arc
(x0, . . . , xk). Because again D is 1–arc transitive the stabilizer StabAut(D)(xk)
acts transitively on N+(xk). Since |N+(xk)| = p is a prime there is a cyclic
subgroup 〈g0〉 ⊆ StabAut(D)(xk) that stabilizes N+(xk) setwise and has restriction
〈g〉|N+(xk)

∼= Zp. Also the in–neighbours N−(xk) are stabilized setwise by 〈g〉.
Since |N−(xk)| < p (by assumption) the restriction 〈g〉|N−(xk) has a degree m0

that does not contain p as prime factor. Thus 〈gm0〉 stabilizes N−(xk) pointwise
and acts transitively on N+(xk).
Now we do the same with the in–neighbours of xk−1 and inductively get a group
〈gm0...mk〉 ≤ Aut(D) that stabilizes (x0, . . . , xk) and acts transitively on N+(xk).
Thus D is (k + 1)–arc transitive.
A similar proof can be found in [2] Proposition 3.2 on pages 1536 and 1537. �

Proof of Theorem 4.40
The graph is constructed in [10]. �

Proof of Theorem 4.41
A proof can be found in [13] Theorem 5.1 on page 10. �

Proof of Theorem 4.42
A proof can be found in [13] Lemma 7.1 on page 14. �

Proof of Theorem 4.43
A proof can be found in [12] Theorem 6.1 on pages 817 and 818. �

Proof of Theorem 4.44
Proofs can be found in [12] Sections 2, 3 and 4. �

Proof of Theorem 4.45
A proof can be found in [3] Theorem 4.5 on page 27. �

Proof of Theorem 4.46
A proof can be found in [3] Theorem 4.7 on page 28. �
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5.5. Other proofs

Proof of Lemma 1.18
Every vertex is a 0–walk to itself, thus the relation is reflexive. It is symmetric,
because walks do not care about the orientation of edges and transitive because
we can concatenate walks. Moreover the components are well–defined because
no edges can leave them, since otherwise there would be more vertices in the
component. �

Proof of Lemma 1.25
The identity is the neutral element. The reverse maps are the inverse elements.
Finally

g ◦ (h ◦ k)(x) = g(h(k(x))) = (g ◦ h) ◦ k(x)

�

Proof of Theorem 1.7
Consider the map o : gStabG(x) → gx. This is onto because G → Gx : g 7→ gx
is onto. It is one to one because if gx = hx then x = h−1(gx) = (h−1g)x, thus
h−1g ∈ StabG(x) and thus gStabG(x) = hStabG(x). �

Proof of Proposition 1.34
That a Cayley–graph has the claimed two properties is evident. If on the
other hand a digraph has these properties we can define a group that has it
as Cayley–graph. We can present this group with all the colours as generators
and all closed paths as relations. If this presentation defines a group, it must
have the original graph as Cayley–graph (by construction). The relations cannot
contradict each other because we got them from the digraph which would be
impossible if they would contradict. �

Proof of Theorem 1.38
A proof can be found in [14]. �

Proof of Lemma 3.5
That follows directly from the fact, that D is 1–arc transitive. Under an
automorphism every edge e must take its A(e) with it (else would contradict it
to be isomorphic). �

Proof of Theorem 3.17
The result can be derived from [16] Theorem 1.1. Alternatively a reference can
be found in [2] Theorem 2.3 on page 1534. �
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A. Sources

This appendix is for the reader who is interested in how to create such nice
pictures. They were drawn using the TikZ package

\usepackage { t i k z }
\ u s e t i k z l i b r a r y {arrows , d e co ra t i on s . pathmorphing ,

backgrounds , po s i t i on ing , f i t , ca l c , through , shapes }

and C++. Most of the pictures probably could have been created using the
LATEX and PGF inherent programming functions, but it turned out that it is
way easier to produce simple TikZ code using C++. The first figures drawn were
Figures 1, 2 and 3 which where just coded in TikZ. This was boring and relatively
time consuming. Thus the author decided to use C++ to get on with the pictures
faster.
In the following the used code is described. In case that the reader likes to use
the code the author provides electronic copies (so do not start typing it).
The TikZ code for the some more pictures which were not drawn using C++ but
using only TikZ, PGF and LATEX is of course also available electronically.

A.1. Adjacency matrices

The chronologically first figure from Section 2 was Figure 20. The C++ code
drawing it was actually not intended to be a graphic application but to visualize
some tensor–products for the authors better understanding (that was motivated
by [1] and resulted in Remark 2.45 (3)).
The code is not more than a very basic matrix class Matrix that beside the
necessary members consists mainly of a drawing method void Matrix::tikz
and a Kronecker product friend Matrix& operator *.
The parts of Figure 20 were both created by the function void TensorLKZwei().
Note the parameters of void Matrix::tikz after the output file name are just
alignments. They specify the shape of the output matrix, the size of the gaps
between the vertices, where additional gaps between groups of vertices shall be
placed and if there should be dots that indicates that the pattern extends. To
understand the gaps just look at the parameters in matrix.h in line 121 and 122
and keep in mind that the standard integer division in C++ truncates rather
than rounds.

The other pictures created with void Matrix::tikz and there codes are:

• Figure 6 by void LK(char[],int,int)

• the left part of Figure 12 by void BigRegDreiDreiZwei()

• Figure 4 by void ZLine()
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A.2. Trees

Obviously its not satisfying to draw trees as matrices. Thus the vertices of the
trees were placed recursively. The function void tree draws the root in the
center and calls the recursive function void treenode with coordinates arranged
at the roots of unity around as void treenode itself does after drawing a vertex
and an edge. void tree takes also a parameter that specifies an initial angle,
so one can turn the tree as desired. The pictures in Figure 5 left, 30 and 12
right were created with these functions. In the latter one the colored edges were
later adjusted by hand. For the picture in Figure 5 right a slightly different root
function void edgetree that calls one of the subsequent void treenodes with
a different scaling such that the resulting tree is centered on an edge.

A.3. Line digraphs

The Figures 13, 14 and 11 show a line–graphs of a tree and a subgraph of the
same line–graph. Since TikZ offers the feature to define a vertex at an edge it
was easy to modify the functions void tree and void treenode in a way to
put an additional vertex in the center of every edge. Thanks to the recursive
structure it was also easy to put a given graph on the edge vertices surrounding
every vertex. Thus we cheaply get a linegraph of a tree if we choose this given
graph (here defined by a Matrix) complete bipartite (or easier complete since the
algorithm ignores the additional edges) or any desired universal covering digraph
by choosing the desired ∆.
The adapted functions are void DL and void DLnode.

A.4. Kn,n–tubes

The Figures 8, 9 and 10 required some more layouting. Thus the class CGraph
was invented. It provides a list of vertices and a list of edges. The vertices can
be arranged in R3, this is simulated by a vector that gives the projection of the
direction z into the x–y–plain. The style and colour can be assigned to every
single edge as string. That is not very elegant programming but it does the
job. For drawing the figures mentioned above the function void KNNCon was used.

A.5. Sequences digraphs

The sequences are generated and checked by some non–member functions located
at the end of the file graph.h. The bipartite ∆ that should be respected at
the middle of the sequence is just assumed to be a Kn,m. The rest is done
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by the methods void CGraph::sequences(int n,int m,int depth) and void
CGraph::edges_simpleseq().

A.6. DMS and HH

These graphs use the edge set of an underlying tree as vertex set, like the line-
graphs. But unlike them the edge set is not easily drawn with the same recursive
function that draws the vertices. Thus the functions for generating trees were
adapted as members of Class CGraph to run the algorithms as members void
CGraph::DMS and void CGraph::HH.

A.7. Alternating–cycle digraph

Since the AC has a tree as substructure it was canonically drawn with a recursive
approach by the member void CGraph::AC.

A.8. Functions and Main

1 #include <s td i o . h>
2 #include <conio . h>
3 #include <windows . h>
4 #include "graph.h"
5 #include "matrix.h"
6
7
8 void TensorLKZwei ( ) ;
9 void ZLine ( ) ;

10 void LK(char Datei [ ] , int n , int l ) ;
11 void t r e e (char Datei [ ] , int inva l , int outval , int depth ,

f loat shr inkexp=1, f loat s h r i n k l i n =0, f loat s c a l e = 1 . ,
f loat s t a r t a r c = 0 . ) ;

12 void edge t r e e (char Datei [ ] , int inva l , int outval , int depth ,
f loat shr inkexp=1, f loat s h r i n k l i n =0, f loat s c a l e = 1 . ,
f loat s t a r t a r c = 0 . ) ;

13 void t reenode ( int inva l , int outval , int depth , bool edge ,
f loat x , f loat y , f loat prex , f loat prey , char prename [ ] ,
int name_i , f loat shrinkexp , f loat s h r i nk l i n , f loat koe f f ,
FILE ∗ fp ) ;

14 void BipRegDreiDreiZwei ( ) ;
15 void DL(char Datei [ ] , char Befeh l [ ] , Matrix ∗pDelta , int

inva l , int outval , int depth , f loat shr inkexp=1, f loat
s h r i n k l i n =0, f loat s c a l e = 1 . , f loat s t a r t a r c = 0 . ) ;
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16 void DLnode(Matrix ∗pDelta , int inva l , int outval , int depth ,
bool edge , f loat x , f loat y , f loat prex , f loat prey , char
prename [ ] , int name_i , f loat shrinkexp , f loat s h r i nk l i n ,
f loat koe f f , FILE ∗ fp ) ;

17 void KDreiDreiCon ( ) ;
18 void KNNCon( int n , int l ength , double arc , char Datei [ ] , char

Befeh l [ ] ) ;
19 void TensorSeq1_2 ( ) ;
20 void TensorSeq ( int n , int m, int depth ) ;
21 void HH(char Datei [ ] , char Befeh l [ ] , int inva l1 , int inva l2 ,

int outval1 , int outval2 , int depth , int part=1,double
shr inkexp =1. ,double s h r i n k l i n =0. ,double s t a r t a r c =0. ,
double s c a l e =1. ,bool bend=true , bool c o l o r=true ) ;

22
23
24 int main ( void )
25 {
26 TensorLKZwei ( ) ;
27 ZLine ( ) ;
28 LK("LKVier.tex" , 4 , 6 ) ;
29 t r e e ("BaumEinsZweiVier.tex" , 1 , 2 , 4 , ( f loat ) s q r t ( 3 . )

, −0 .2 ,0 .3) ;
30 t r e e ("BaumZweiZweiVier.tex" , 2 , 2 , 4 , 2 , −0 .2 , 0 . 3 ) ;
31 t r e e ("BaumZweiDreiVier.tex" , 2 , 3 , 4 , 2 . 7 5 , 0 . , 0 . 0 8 ) ;
32 edge t r e e ("EBaumEinsZweiVier.tex" , 1 , 2 , 4 , ( f loat ) s q r t ( 3 . )

, −0 .2 ,0 .3) ;
33 edge t r e e ("EBaumZweiDreiDrei.tex" , 2 , 3 , 3 , 2 . 5 , 0 . , 0 . 1 , 3∗

M_PI/2) ;
34 BipRegDreiDreiZwei ( ) ;
35 t r e e ("BaumDreiDreiDrei.tex" , 3 , 3 , 3 , 3 , 0 , 0 . 1 , 2∗M_PI/3) ;
36
37 Matrix A(6 , 6 ) ;
38 A. s e t ( fa l se ) ;
39 A(0 ,3 )=A(0 , 4 )=A(1 , 4 )=A(1 , 5 )=A(2 , 5 )=A(2 , 3 )=true ;
40 DL("DL.tex" ,"DL" ,&A, 3 , 3 , 3 , 3 , 0 , 0 . 2 , 2∗M_PI/3) ;
41
42 A. s e t ( true ) ;
43 DL("LineBaumDreiDreiDrei.txt" ,"LineBaumDreiDreiDrei" ,&A

,3 , 3 , 3 , 3 , 0 , 0 . 1 5 , 2∗M_PI/3) ;
44
45 Matrix B(4 , 4 ) ;
46 B. s e t ( true ) ;
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47 DL("LineBaum.tex" ,"LineBaum" ,&A,2 , 2 , 3 , 3 , 0 , 0 . 1 5 , 3∗M_PI
/4) ;

48
49 KDreiDreiCon ( ) ;
50 KNNCon(2 ,9 ,5∗M_PI/16 ,"KZweiZweiCon.txt" ,"KZweiZweiCon" )

;
51 KNNCon(3 ,7 ,5∗M_PI/16 ,"KDreiDreiCon.txt" ,"KDreiDreiCon" )

;
52 KNNCon(4 ,3 ,5∗M_PI/16 ,"KVierVierCon.txt" ,"KVierVierCon" )

;
53
54 TensorSeq1_2 ( ) ;
55 TensorSeq (2 , 3 , 2 ) ;
56 TensorSeq (2 , 2 , 3 ) ;
57
58 HH("HHDreiDreiVier.tex" ,"HHDreiDreiVier" , 1 , 1 , 2 , 2 , 4 , 1 ,

s q r t ( 2 . ) , 0 . , 0 . , 0 . 4 , true , true ) ;
59 HH("HHDreiDreiFuenf.tex" ,"HHDreiDreiFuenf" , 1 , 1 , 2 , 2 , 5 , 2 ,

s q r t ( 2 . ) , 0 . , 0 . , 0 . 2 , true , true ) ;
60 HH("HHVierDreiVier.tex" ,"HHVierDreiVier" , 2 , 1 , 2 , 2 , 4 , 1 ,

s q r t ( 3 . ) , 0 . , 0 . , 0 . 4 , true , true ) ;
61 HH("HHVierDreiFuenf.tex" ,"HHVierDreiFuenf" , 2 , 1 , 2 , 2 , 5 , 2 ,

s q r t ( 3 . ) , 0 . , 0 . , 0 . 2 , true , true ) ;
62 HH("HHDreiVierVier.tex" ,"HHDreiVierVier" , 1 , 2 , 2 , 2 , 4 , 1 ,

s q r t ( 3 . ) , 0 . , 0 . , 0 . 4 , true , true ) ;
63 HH("HHDreiVierFuenf.tex" ,"HHDreiVierFuenf" , 1 , 2 , 2 , 2 , 5 , 2 ,

s q r t ( 3 . ) , 0 . , 0 . , 0 . 2 , true , true ) ;
64
65 CGraph G;
66 G. b i edg e t r e e (1 , 1 , 2 , 2 , 4 , s q r t ( 2 . ) , 0 . , 0 . , fa l se ) ;
67 G. color_edge ("black!30" ) ;
68 G.DMS(1) ;
69 G. sty le_edge ("very␣thick,␣bend␣left=30" , 1 ) ;
70 G. pa int ("DMSDreiDreiVier.tex" ,"DMSDreiDreiVier" , 0 . 6 ) ;
71
72 CGraph D;
73 D.AC(5) ;
74 D. pa int ("ACFuenf.tex" ,"ACFuenf" , 3 . 5 ) ;
75
76 getch ( ) ;
77
78 return 0 ;
79 }
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80
81 void HH(char Datei [ ] , char Befeh l [ ] , int inva l1 , int inva l2 ,

int outval1 , int outval2 , int depth , int part , double
shrinkexp , double s h r i nk l i n , double s t a r t a r c , double s ca l e
, bool bend , bool c o l o r )

82 {
83 CGraph G;
84 G. b i t r e e ( inva l1 , inva l2 , outval1 , outval2 , depth , shrinkexp ,

s h r i nk l i n , s t a r t a r c , fa l se ) ;
85 G. color_edge ("black!30" ) ;
86 G.HH( part ) ;
87 i f ( c o l o r )
88 G. edge_color_delta_part (1 ) ;
89 i f ( bend )
90 G. sty le_edge ("very␣thick,␣bend␣left=30" , 1 ) ;
91 else
92 G. sty le_edge ("very␣thick" ) ;
93 G. pa int ( Datei , Befehl , s c a l e ) ;
94 }
95
96 void TensorSeq ( int n , int m, int depth )
97 {
98 double arc=M_PI/5 ;
99 CGraph G;

100 CGraph Z ;
101 CGraph T;
102 G. se tzvek ( cos ( arc ) , s i n ( arc ) ) ;
103 Z . se t zvek ( cos ( arc ) , s i n ( arc ) ) ;
104 T. se tzvek ( cos ( arc ) , s i n ( arc ) ) ;
105 char vertname [ 4 ] ;
106 vertname [1 ]= vertname [3 ]= ’\0’ ;
107
108 int i ;
109 for ( i =0; i <4; i++)
110 {
111 vertname [0 ]= ’0’+i ;
112 Z . ver tex (0 ,3∗ i , 0 , vertname , true ) ;
113 }
114 for ( i =0; i <3; i++)
115 Z . edge ( i , i +1) ;
116
117 G. sequences (n ,m, depth ) ;
118
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119 G. rotxy (M_PI/2) ;
120 G. rotyz (M_PI/2) ;
121
122 G. pa int ("SeqNM.tex" ,"SeqNM" , 0 . 5 ) ;
123
124 T. tenso r (&Z,&G) ;
125 T. edge_color_delta ( ) ;
126 T. sty le_edge ("very␣thick" ) ;
127 T. pa int ("TensorZSeqNM.tex" ,"TensorZSeqNM" , 0 . 5 ) ;
128
129 G. s t r e ch (3 , 1 , 1 ) ;
130 G. se tzvek (0 , 1 ) ;
131 G. pa int ("SeqNMnames.tex" ,"SeqNMnames" , 0 . 5 , true ) ;
132 }
133
134 void TensorSeq1_2 ( )
135 {
136 double arc=M_PI/5 ;
137 CGraph G;
138 CGraph Z ;
139 CGraph T;
140 G. se tzvek ( cos ( arc ) , s i n ( arc ) ) ;
141 Z . se t zvek ( cos ( arc ) , s i n ( arc ) ) ;
142 T. se tzvek ( cos ( arc ) , s i n ( arc ) ) ;
143 char vertname [ 4 ] ;
144 vertname [1 ]= vertname [3 ]= ’\0’ ;
145
146 int i ;
147 for ( i =0; i <4; i++)
148 {
149 vertname [0 ]= ’0’+i ;
150 Z . ver tex (0 ,3∗ i , 0 , vertname , true ) ;
151 }
152 for ( i =0; i <3; i++)
153 Z . edge ( i , i +1) ;
154
155 G. ver tex (0 , 0 , 0 , "00000" , true ) ;
156 G. ver tex (2 , 0 , 0 , "10000" , true ) ;
157 G. ver tex (4 , 0 , 1 , "11000" , true ) ;
158 G. ver tex (4 ,0 ,−1 ,"01000" , true ) ;
159 G. ver tex ( 6 , 0 , 1 . 5 , "11100" , true ) ;
160 G. ver tex ( 6 , 0 , 0 . 5 , "01100" , true ) ;
161 G. ver tex (6 ,0 ,−0.5 ,"10100" , true ) ;
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162 G. ver tex (6 ,0 ,−1.5 ,"00100" , true ) ;
163 G. ver tex ( 8 , 0 , 1 . 7 5 , "11110" , true ) ;
164 G. ver tex ( 8 , 0 , 1 . 2 5 , "01110" , true ) ;
165 G. ver tex ( 8 , 0 , 0 . 7 5 , "10110" , true ) ;
166 G. ver tex ( 8 , 0 , 0 . 2 5 , "00110" , true ) ;
167 G. ver tex (8 ,0 ,−0.25 ,"11010" , true ) ;
168 G. ver tex (8 ,0 ,−0.75 ,"01010" , true ) ;
169 G. ver tex (8 ,0 ,−1.25 ,"10010" , true ) ;
170 G. ver tex (8 ,0 ,−1.75 ,"00010" , true ) ;
171
172 G. edges_simpleseq ( ) ;
173 G. pa int ("SeqEinsZwei.tex" ,"SeqEinsZwei" , 1 , true ) ;
174
175 T. tenso r (&Z,&G) ;
176 T. pa int ("TensorZSeqEinsZwei.tex" ,"TensorZSeqEinsZwei" ) ;
177 }
178
179 void KNNCon( int n , int l ength , double arc , char Datei [ ] , char

Befeh l [ ] )
180 {
181 CGraph G;
182 int i , j , k , l ;
183 G. se tzvek ( cos ( arc ) , s i n ( arc ) ) ;
184
185 for ( i =0; i<length+2; i++)
186 for ( j =0; j<n ; j++)
187 for ( k=0;k<n ; k++)
188 G. ver tex ( ( cos ( arc ) ∗(n−1)+1)∗ i , j , k , "" , i&&i<

length+1) ;
189 for ( i =1; i<length ; i++)
190 for ( j =0; j<n ; j++)
191 for ( k=0;k<n ; k++)
192 for ( l =0; l<n ; l++)
193 i f ( i %2)
194 G. edge (n∗n∗ i+n∗ j+k , n∗n∗( i +1)+n∗ j+l , "" , j

==n−1?"blue" : "blue!30" , j==n−1?"very␣
thick" : "thin" ) ;

195 else
196 G. edge (n∗n∗ i+n∗ j+k , n∗n∗( i +1)+n∗ l+k , "" , ! k

?"red" : "red!30" , ! k?"very␣thick" : "thin
" ) ;

197 for ( i =0; i<n∗n ; i++)
198 {
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199 G. edge ( i , i+n∗n , "" ,"black" ,"dotted" ) ;
200 G. edge (n∗n∗ l ength+i , n∗n∗ l ength+i+n∗n , "" ,"black" ,"

dotted" ) ;
201 }
202 G. pa int ( Datei , Befehl , 0 . 6 ) ;
203 }
204
205 void KDreiDreiCon ( )
206 {
207 CGraph G;
208 int i , j , k , l ;
209 G. se tzvek ( cos (5∗M_PI/16) , s i n (5∗M_PI/16) ) ;
210
211 for ( i =0; i <9; i++)
212 for ( j =0; j <3; j++)
213 for ( k=0;k<3;k++)
214 G. ver tex (2 . 3∗ i , j , k , "" , i&&i <8) ;
215 for ( i =1; i <7; i++)
216 for ( j =0; j <3; j++)
217 for ( k=0;k<3;k++)
218 for ( l =0; l <3; l++)
219 i f ( i %2)
220 G. edge (9∗ i +3∗ j+k , 9∗ ( i +1)+3∗ j+l , "" , j==2?"

blue" : "blue!30" , j==2?"very␣thick" : "
thin" ) ;

221 else
222 G. edge (9∗ i +3∗ j+k , 9∗ ( i +1)+3∗ l+k , "" , ! k?"

red" : "red!30" , ! k?"very␣thick" : "thin" )
;

223 for ( i =0; i <9; i++)
224 {
225 G. edge ( i , i +9,"" ,"black" ,"dotted" ) ;
226 G. edge (63+ i ,63+ i +9,"" ,"black" ,"dotted" ) ;
227 }
228 G. pa int ("KDreiDreiCon.txt" ,"KDreiDreiCon" , 0 . 6 ) ;
229 }
230
231 void DL(char Datei [ ] , char Befeh l [ ] , Matrix ∗pDelta , int

inva l , int outval , int depth , f loat shrinkexp , f loat
s h r i nk l i n , f loat s ca l e , f loat s t a r t a r c )

232 {
233 int i , j ;
234 int k=inva l+outva l ;
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235 f loat x=0. ,y=0. ;
236 f loat ko e f f =1. ;
237 char inedgename [4 ]="e__" ;
238 char outedgename [4 ]="e__" ;
239
240 for ( i =0; i<depth ; i++)
241 {
242 ko e f f+=sh r i n k l i n ;
243 ko e f f∗=shr inkexp ;
244 }
245
246 FILE ∗ fp ;
247 fp=fopen ( Datei , "w" ) ;
248
249 f p r i n t f ( fp , "\\def\\%s{\n" , Be feh l ) ;
250 f p r i n t f ( fp , "\\begin{tikzpicture}\n" ) ;
251 f p r i n t f ( fp , "[scale=%0.2f,\n" , s c a l e ) ;
252 f p r i n t f ( fp , "inner␣sep=1.5,\n" ) ;
253 f p r i n t f ( fp , "vertex/.style={circle,draw=black!50,fill=

black!20,␣very␣thick},\n" ) ;
254 f p r i n t f ( fp , "edgevertex/.style={circle,draw=blue!80,fill

=blue!40,␣very␣thick},\n" ) ;
255 f p r i n t f ( fp , "post/.style={->,␣>=stealth’},\n" ) ;
256 f p r i n t f ( fp , "pre/.style={<-,␣>=stealth ’}]\n" ) ;
257 f p r i n t f ( fp , "\\node␣[vertex]␣(a)␣at␣(%f,%f)␣{};\n" , x , y ) ;
258
259 for ( i =0; i<k ; i++)
260 DLnode( pDelta , inva l , outval , depth−1, i<inva l ,
261 ko e f f ∗ cos (2∗ i ∗M_PI/k+s t a r t a r c ) , k o e f f ∗ s i n (2∗ i ∗M_PI/k+

s t a r t a r c ) ,
262 x , y , "a" , i , shr inkexp , s h r i nk l i n , k o e f f / shrinkexp−

s h r i nk l i n , fp ) ;
263
264 for ( i =0; i<inva l ; i++)
265 {
266 inedgename [2 ]= ’0’+i ;
267 for ( j=inva l ; j<k ; j++)
268 i f ( (∗ pDelta ) ( i , j ) )
269 {
270 outedgename [2 ]= ’0’+j ;
271 f p r i n t f ( fp , "\\draw␣[post,blue,very␣thick]␣(%s)

␣to␣[bend␣left=30]␣(%s);\n" , inedgename ,
outedgename ) ;
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272 }
273 }
274
275 f p r i n t f ( fp , "\\end{tikzpicture}\n}\n" ) ;
276
277 f c l o s e ( fp ) ;
278 }
279
280 void DLnode(Matrix ∗pDelta , int inva l , int outval , int depth ,

bool edge , f loat x , f loat y , f loat prex , f loat prey , char
prename [ ] , int name_i , f loat shrinkexp , f loat s h r i nk l i n ,
f loat koe f f , FILE ∗ fp )

281 {
282 int i , n , j ;
283 for (n=0;prename [ n ] != ’\0’ ; n++) ;
284 char ∗newname=new char [ n+3] ;
285 char ∗ inedgename=new char [ n+5] ;
286 char ∗outedgename=new char [ n+5] ;
287 char ∗edgename=new char [ n+3] ;
288 for ( i =0; i<n ; i++)
289 edgename [ i ]=outedgename [ i ]= inedgename [ i ]=newname [ i ]=

prename [ i ] ;
290 inedgename [ n]=outedgename [ n]=newname [ n]=edgename [ n]=’_’

;
291 inedgename [ n+1]=outedgename [ n+1]=newname [ n+1]=edgename [

n+1]=’0’+name_i ;
292 inedgename [ n+2]=outedgename [ n+2]=’_’ ;
293 newname [ n+2]=edgename [ n+2]=’\0’ ;
294 inedgename [ n+4]=outedgename [ n+4]=’\0’ ;
295 inedgename [0 ]= outedgename [0 ]= edgename [0 ]= ’e’ ;
296
297 i f ( depth==0)
298 {
299 f p r i n t f ( fp , "\\node␣(%s)␣at␣(%f,%f)␣{}\n" ,newname , x , y

) ;
300 f p r i n t f ( fp , "␣␣␣edge␣[dotted]␣node␣(%s)␣{}␣(%s);\n" ,

edgename , prename ) ;
301 }
302 else
303 {
304 f p r i n t f ( fp , "\\node␣[vertex]␣(%s)␣at␣(%f,%f)␣{}\n" ,

newname , x , y ) ;
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305 f p r i n t f ( fp , "␣␣␣edge␣[%s,black!30]␣node␣(%s)␣[
edgevertex]␣{}␣(%s);\n" , edge ?"post" : "pre" ,
edgename , prename ) ;

306 }
307
308 i f ( depth<=0)
309 return ;
310
311 int k=inva l+outva l ;
312 f loat arc=0;
313 i f ( y==prey )
314 i f (x<prex ) arc=0;
315 else arc=M_PI;
316 else
317 i f ( x==prex )
318 i f (y<prey ) arc=M_PI/2 ;
319 else arc=3∗M_PI/2 ;
320 else
321 {
322 arc=atan ( ( y−prey ) /(x−prex ) ) ;
323 i f (x>prex )
324 arc+=M_PI;
325 }
326
327 for ( i =1; i<k ; i++)
328 DLnode( pDelta , inva l , outval , depth−1, i<inva l+edge ?1 : 0 ,
329 x+ko e f f ∗ cos (2∗ i ∗M_PI/k+arc ) , y+ko e f f ∗ s i n (2∗ i ∗M_PI/

k+arc ) ,
330 x , y , newname , i , shr inkexp , s h r i nk l i n , k o e f f / shrinkexp

−s h r i nk l i n , fp ) ;
331
332 i f ( edge )
333 {
334 for ( i =0; i<inva l ; i++)
335 {
336 inedgename [ n+3]=’0’+i +1;
337 for ( j=inva l +1; j<k+1; j++)
338 i f ( (∗ pDelta ) ( i , j−1) )
339 {
340 outedgename [ n+3]=’0’+j ;
341 i f ( depth==1)
342 f p r i n t f ( fp , "\\draw␣[blue,thin]␣(%s)␣to␣[

bend␣left=30]␣(%s);\n" , inedgename , j==
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k?edgename : outedgename ) ;
343 else
344 f p r i n t f ( fp , "\\draw␣[post,blue,very␣thick

]␣(%s)␣to␣[bend␣left=30]␣(%s);\n" ,
inedgename , j==k?edgename : outedgename )
;

345 }
346 }
347 }
348 else
349 {
350 for ( i =0; i<inva l ; i++)
351 {
352 inedgename [ n+3]=’0’+i ;
353 for ( j=inva l ; j<k ; j++)
354 i f ( (∗ pDelta ) ( i , j ) )
355 {
356 outedgename [ n+3]=’0’+j ;
357 i f ( depth==1)
358 f p r i n t f ( fp , "\\draw␣[blue,thin]␣(%s)␣to␣[

bend␣left=30]␣(%s);\n" , i ? inedgename :
edgename , outedgename ) ;

359 else
360 f p r i n t f ( fp , "\\draw␣[post,blue,very␣thick

]␣(%s)␣to␣[bend␣left=30]␣(%s);\n" , i ?
inedgename : edgename , outedgename ) ;

361 }
362 }
363 }
364
365 }
366
367 void t r e e (char Datei [ ] , int inva l , int outval , int depth ,

f loat shrinkexp , f loat s h r i nk l i n , f loat s ca l e , f loat
s t a r t a r c )

368 {
369 int i ;
370 int k=inva l+outva l ;
371 f loat x=0. ,y=0. ;
372 f loat ko e f f =1. ;
373
374 for ( i =0; i<depth ; i++)
375 {
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376 ko e f f+=sh r i n k l i n ;
377 ko e f f∗=shr inkexp ;
378 }
379
380 FILE ∗ fp ;
381 fp=fopen ( Datei , "w" ) ;
382
383 f p r i n t f ( fp , "\\begin{tikzpicture}\n" ) ;
384 f p r i n t f ( fp , "[scale=%0.2f,\n" , s c a l e ) ;
385 f p r i n t f ( fp , "inner␣sep=1.5,\n" ) ;
386 f p r i n t f ( fp , "vertex/.style={circle,draw=black!70,fill=

black!40,very␣thick},\n" ) ;
387 f p r i n t f ( fp , "post/.style={->,␣>=stealth’,very␣thick},\n"

) ;
388 f p r i n t f ( fp , "pre/.style={<-,␣>=stealth’,very␣thick}]\n" )

;
389
390 f p r i n t f ( fp , "\\node␣[vertex]␣(a)␣at␣(%f,%f)␣{};\n" , x , y ) ;
391
392 for ( i =0; i<k ; i++)
393 t reenode ( inva l , outval , depth−1, i<inva l ,
394 ko e f f ∗ cos (2∗ i ∗M_PI/k+s t a r t a r c ) , k o e f f ∗ s i n (2∗ i ∗M_PI/k+

s t a r t a r c ) ,
395 x , y , "a" , i , shr inkexp , s h r i nk l i n , k o e f f / shr inkexp−

s h r i nk l i n , fp ) ;
396
397 f p r i n t f ( fp , "\\end{tikzpicture}\n" ) ;
398
399 f c l o s e ( fp ) ;
400 }
401
402 void edge t r e e (char Datei [ ] , int inva l , int outval , int depth ,

f loat shrinkexp , f loat s h r i nk l i n , f loat s ca l e , f loat
s t a r t a r c )

403 {
404 int i ;
405 int k=inva l+outva l ;
406 f loat x=0. ,y=0. ;
407 f loat ko e f f =1. ;
408
409 for ( i =0; i<depth ; i++)
410 {
411 ko e f f+=sh r i n k l i n ;
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412 ko e f f∗=shr inkexp ;
413 }
414
415 FILE ∗ fp ;
416 fp=fopen ( Datei , "w" ) ;
417
418 f p r i n t f ( fp , "\\begin{tikzpicture}\n" ) ;
419 f p r i n t f ( fp , "[scale=%0.2f,\n" , s c a l e ) ;
420 f p r i n t f ( fp , "inner␣sep=1.5,\n" ) ;
421 f p r i n t f ( fp , "vertex/.style={circle,draw=black!70,fill=

black!40,very␣thick},\n" ) ;
422 f p r i n t f ( fp , "post/.style={->,␣>=stealth’,very␣thick},\n"

) ;
423 f p r i n t f ( fp , "pre/.style={<-,␣>=stealth’,very␣thick}]\n" )

;
424
425 f p r i n t f ( fp , "\\node␣[vertex]␣(a)␣at␣(%f,%f)␣{};\n" , x , y ) ;
426
427 t reenode ( inva l , outval , depth , true ,
428 ( k o e f f+s h r i n k l i n )∗ shr inkexp ∗ cos ( s t a r t a r c ) , ( k o e f f+

s h r i n k l i n )∗ shr inkexp ∗ s i n ( s t a r t a r c ) ,
429 x , y , "a" , 0 , shr inkexp , s h r i nk l i n , koe f f , fp ) ;
430 for ( i =1; i<k ; i++)
431 t reenode ( inva l , outval , depth−1, i<inva l ,
432 ko e f f ∗ cos (2∗ i ∗M_PI/k+s t a r t a r c ) , k o e f f ∗ s i n (2∗ i ∗M_PI

/k+s t a r t a r c ) ,
433 x , y , "a" , i , shr inkexp , s h r i nk l i n , k o e f f / shr inkexp−

s h r i nk l i n , fp ) ;
434
435 f p r i n t f ( fp , "\\end{tikzpicture}\n" ) ;
436
437 f c l o s e ( fp ) ;
438 }
439
440 void t reenode ( int inva l , int outval , int depth , bool edge ,

f loat x , f loat y , f loat prex , f loat prey , char prename [ ] ,
int name_i , f loat shrinkexp , f loat s h r i nk l i n , f loat koe f f ,
FILE ∗ fp )

441 {
442 int i , n ;
443 for (n=0;prename [ n ] != ’\0’ ; n++) ;
444 char ∗newname=new char [ n+3] ;
445 for ( i =0; i<n ; i++)
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446 newname [ i ]=prename [ i ] ;
447 newname [ n]=’_’ ;
448 newname [ n+1]=’0’+name_i ;
449 newname [ n+2]=’\0’ ;
450
451 i f ( depth==0)
452 {
453 f p r i n t f ( fp , "\\node␣(%s)␣at␣(%f,%f)␣{}\n" ,newname , x , y

) ;
454 f p r i n t f ( fp , "␣␣␣edge␣[dotted]␣(%s);\n" , prename ) ;
455 }
456 else
457 {
458 f p r i n t f ( fp , "\\node␣[vertex]␣(%s)␣at␣(%f,%f)␣{}\n" ,

newname , x , y ) ;
459 f p r i n t f ( fp , "␣␣␣edge␣[%s]␣(%s);\n" , edge ?"post" : "pre" ,

prename ) ;
460 }
461
462 i f ( depth<=0)
463 return ;
464
465 int k=inva l+outva l ;
466 f loat arc=0;
467 i f ( y==prey )
468 i f (x<prex ) arc=0;
469 else arc=M_PI;
470 else
471 i f ( x==prex )
472 i f (y<prey ) arc=M_PI/2 ;
473 else arc=3∗M_PI/2 ;
474 else
475 {
476 arc=atan ( ( y−prey ) /(x−prex ) ) ;
477 i f (x>prex )
478 arc+=M_PI;
479 }
480
481 for ( i =1; i<k ; i++)
482 t reenode ( inva l , outval , depth−1, i<inva l+edge ?1 : 0 ,
483 x+ko e f f ∗ cos (2∗ i ∗M_PI/k+arc ) , y+ko e f f ∗ s i n (2∗ i ∗M_PI/

k+arc ) ,
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484 x , y , newname , i , shr inkexp , s h r i nk l i n , k o e f f / shrinkexp
−s h r i nk l i n , fp ) ;

485
486 }
487
488 void LK(char Datei [ ] , int n , int l )
489 {
490 Matrix A;
491 A. i n i t (n∗ l , n∗ l ) ;
492 int i , j , k ;
493
494 for ( i =0; i<l −1; i++)
495 for ( j =0; j<n ; j++)
496 for ( k=0;k<n ; k++)
497 A(n∗ i+j , n∗( i +1)+k)=true ;
498
499 A. t i k z ( Datei , l , n , 2 , 0 , 1 , 1 , 0 , 1 , true ) ;
500 }
501
502 void BipRegDreiDreiZwei ( )
503 {
504 Matrix A(6 , 6 ) ;
505 A. s e t ( fa l se ) ;
506
507 A(0 ,3 )=A(0 , 4 )=A(1 , 4 )=A(1 , 5 )=A(2 , 5 )=A(2 , 3 )=true ;
508 A. t i k z ("BipRegDreiDreiZwei.txt" , 2 , 3 ) ;
509 }
510
511 void ZLine ( )
512 {
513 Matrix A(7 , 7 ) ;
514 A. s e t ( fa l se ) ;
515 int i ;
516 for ( i =0; i <6; i++)
517 A( i , i +1)=true ;
518
519 A. out ( ) ;
520 A. t i k z ("ZLine.txt" , 7 , 1 ) ;
521
522 }
523
524 void TensorLKZwei ( )
525 {
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526 Matrix A(8 , 8 ) ;
527 Matrix B(8 , 8 ) ;
528 Matrix C;
529 int i ;
530
531 A. s e t ( fa l se ) ;
532 B. s e t ( fa l se ) ;
533
534 for ( i =0; i <6; i+=2)
535 A( i , i +2)=A( i , i +3)=A( i +1, i +2)=A( i +1, i +3)=B( i , i +2)=B( i

, i +3)=B( i +1, i +2)=B( i +1, i +3)=true ;
536 C=A∗B;
537 A. t i k z ("LKZwei.txt" , 4 , 2 , 3 ) ;
538 C. t i k z ("TensorLKZwei.txt" , 8 , 8 , 1 , 1 , 2 , 1 , 1 , 2 ) ;
539 }

A.9. matrix.h

1 #include <s td i o . h>
2 #include <a s s e r t . h>
3
4 class Matrix {
5 friend const Matrix operator ∗( const Matrix& X, const

Matrix& Y) ;
6 public :
7
8 Matrix ( ) ;
9 Matrix ( int nR, int nC = 1) ;

10 Matrix ( const Matrix& mat) ;
11 ~Matrix ( ) ;
12 Matrix& operator=(const Matrix& mat) ;
13 int nRow( ) {return nRow_;}
14 int nCol ( ) {return nCol_ ; }
15 bool& operator ( ) ( int i , int j = 1) const ;
16 void i n i t ( int nR, int nC = 1) ;
17 void s e t (bool value ) ;
18 void out ( ) ;
19 int t i k z (char Datei [ ] , int n , int m, int xkoe f f = 1 , int

xzaeh l e r = 0 , int xnenner = 1 , int ykoe f f = 1 , int
yzaeh l e r =0, int ynenner = 1 ,bool pattern=fa l se ) ;

20
21 private :
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22
23 int nRow_, nCol_ ;
24 bool∗ data_ ;
25 } ;
26
27 Matrix : : Matrix ( ) {
28 nRow_ = 0 ; nCol_ = 0 ;
29 data_ = NULL;
30 }
31
32 Matrix : : Matrix ( int nR, int nC) {
33 i n i t (nR,nC) ;
34 }
35
36 Matrix : : Matrix ( const Matrix& mat) {
37 int i , n ;
38 nRow_=mat .nRow_;
39 nCol_=mat . nCol_ ;
40 n=nRow_∗nCol_ ;
41 data_=new bool [ n ] ;
42 for ( i =0; i<n ; i++)
43 data_ [ i ]=mat . data_ [ i ] ;
44 }
45
46 Matrix : : ~ Matrix ( ) {
47 i f ( data_!=NULL)
48 delete [ ] data_ ;
49 }
50
51 Matrix& Matrix : : operator=(const Matrix& mat) {
52 i f ( this == &mat ) return ∗ this ;
53 delete [ ] data_ ;
54 data_=NULL;
55 i f (mat . data_ == NULL) return ∗ this ;
56 nCol_=mat . nCol_ ;
57 nRow_=mat .nRow_;
58 int n=nCol_∗nRow_;
59 data_ = new bool [ n ] ;
60 a s s e r t ( data_ != NULL) ;
61 for (n−−;n>=0;n−−)
62 data_ [ n]=mat . data_ [ n ] ;
63 return ∗ this ;
64 }
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65
66 bool& Matrix : : operator ( ) ( int i , int j ) const {
67 a s s e r t ( i >= 0 && i < nRow_) ;
68 a s s e r t ( j >= 0 && j < nCol_) ;
69 return data_ [ nCol_∗ i + j ] ;
70 }
71
72 void Matrix : : i n i t ( int nR, int nC)
73 {
74 a s s e r t (nR > 0 && nC > 0) ;
75 nRow_ = nR; nCol_ = nC;
76 data_ = new bool [ nR∗nC ] ;
77 a s s e r t ( data_ != NULL) ;
78 s e t ( fa l se ) ;
79 }
80
81 void Matrix : : s e t (bool value ) {
82 int i , n = nRow_∗nCol_ ;
83 for ( i =0; i<n ; i++ )
84 data_ [ i ] = value ;
85 }
86
87 void Matrix : : out ( ) {
88 int i , j ;
89 for ( i =0; i<nRow_; i++){
90 for ( j =0; j<nCol_ ; j++)
91 p r i n t f ("%d␣" , data_ [ nCol_∗ i + j ] ) ;
92 p r i n t f ("\n" ) ;
93 }
94 }
95
96 int Matrix : : t i k z (char Datei [ ] , int n , int m, int xkoe f f , int

xzaeh le r , int xnenner , int ykoe f f , int yzaeh le r , int
ynenner , bool pattern ) {

97 i f (n∗m!=nCol_) {
98 p r i n t f ("Ungültige␣Dimension" ) ;
99 return −1;

100 }
101 int i , j ;
102 bool k=true ;
103
104 FILE ∗ fp ;
105 fp=fopen ( Datei , "w" ) ;
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106
107 f p r i n t f ( fp , "\\begin{tikzpicture}\n" ) ;
108 f p r i n t f ( fp , "[scale=0.4,\n" ) ;
109 f p r i n t f ( fp , "auto=left,\n" ) ;
110 f p r i n t f ( fp , "inner␣sep=1.5,\n" ) ;
111 f p r i n t f ( fp , "vertex/.style={circle,fill=blue!20},\n" ) ;
112 f p r i n t f ( fp , "post/.style={->,␣>=stealth ’}]\n" ) ;
113
114 for ( i =0; i<n ; i++)
115 for ( j =0; j<m; j++)
116 f p r i n t f ( fp , "\\node␣[vertex]␣(a%d)␣at␣(%d,%d)␣{};\

n" , i ∗m+j ,
117 −xkoe f f ∗(n/2)+xkoe f f ∗ i+xzaeh l e r ∗ i /xnenner ,
118 −ykoe f f ∗(m/2)+ykoe f f ∗ j+yzaeh l e r ∗ j / ynenner ) ;
119
120 i f ( pattern )
121 for ( j =0; j<m; j++)
122 {
123 f p r i n t f ( fp , "\\node␣(l%d)␣at␣(%d,%d)␣{}\n" , j ,
124 −xkoe f f ∗(n/2)−xkoe f f ,
125 −ykoe f f ∗(m/2)+ykoe f f ∗ j+yzaeh l e r ∗ j / ynenner ) ;
126 f p r i n t f ( fp , "␣␣␣edge␣[dotted]␣(a%d);\n" , j ) ;
127 f p r i n t f ( fp , "\\node␣(r%d)␣at␣(%d,%d)␣{}\n" , j ,
128 −xkoe f f ∗(n/2)+xkoe f f ∗n+xzaeh l e r ∗(n−1)/

xnenner ,
129 −ykoe f f ∗(m/2)+ykoe f f ∗ j+yzaeh l e r ∗ j / ynenner ) ;
130 f p r i n t f ( fp , "␣␣␣edge␣[dotted]␣(a%d);\n" , ( n−1)∗m+j )

;
131 }
132 f p r i n t f ( fp , "\\foreach␣\\from/\\to␣in␣" ) ;
133
134 for ( i =0; i<nCol_ ; i++)
135 for ( j =0; j<nCol_ ; j++){
136 i f ( (∗ this ) ( i , j ) ) {
137 i f ( k ) {
138 f p r i n t f ( fp , "{" ) ;
139 k=fa l se ;
140 } else {
141 f p r i n t f ( fp , "," ) ;
142 }
143 f p r i n t f ( fp , "a%d/a%d" , i , j ) ;
144 }
145 }
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146
147 f p r i n t f ( fp , "}\n" ) ;
148 f p r i n t f ( fp , "\\draw␣[post]␣(\\from)␣--␣(\\to);\n" ) ;
149 f p r i n t f ( fp , "\\end{tikzpicture}\n" ) ;
150
151 f c l o s e ( fp ) ;
152 return 0 ;
153 }
154
155 const Matrix operator ∗( const Matrix& X, const Matrix& Y){
156 Matrix Z ;
157 Z . i n i t (X. nCol_∗Y. nCol_ ,X. nCol_∗Y. nCol_) ;
158
159 i f (X. nCol_!=X.nRow_ | | Y. nCol_!=Y.nRow_ )
160 return Z ;
161
162 int i , j ;
163 bool t e s t ;
164 for ( i =0; i<Z . nCol_ ; i++)
165 for ( j =0; j<Z . nCol_ ; j++){
166 t e s t=(X( i /Y. nCol_ , j /Y. nCol_)&&Y( i%Y. nCol_ , j%Y.

nCol_) ) ;
167 Z( i , j )=t e s t ;
168 }
169 return Z ;
170 }

A.10. graph.h

1 #ifndef _graph_h
2 #define _graph_h
3
4 #define _USE_MATH_DEFINES
5 #include <math . h>
6
7 int doublecomp ( const void ∗a , const void ∗b) {return ( int ) (

bool ) (∗ (double∗) a<∗(double∗)b) ; }
8 bool s t r e q ( const char a [ ] , const char b [ ] ) { for ( int i =0;a [ i

] != ’\0’ ; i++) i f ( a [ i ] !=b [ i ] ) return fa l se ; return true ; }
9 bool check_simpleseq ( const char a [ ] , const char b [ ] ) ;

10 int seqx ( int n , int m, int depth , char vertexname [ ] ) ;
11 int seqy ( int depth , char vertexname [ ] ) ;
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12 bool check_seq ( const char a [ ] , const char b [ ] , int depth ) ;
13 int makeseq ( int i , int n , int m, int depth , char vertexname [ ] )

;
14
15 struct SVertex{
16 int id ;
17 char ∗name ;
18 double x , y , z ;
19 bool draw ;
20 int pa r t i t i o n ;
21 SVertex ∗ l ;
22 SVertex ∗ r ;
23
24 SVertex ( ) {name=NULL; x=y=z=0;draw=true ; }
25 ~SVertex ( ) { i f (name!=NULL) delete name ; }
26 } ;
27
28 struct SEdge{
29 int id ;
30 int preid , po s t id ;
31 int l a b e l ;
32 int pa r t i t i o n ;
33 char ∗name ;
34 char ∗ c o l o r ;
35 char ∗ s t y l e ;
36 bool d i r e c t ed ;
37
38 SEdge ∗ l ;
39 SEdge ∗ r ;
40 SEdge ( ) {name=NULL; c o l o r=NULL; s t y l e=NULL;}
41 ~SEdge ( ) { i f (name!=NULL) delete name ; i f ( c o l o r !=NULL)

delete c o l o r ; i f ( s t y l e !=NULL) delete s t y l e ; }
42 } ;
43
44 class CGraph {
45 public :
46 CGraph ( ) ;
47 ~CGraph ( ) ;
48 SVertex∗ getpVert ( int id ) ;
49 SEdge∗ getpEdge ( int id ) ;
50 void s e t zvek (double x , double y ) {z_x=x ; z_y=y ; }
51 void gets t ra ightmean ( int id , double &x , double &y , double

&z ) ;
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52 bool v i s i b l e v e r t s ( int id ) ;
53
54 int ver tex (double x=0. ,double y=0. ,double z=0. ,char

name [ ]="" ,bool draw=true , int part=0) ;
55 int edge ( int preid , int post id , char name [ ]="" ,char c o l o r

[ ]="" ,char s t y l e [ ]="" ,bool d i r=true , int l a b e l =0, int
part=0) ;

56 int edge (char prename [ ] , char postname [ ] , char name [ ]="" ,
char c o l o r [ ]="" ,char s t y l e [ ]="" ,bool d i r=true , int
l a b e l =0, int part=0) ;

57
58 void edges_simpleseq ( ) ;
59 void sequences ( int n , int m, int depth ) ;
60
61 void t r e e ( int inva l , int outval , int depth , double

shr inkexp=1,double s h r i n k l i n =0,double s t a r t a r c = 0 . ,
bool d i r=true ) ;

62 void edge t r e e ( int inva l , int outval , int depth , double
shr inkexp=1,double s h r i n k l i n =0,double s t a r t a r c = 0 . ,
bool d i r=true ) ;

63 void t reenode ( int inva l , int outval , int depth , bool
edgedir , double x , double y , double prex , double prey ,
char prename [ ] , int name_i , double shrinkexp , double
s h r i nk l i n , double koe f f , bool d i r=true ) ;

64
65 void b i t r e e ( int inva l1 , int inva l2 , int outval1 , int

outval2 , int depth , double shr inkexp=1,double
s h r i n k l i n =0,double s t a r t a r c = 0 . , bool d i r=true ) ;

66 void b i edge t r e e ( int inva l1 , int inva l2 , int outval1 , int
outval2 , int depth , double shr inkexp=1,double
s h r i n k l i n =0,double s t a r t a r c = 0 . , bool d i r=true ) ;

67 void b i t r e enode ( int inva l1 , int inva l2 , int outval1 , int
outval2 , int part , int depth , bool edgedir , double x ,
double y , double prex , double prey , char prename [ ] , int
name_i , double shrinkexp , double s h r i nk l i n , double
koe f f , bool d i r=true ) ;

68
69 void DMS( int part=1) ;
70 void DMSpath(SEdge ∗pStart , SEdge ∗pCurrent , int n , bool

d i r e c t i o n ) ;
71
72 void HH( int part=1) ;
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73 void HHpath(SEdge ∗pStart , SEdge ∗pCurrent , int n , bool
d i r e c t i on , int Zn) ;

74
75 void AC( int n) ;
76 void ACrek( int n , SVertex ∗pVa , SVertex ∗pVb , int depth ) ;
77
78 void s t r e ch (double x=1. ,double y=1. ,double z=1.) ;
79 void rotxy (double arc ) ;
80 void ro txz (double arc ) ;
81 void ro tyz (double arc ) ;
82
83 void edge_color_delta ( ) ;
84 void edge_color_delta_rek ( SEdge ∗pE , const char c o l o r [ ] ,

int i ) ;
85
86 void edge_color_delta_part ( int part ) ;
87 void edge_color_delta_part_rek ( SEdge ∗pE , const char

c o l o r [ ] , int i , int part ) ;
88
89 void t en so r (CGraph ∗a , CGraph ∗b) ;
90
91 void sty le_edge (char edg e s t y l e [ ] , int part=−1) ;
92 void color_edge (char edgeco l o r [ ] , int part=−1) ;
93 void labe l_edge ( int id , int l a b e l ) ;
94
95 void paint (char Datei [ ] , char Befeh l [ ] , double s c a l e =1. ,

bool name=fa l se ) ;
96
97 private :
98 SVertex ∗pVert ;
99 SVertex ∗ p la s tVer t ;

100 SEdge ∗pEdge ;
101 SEdge ∗plastEdge ;
102
103 double z_x , z_y ;
104 } ;
105
106 CGraph : : CGraph ( )
107 {
108 pVert=NULL;
109 p la s tVer t=NULL;
110 pEdge=NULL;
111 plastEdge=NULL;
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112 z_x=0. ;
113 z_y=0. ;
114 }
115
116 CGraph : : ~CGraph ( )
117 {
118 SVertex ∗pv=pVert ;
119 SVertex ∗pvnext=pVert ;
120 SEdge ∗pe=pEdge ;
121 SEdge ∗penext=pEdge ;
122
123 while ( pv!=NULL)
124 {
125 pvnext=pv−>r ;
126 delete pv ;
127 pv=pvnext ;
128 }
129 while ( pe !=NULL)
130 {
131 penext=pe−>r ;
132 delete pe ;
133 pe=penext ;
134 }
135 }
136
137 SVertex∗ CGraph : : getpVert ( int id )
138 {
139 SVertex ∗pV=pVert ;
140 while (pV!=NULL) {
141 i f (pV−>id==id )
142 return pV;
143 pV=pV−>r ;
144 }
145 }
146
147 SEdge∗ CGraph : : getpEdge ( int id )
148 {
149 SEdge ∗pE=pEdge ;
150 while (pE!=NULL) {
151 i f (pE−>id==id )
152 return pE ;
153 pE=pE−>r ;
154 }
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155 }
156
157 int CGraph : : ve r tex (double x , double y , double z , char name [ ] ,

bool draw , int part )
158 {
159 int i ;
160 for ( i =0;name [ i ] != ’\0’ ; i++) ;
161
162 i f ( pVert==NULL)
163 {
164 p la s tVer t=pVert=new SVertex ( ) ;
165 pVert−>x=x ;
166 pVert−>y=y ;
167 pVert−>z=z ;
168 pVert−>draw=draw ;
169 pVert−>pa r t i t i o n=part ;
170 pVert−>name=NULL;
171
172 pVert−>name=new char [ i +1] ;
173 for ( ; i >=0; i−−) pVert−>name [ i ]=name [ i ] ;
174
175 pVert−>l=pVert−>r=NULL;
176 pVert−>id=0;
177 }
178 else
179 {
180 plastVert−>r=new SVertex ( ) ;
181 plastVert−>r−>x=x ;
182 plastVert−>r−>y=y ;
183 plastVert−>r−>z=z ;
184 plastVert−>r−>draw=draw ;
185 plastVert−>r−>pa r t i t i o n=part ;
186 plastVert−>r−>name=NULL;
187
188 plastVert−>r−>name=new char [ i +1] ;
189 for ( ; i >=0; i−−) p lastVert−>r−>name [ i ]=name [ i ] ;
190
191 plastVert−>r−>l=pla s tVer t ;
192 plastVert−>r−>r=NULL;
193 plastVert−>r−>id=plastVert−>id+1;
194 p la s tVer t=plastVert−>r ;
195 }
196 return plastVert−>id ;
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197 }
198
199 void CGraph : : edges_simpleseq ( )
200 {
201 SVertex ∗pInVert ;
202 SVertex ∗pOutVert ;
203
204 pInVert=pVert ;
205 while ( pInVert !=NULL) {
206 pOutVert=pVert ;
207 while ( pOutVert !=NULL) {
208 i f ( check_simpleseq ( pInVert−>name , pOutVert−>name) )
209 edge ( pInVert−>id , pOutVert−>id ) ;
210 pOutVert=pOutVert−>r ;
211 }
212 pInVert=pInVert−>r ;
213 }
214 }
215
216 int CGraph : : edge ( int preid , int post id , char name [ ] , char

c o l o r [ ] , char s t y l e [ ] , bool dir , int l abe l , int part )
217 {
218 int i , j , k ;
219 for ( i =0;name [ i ] != ’\0’ ; i++) ;
220 for ( j =0; c o l o r [ j ] != ’\0’ ; j++) ;
221 for ( k=0; s t y l e [ k ] != ’\0’ ; k++) ;
222
223 i f ( pEdge==NULL)
224 {
225 plastEdge=pEdge=new SEdge ( ) ;
226
227 pEdge−>name=new char [ i +1] ;
228 for ( ; i >=0; i−−) pEdge−>name [ i ]=name [ i ] ;
229
230 pEdge−>co l o r=new char [ j +1] ;
231 for ( ; j >=0; j−−) pEdge−>co l o r [ j ]= co l o r [ j ] ;
232
233 pEdge−>s t y l e=new char [ k+1] ;
234 for ( ; k>=0;k−−) pEdge−>s t y l e [ k]= s t y l e [ k ] ;
235
236 pEdge−>d i r e c t ed=d i r ;
237 pEdge−>l ab e l=l a b e l ;
238 pEdge−>pa r t i t i o n=part ;
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239
240 pEdge−>pre id=pre id ;
241 pEdge−>pos t id=pos t id ;
242 pEdge−>l=pEdge−>r=NULL;
243 pEdge−>id=0;
244 }
245 else
246 {
247 plastEdge−>r=new SEdge ( ) ;
248
249 plastEdge−>r−>name=new char [ i +1] ;
250 for ( ; i >=0; i−−) plastEdge−>r−>name [ i ]=name [ i ] ;
251
252 plastEdge−>r−>co l o r=new char [ j +1] ;
253 for ( ; j >=0; j−−) plastEdge−>r−>co l o r [ j ]= co l o r [ j ] ;
254
255 plastEdge−>r−>s t y l e=new char [ k+1] ;
256 for ( ; k>=0;k−−) plastEdge−>r−>s t y l e [ k]= s t y l e [ k ] ;
257
258 plastEdge−>r−>d i r e c t ed=d i r ;
259 plastEdge−>r−>l ab e l=l a b e l ;
260 plastEdge−>r−>pa r t i t i o n=part ;
261
262 plastEdge−>r−>pre id=pre id ;
263 plastEdge−>r−>pos t id=pos t id ;
264 plastEdge−>r−>l=plastEdge ;
265 plastEdge−>r−>r=NULL;
266 plastEdge−>r−>id=plastEdge−>id+1;
267 plastEdge=plastEdge−>r ;
268 }
269 return plastEdge−>id ;
270 }
271
272 int CGraph : : edge (char prename [ ] , char postname [ ] , char name

[ ] , char c o l o r [ ] , char s t y l e [ ] , bool dir , int l abe l , int
part )

273 {
274 int pre=−1,post=−1;
275 SVertex ∗pV=this−>pVert ;
276
277 while (pV!=NULL) {
278 i f ( s t r e q (pV−>name , prename ) ) pre=pV−>id ;
279 i f ( s t r e q (pV−>name , postname ) ) post=pV−>id ;
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280 pV=pV−>r ;
281 }
282 i f ( pre==−1|| post==−1)
283 return 0 ;
284 return edge ( pre , post , name , co lo r , s t y l e , d i r , l abe l , part ) ;
285 }
286
287 void CGraph : : t r e e ( int inva l , int outval , int depth , double

shrinkexp , double s h r i nk l i n , double s t a r t a r c , bool d i r )
288 {
289 int i ;
290 int k=inva l+outva l ;
291 double x=0. ,y=0. ;
292 double ko e f f =1. ;
293
294 ver tex (x , y , 0 . , "a" ) ;
295
296 for ( i =0; i<depth ; i++)
297 {
298 ko e f f+=sh r i n k l i n ;
299 ko e f f∗=shr inkexp ;
300 }
301
302 for ( i =0; i<k ; i++)
303 t reenode ( inva l , outval , depth−1, i<inva l ,
304 ko e f f ∗ cos (2∗ i ∗M_PI/k+s t a r t a r c ) , k o e f f ∗ s i n (2∗ i ∗M_PI/k+

s t a r t a r c ) ,
305 x , y , "a" , i , shr inkexp , s h r i nk l i n , k o e f f / shr inkexp−

s h r i nk l i n , d i r ) ;
306 }
307
308 void CGraph : : edge t r e e ( int inva l , int outval , int depth ,

double shrinkexp , double s h r i nk l i n , double s t a r t a r c , bool
d i r )

309 {
310 int i ;
311 int k=inva l+outva l ;
312 double x=0. ,y=0. ;
313 double ko e f f =1. ;
314
315 for ( i =0; i<depth ; i++)
316 {
317 ko e f f+=sh r i n k l i n ;
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318 ko e f f∗=shr inkexp ;
319 }
320
321 ver tex (x , y , 0 . , "a" ) ;
322
323 t reenode ( inva l , outval , depth , true ,
324 ( k o e f f+s h r i n k l i n )∗ shr inkexp ∗ cos ( s t a r t a r c ) , ( k o e f f+

s h r i n k l i n )∗ shr inkexp ∗ s i n ( s t a r t a r c ) ,
325 x , y , "a" , 0 , shr inkexp , s h r i nk l i n , koe f f , d i r ) ;
326 for ( i =1; i<k ; i++)
327 t reenode ( inva l , outval , depth−1, i<inva l ,
328 ko e f f ∗ cos (2∗ i ∗M_PI/k+s t a r t a r c ) , k o e f f ∗ s i n (2∗ i ∗M_PI

/k+s t a r t a r c ) ,
329 x , y , "a" , i , shr inkexp , s h r i nk l i n , k o e f f / shr inkexp−

s h r i nk l i n , d i r ) ;
330 }
331
332 void CGraph : : t reenode ( int inva l , int outval , int depth , bool

edgedir , double x , double y , double prex , double prey , char
prename [ ] , int name_i , double shrinkexp , double s h r i nk l i n ,
double koe f f , bool d i r )

333 {
334 int i , n ;
335 for (n=0;prename [ n ] != ’\0’ ; n++) ;
336 char ∗newname=new char [ n+3] ;
337 for ( i =0; i<n ; i++)
338 newname [ i ]=prename [ i ] ;
339 newname [ n]=’_’ ;
340 newname [ n+1]=’0’+name_i ;
341 newname [ n+2]=’\0’ ;
342
343 i f ( depth==0)
344 {
345 ver tex (x , y , 0 . , newname , fa l se ) ;
346 edge ( prename , newname , "" ,"" ,"dotted" , fa l se ) ;
347 }
348 else
349 {
350 ver tex (x , y , 0 . , newname) ;
351 i f ( edged i r )
352 edge (newname , prename , "" ,"" ,"" , d i r ) ;
353 else
354 edge ( prename , newname , "" ,"" ,"" , d i r ) ;
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355 }
356
357 i f ( depth<=0)
358 return ;
359
360 int k=inva l+outva l ;
361 f loat arc=0;
362 i f ( y==prey )
363 i f (x<prex ) arc=0;
364 else arc=M_PI;
365 else
366 i f ( x==prex )
367 i f (y<prey ) arc=M_PI/2 ;
368 else arc=3∗M_PI/2 ;
369 else
370 {
371 arc=atan ( ( y−prey ) /(x−prex ) ) ;
372 i f (x>prex )
373 arc+=M_PI;
374 }
375
376 for ( i =1; i<k ; i++)
377 t reenode ( inva l , outval , depth−1, i<inva l+edged i r ?1 : 0 ,
378 x+ko e f f ∗ cos (2∗ i ∗M_PI/k+arc ) , y+ko e f f ∗ s i n (2∗ i ∗M_PI/

k+arc ) ,
379 x , y , newname , i , shr inkexp , s h r i nk l i n , k o e f f / shrinkexp

−s h r i nk l i n , d i r ) ;
380
381 }
382
383 void CGraph : : b i t r e e ( int inva l1 , int inva l2 , int outval1 , int

outval2 , int depth , double shrinkexp , double s h r i nk l i n ,
double s t a r t a r c , bool d i r )

384 {
385 int i ;
386 int k=inva l 1+outva l1 ;
387 double x=0. ,y=0. ;
388 double ko e f f =1. ;
389
390 ver tex (x , y , 0 . , "a" , true , 1 ) ;
391
392 for ( i =0; i<depth ; i++)
393 {
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394 ko e f f+=sh r i n k l i n ;
395 ko e f f∗=shr inkexp ;
396 }
397
398 for ( i =0; i<k ; i++)
399 b i t r e enode ( inva l1 , inva l2 , outval1 , outval2 , 2 , depth−1, i

<inva l1 ,
400 ko e f f ∗ cos (2∗ i ∗M_PI/k+s t a r t a r c ) , k o e f f ∗ s i n (2∗ i ∗M_PI/k+

s t a r t a r c ) ,
401 x , y , "a" , i , shr inkexp , s h r i nk l i n , k o e f f / shr inkexp−

s h r i nk l i n , d i r ) ;
402 }
403
404 void CGraph : : b i edg e t r e e ( int inva l1 , int inva l2 , int outval1 ,

int outval2 , int depth , double shrinkexp , double s h r i nk l i n
, double s t a r t a r c , bool d i r )

405 {
406 int i ;
407 int k=inva l 1+outva l1 ;
408 double x=0. ,y=0. ;
409 double ko e f f =1. ;
410
411 for ( i =0; i<depth ; i++)
412 {
413 ko e f f+=sh r i n k l i n ;
414 ko e f f∗=shr inkexp ;
415 }
416
417 ver tex (x , y , 0 . , "a" , true , 1 ) ;
418
419 b i t r e enode ( inva l1 , inva l2 , outval1 , outval2 , 2 , depth , true ,
420 ( k o e f f+s h r i n k l i n )∗ shr inkexp ∗ cos ( s t a r t a r c ) , ( k o e f f+

s h r i n k l i n )∗ shr inkexp ∗ s i n ( s t a r t a r c ) ,
421 x , y , "a" , 0 , shr inkexp , s h r i nk l i n , koe f f , d i r ) ;
422 for ( i =1; i<k ; i++)
423 b i t r e enode ( inva l1 , inva l2 , outval1 , outval2 , 2 , depth−1, i

<inva l1 ,
424 ko e f f ∗ cos (2∗ i ∗M_PI/k+s t a r t a r c ) , k o e f f ∗ s i n (2∗ i ∗M_PI

/k+s t a r t a r c ) ,
425 x , y , "a" , i , shr inkexp , s h r i nk l i n , k o e f f / shr inkexp−

s h r i nk l i n , d i r ) ;
426 }
427
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428 void CGraph : : b i t r e enode ( int inva l1 , int inva l2 , int outval1 ,
int outval2 , int part , int depth , bool edgedir , double x ,
double y , double prex , double prey , char prename [ ] , int
name_i , double shrinkexp , double s h r i nk l i n , double koe f f ,
bool d i r )

429 {
430 int i , n ;
431 for (n=0;prename [ n ] != ’\0’ ; n++) ;
432 char ∗newname=new char [ n+3] ;
433 for ( i =0; i<n ; i++)
434 newname [ i ]=prename [ i ] ;
435 newname [ n]=’_’ ;
436 newname [ n+1]=’0’+name_i ;
437 newname [ n+2]=’\0’ ;
438
439 i f ( depth==0)
440 {
441 ver tex (x , y , 0 . , newname , false , part ) ;
442 edge ( prename , newname , "" ,"" ,"dotted" , fa l se ) ;
443 }
444 else
445 {
446 ver tex (x , y , 0 . , newname , true , part ) ;
447 i f ( edged i r )
448 edge (newname , prename , "" ,"" ,"" , d i r ) ;
449 else
450 edge ( prename , newname , "" ,"" ,"" , d i r ) ;
451 }
452
453 i f ( depth<=0)
454 return ;
455
456 f loat arc=0;
457 i f ( y==prey )
458 i f (x<prex ) arc=0;
459 else arc=M_PI;
460 else
461 i f ( x==prex )
462 i f (y<prey ) arc=M_PI/2 ;
463 else arc=3∗M_PI/2 ;
464 else
465 {
466 arc=atan ( ( y−prey ) /(x−prex ) ) ;
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467 i f (x>prex )
468 arc+=M_PI;
469 }
470 int k ;
471 i f ( part==1)
472 {
473 k=inva l 1+outva l1 ;
474 for ( i =1; i<k ; i++)
475 b i t r e enode ( inva l1 , inva l2 , outval1 , outval2 , 2 , depth

−1, i<inva l 1+edged i r ?1 : 0 ,
476 x+ko e f f ∗ cos (2∗ i ∗M_PI/k+arc ) , y+ko e f f ∗ s i n (2∗ i ∗

M_PI/k+arc ) ,
477 x , y , newname , i , shr inkexp , s h r i nk l i n , k o e f f /

shrinkexp−s h r i nk l i n , d i r ) ;
478 }
479 else
480 {
481 k=inva l 2+outva l2 ;
482 for ( i =1; i<k ; i++)
483 b i t r e enode ( inva l1 , inva l2 , outval1 , outval2 , 1 , depth

−1, i<inva l 2+edged i r ?1 : 0 ,
484 x+ko e f f ∗ cos (2∗ i ∗M_PI/k+arc ) , y+ko e f f ∗ s i n (2∗ i ∗

M_PI/k+arc ) ,
485 x , y , newname , i , shr inkexp , s h r i nk l i n , k o e f f /

shrinkexp−s h r i nk l i n , d i r ) ;
486 }
487
488
489 }
490
491 void CGraph : :DMS( int part )
492 {
493 SVertex ∗pV=pVert ;
494 SEdge ∗pE=pEdge ;
495 double x , y , z ;
496 char name [ 1 0 ] ;
497
498 while (pE!=NULL) {
499 x=0. ; y=0. ; z =0. ;
500 gets t ra ightmean (pE−>id , x , y , z ) ;
501 s p r i n t f (name , "dms%d\0" ,pE−>id ) ;
502 ver tex (x , y ,−1. ,name , v i s i b l e v e r t s (pE−>id ) ,3 ) ;
503 pE=pE−>r ;
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504 }
505 while (pV!=NULL) {
506 i f (pV−>pa r t i t i o n==part ) {
507 pE=pEdge ;
508 while (pE!=NULL) {
509 i f (pE−>pre id==pV−>id )
510 DMSpath(pE , pE , 2 , true ) ;
511 i f (pE−>pos t id==pV−>id )
512 DMSpath(pE , pE , 2 , fa l se ) ;
513 pE=pE−>r ;
514 }
515 }
516 pV=pV−>r ;
517 }
518 }
519
520 void CGraph : : DMSpath(SEdge ∗pStart , SEdge ∗pCurrent , int n ,

bool d i r e c t i o n )
521 {
522 i f (n<=0){
523 char prename [ 1 0 ] , postname [ 1 0 ] ;
524 s p r i n t f ( prename , "dms%d\0" , pStart−>id ) ;
525 s p r i n t f ( postname , "dms%d\0" , pCurrent−>id ) ;
526 edge ( prename , postname , "" ,"blue" ,"bend␣left=30" , true

, 0 , 1 ) ;
527 return ;
528 }
529 else
530 {
531 SEdge ∗pE=pEdge ;
532 i f ( d i r e c t i o n )
533 {
534 while (pE!=NULL) {
535 i f (pE!=pCurrent )
536 {
537 i f (pE−>pre id==pCurrent−>pos t id )
538 DMSpath( pStart , pE , n−1,true ) ;
539 i f (pE−>pos t id==pCurrent−>pos t id )
540 DMSpath( pStart , pE , n−1, fa l se ) ;
541 }
542 pE=pE−>r ;
543 }
544 }
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545 else
546 {
547 while (pE!=NULL) {
548 i f (pE!=pCurrent )
549 {
550 i f (pE−>pre id==pCurrent−>pre id )
551 DMSpath( pStart , pE , n−1,true ) ;
552 i f (pE−>pos t id==pCurrent−>pre id )
553 DMSpath( pStart , pE , n−1, fa l se ) ;
554 }
555 pE=pE−>r ;
556 }
557 }
558 }
559 }
560
561 void CGraph : :HH( int part )
562 {
563 SVertex ∗pV=pVert ;
564 SEdge ∗pE=pEdge ;
565 double x , y , z ;
566 int Zn , i ;
567 char name [ 1 0 ] ;
568
569 while (pE!=NULL) {
570 x=0. ; y=0. ; z =0. ;
571 gets t ra ightmean (pE−>id , x , y , z ) ;
572 s p r i n t f (name , "hh%d\0" ,pE−>id ) ;
573 ver tex (x , y ,−1. ,name , v i s i b l e v e r t s (pE−>id ) ,3 ) ;
574 pE=pE−>r ;
575 }
576 Zn=0;
577 while (pV!=NULL) {
578 i f (pV−>pa r t i t i o n==part )
579 {
580 pE=pEdge ;
581 while (pE!=NULL) {
582 i f (pE−>pre id==pV−>id | | pE−>pos t id==pV−>id )
583 Zn++;
584 pE=pE−>r ;
585 }
586 pV=NULL;
587 break ;
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588 }
589 pV=pV−>r ;
590 }
591 pV=pVert ;
592 while (pV!=NULL) {
593 i f (pV−>pa r t i t i o n==part )
594 {
595 pE=pEdge ;
596 i =0;
597 while (pE!=NULL) {
598 i f (pE−>pre id==pV−>id | | pE−>pos t id==pV−>id )
599 {
600 labe l_edge (pE−>id , i ) ;
601 i++;
602 }
603 pE=pE−>r ;
604 }
605 }
606 pV=pV−>r ;
607 }
608 pV=pVert ;
609 while (pV!=NULL) {
610 i f (pV−>pa r t i t i o n==part ) {
611 pE=pEdge ;
612 while (pE!=NULL) {
613 i f (pE−>pre id==pV−>id )
614 HHpath(pE , pE , 2 , true , Zn) ;
615 i f (pE−>pos t id==pV−>id )
616 HHpath(pE , pE , 2 , false , Zn) ;
617 pE=pE−>r ;
618 }
619 }
620 pV=pV−>r ;
621 }
622 }
623
624 void CGraph : : HHpath(SEdge ∗pStart , SEdge ∗pCurrent , int n ,

bool d i r e c t i on , int Zn)
625 {
626 SEdge ∗pE=pEdge ;
627 i f (n<=0){
628 char prename [ 1 0 ] , postname [ 1 0 ] ;
629 s p r i n t f ( prename , "hh%d\0" , pStart−>id ) ;
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630 s p r i n t f ( postname , "hh%d\0" , pCurrent−>id ) ;
631 edge ( prename , postname , "" ,"blue" ,"bend␣left=30" , true

, 0 , 1 ) ;
632 return ;
633 }
634 i f (n==1)
635 {
636 i f ( d i r e c t i o n )
637 {
638 while (pE!=NULL) {
639 i f (pE!=pCurrent )
640 {
641 i f (pE−>pre id==pCurrent−>pos t id && ( pCurrent

−>l ab e l +1)%Zn==pE−>l ab e l )
642 HHpath( pStart , pE , n−1,true , Zn) ;
643 i f (pE−>pos t id==pCurrent−>pos t id && (

pCurrent−>l ab e l +1)%Zn==pE−>l ab e l )
644 HHpath( pStart , pE , n−1, false , Zn) ;
645 }
646 pE=pE−>r ;
647 }
648 }
649 else
650 {
651 while (pE!=NULL) {
652 i f (pE!=pCurrent )
653 {
654 i f (pE−>pre id==pCurrent−>pre id && ( pCurrent

−>l ab e l +1)%Zn==pE−>l ab e l )
655 HHpath( pStart , pE , n−1,true , Zn) ;
656 i f (pE−>pos t id==pCurrent−>pre id && ( pCurrent

−>l ab e l +1)%Zn==pE−>l ab e l )
657 HHpath( pStart , pE , n−1, false , Zn) ;
658 }
659 pE=pE−>r ;
660 }
661 }
662 }
663 i f (n>1)
664 {
665 i f ( d i r e c t i o n )
666 {
667 while (pE!=NULL) {
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668 i f (pE!=pCurrent )
669 {
670 i f (pE−>pre id==pCurrent−>pos t id )
671 HHpath( pStart , pE , n−1,true , Zn) ;
672 i f (pE−>pos t id==pCurrent−>pos t id )
673 HHpath( pStart , pE , n−1, false , Zn) ;
674 }
675 pE=pE−>r ;
676 }
677 }
678 else
679 {
680 while (pE!=NULL) {
681 i f (pE!=pCurrent )
682 {
683 i f (pE−>pre id==pCurrent−>pre id )
684 HHpath( pStart , pE , n−1,true , Zn) ;
685 i f (pE−>pos t id==pCurrent−>pre id )
686 HHpath( pStart , pE , n−1, false , Zn) ;
687 }
688 pE=pE−>r ;
689 }
690 }
691 }
692 }
693
694 void CGraph : :AC( int n)
695 {
696 i f ( ! ( n&1) | | n<3)return ;
697 int i ;
698 char s t y l e l e f t [ 2 7 ] ;
699 s p r i n t f ( s t y l e l e f t , "very␣thick,␣bend␣left=%d" ,90/n−2) ;
700 char s t y l e r i g h t [ 2 8 ] ;
701 s p r i n t f ( s t y l e r i g h t , "very␣thick,␣bend␣right=%d" ,90/n−2) ;
702 SVertex ∗pVa ;
703 SVertex ∗pVb ;
704 SVertex ∗pVA=getpVert ( ver tex (1 , 0 ) ) ; ;
705 SVertex ∗pVB=getpVert ( ver tex (−1 ,0) ) ; ;
706 SVertex ∗pVa_=pVA;
707 SVertex ∗pVb_=pVB;
708
709 ACrek(n ,pVB,pVA, 0 ) ;
710 for ( i =1; i<n ; i++)
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711 {
712 pVa=getpVert ( ver tex ( cos ( i ∗M_PI/n) , s i n ( i ∗M_PI/n) ) ) ;
713 pVb=getpVert ( ver tex(−cos ( i ∗M_PI/n) ,− s i n ( i ∗M_PI/n) ) ) ;
714 i f ( i &1)
715 {
716 edge (pVa_−>id , pVa−>id , "" ,"red" , s t y l e r i g h t ) ;
717 edge (pVb−>id ,pVb_−>id , "" ,"green" , s t y l e l e f t ) ;
718 ACrek(n , pVa , pVb , i==n/2?2 :0 ) ;
719 }
720 else
721 {
722 edge (pVa−>id ,pVa_−>id , "" ,"green" , s t y l e l e f t ) ;
723 edge (pVb_−>id , pVb−>id , "" ,"red" , s t y l e r i g h t ) ;
724 ACrek(n , pVb , pVa , i==n/2?2 :0 ) ;
725 }
726 pVa_=pVa ;
727 pVb_=pVb ;
728 }
729 edge (pVA−>id , pVb−>id , "" ,"green" , s t y l e l e f t ) ;
730 edge (pVa−>id ,pVB−>id , "" ,"red" , s t y l e r i g h t ) ;
731 }
732
733 void CGraph : : ACrek ( int n , SVertex ∗pVA, SVertex ∗pVB, int

depth )
734 {
735 double Hx=(pVB−>x+pVA−>x) / 2 . ;
736 double Hy=(pVB−>y+pVA−>y) / 2 . ;
737 double HBx=pVB−>x−Hx;
738 double HBy=pVB−>y−Hy;
739 double HB=sqr t (HBx∗HBx+HBy∗HBy) ;
740 const double r =0.5+1.5∗HB;
741 double Nx=r∗(−HBy) /HB;
742 double Ny=r∗HBx/HB;
743 double X1x=Hx+Nx ;
744 double X1y=Hy+Ny ;
745 double X2x=Hx−Nx;
746 double X2y=Hy−Ny;
747 double alpha=atan (HB/ r ) ;
748 double phi=M_PI/2.− alpha ;
749 double s=sq r t ( r∗ r+HB∗HB) ;
750
751 int i ;
752 char s t y l e l e f t [ 2 2 ] ;
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753 s p r i n t f ( s t y l e l e f t , "thick,␣bend␣left=%d" , ( int ) ( ( f loat )
(180∗ alpha /(n∗M_PI) ) ) ) ;

754 char s t y l e r i g h t [ 2 3 ] ;
755 s p r i n t f ( s t y l e r i g h t , "thick,␣bend␣right=%d" , ( int ) ( ( f loat )

(180∗ alpha /(n∗M_PI) ) ) ) ;
756 SVertex ∗pVa ;
757 SVertex ∗pVb ;
758 SVertex ∗pVa_=pVA;
759 SVertex ∗pVb_=pVB;
760 for ( i =1; i<n ; i++)
761 {
762 i f ( depth>0)
763 {
764 pVa=getpVert ( ver tex (X1x−cos ( phi+2∗ i ∗alpha /n)∗HBx∗

s /HB+s in ( phi+2∗ i ∗alpha /n)∗(−Nx)∗ s /r ,
765 X1y−cos ( phi+2∗ i ∗alpha /n)∗HBy∗ s /HB+

s in ( phi+2∗ i ∗alpha /n)∗(−Ny)∗ s / r )
) ;

766 pVb=getpVert ( ver tex (X2x+cos ( phi+2∗ i ∗alpha /n)∗HBx∗
s /HB−s i n ( phi+2∗ i ∗alpha /n)∗(−Nx)∗ s /r ,

767 X2y+cos ( phi+2∗ i ∗alpha /n)∗HBy∗ s /HB−
s i n ( phi+2∗ i ∗alpha /n)∗(−Ny)∗ s / r )
) ;

768 }
769 else i f ( i==1 | | i==n−1)
770 {
771 pVa=getpVert ( ver tex (X1x−cos ( phi+2∗ i ∗alpha /n)∗HBx∗

s /HB+s in ( phi+2∗ i ∗alpha /n)∗(−Nx)∗ s /r ,
772 X1y−cos ( phi+2∗ i ∗alpha /n)∗HBy∗ s /HB+

s in ( phi+2∗ i ∗alpha /n)∗(−Ny)∗ s /r ,
773 1 ,"" , fa l se ) ) ;
774 pVb=getpVert ( ver tex (X2x+cos ( phi+2∗ i ∗alpha /n)∗HBx∗

s /HB−s i n ( phi+2∗ i ∗alpha /n)∗(−Nx)∗ s /r ,
775 X2y+cos ( phi+2∗ i ∗alpha /n)∗HBy∗ s /HB−

s i n ( phi+2∗ i ∗alpha /n)∗(−Ny)∗ s /r ,
776 1 ,"" , fa l se ) ) ;
777 }
778 i f ( i &1)
779 {
780 i f ( depth>0)
781 {
782 edge (pVa_−>id , pVa−>id , "" ,"red" , s t y l e r i g h t ) ;
783 edge (pVb−>id ,pVb_−>id , "" ,"green" , s t y l e l e f t ) ;
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784 ACrek(n , pVa , pVb , i==n/2?depth−1:0) ;
785 }
786 else i f ( i==1) /∗ (1 ) ∗/
787 {
788 edge (pVa_−>id , pVa−>id , "" ,"red!30" , s t y l e r i g h t ) ;
789 edge (pVb−>id ,pVb_−>id , "" ,"green!30" , s t y l e l e f t )

;
790 }
791 }
792 else
793 {
794 i f ( depth>0)
795 {
796 edge (pVa−>id ,pVa_−>id , "" ,"green" , s t y l e l e f t ) ;
797 edge (pVb_−>id , pVb−>id , "" ,"red" , s t y l e r i g h t ) ;
798 ACrek(n , pVb , pVa , i==n/2?depth−1:0) ;
799 }
800 /∗ e l s e //This code toge the r with removing the

cond i t i on i==1 at (1 ) would draw the f u l l a l t e r n a t i n g
cy c l e ra the r than j u s t the i n i t i a l edges .

801 {
802 edge (pVa−>id ,pVa_−>id ,"" , " green ! 30" , s t y l e l e f t )

;
803 edge (pVb_−>id , pVb−>id ,"" , " red ! 30" , s t y l e r i g h t ) ;
804 }
805 ∗/ }
806 pVa_=pVa ;
807 pVb_=pVb ;
808 }
809 i f ( depth>0)
810 {
811 edge (pVA−>id , pVb−>id , "" ,"green" , s t y l e l e f t ) ;
812 edge (pVa−>id ,pVB−>id , "" ,"red" , s t y l e r i g h t ) ;
813 }
814 else
815 {
816 edge (pVA−>id , pVb−>id , "" ,"green!30" , s t y l e l e f t ) ;
817 edge (pVa−>id ,pVB−>id , "" ,"red!30" , s t y l e r i g h t ) ;
818 }
819 }
820
821 void CGraph : : sequences ( int n , int m, int depth )
822 {
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823 i f ( pVert !=NULL)
824 return ;
825 i f (n<1| |m<1| |n>9| |m>9)
826 return ;
827 char ∗vertexname ;
828 vertexname=new char [ 2∗ depth +3] ;
829
830 int i , r=1;
831 for ( i =0; i<depth ; i++)
832 r∗=(n∗m) ;
833
834 for ( i =0; i<r ; i++)
835 i f (makeseq ( i , n ,m, depth , vertexname )<=depth )
836 ver tex ( seqx (n ,m, depth , vertexname ) , seqy ( depth ,

vertexname ) ,0 , vertexname ) ;
837
838 SVertex ∗pInVert ;
839 SVertex ∗pOutVert ;
840
841 pInVert=pVert ;
842 while ( pInVert !=NULL) {
843 pOutVert=pVert ;
844 while ( pOutVert !=NULL) {
845 i f ( check_seq ( pInVert−>name , pOutVert−>name , depth ) )
846 edge ( pInVert−>id , pOutVert−>id , "" ,"" ,
847 ( pInVert−>y−pOutVert−>y) ∗( pInVert−>y−pOutVert

−>y)>1.1&&
848 ( pInVert−>x==0.&&pOutVert−>x==0. | | pInVert−>x

!=pOutVert−>x) ?
849 ( ( pInVert−>x−pOutVert−>x) ∗( pInVert−>x−pOutVert

−>x) ∗( pInVert−>y−pOutVert−>y) ∗( pInVert−>y−
pOutVert−>y)>=0?

850 "bend␣left=15" : "bend␣right=15" ) : "" ) ;
851 pOutVert=pOutVert−>r ;
852 }
853 pInVert=pInVert−>r ;
854 }
855 }
856
857 void CGraph : : t en so r (CGraph ∗a , CGraph ∗b)
858 {
859 i f ( a==this | | b==this )
860 return ;
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861 i f ( a−>pVert==NULL | | b−>pVert==NULL)
862 return ;
863
864 int navert=a−>plastVert−>id+1;
865 int nbvert=b−>plastVert−>id+1;
866
867 SVertex ∗pAVert=NULL;
868 SVertex ∗pBVert=NULL;
869 SEdge ∗pAEdge=NULL;
870 SEdge ∗pBEdge=NULL;
871
872 pAVert=a−>pVert ;
873 while ( pAVert!=NULL) {
874 pBVert=b−>pVert ;
875 while ( pBVert!=NULL) {
876 ver tex (pAVert−>x+pBVert−>x , pAVert−>y+pBVert−>y ,

pAVert−>z+pBVert−>z ) ;
877 pBVert=pBVert−>r ;
878 }
879 pAVert=pAVert−>r ;
880 }
881
882 pAEdge=a−>pEdge ;
883 while (pAEdge!=NULL) {
884 pBEdge=b−>pEdge ;
885 while (pBEdge!=NULL) {
886 edge (pBEdge−>pre id+pAEdge−>pre id ∗nbvert , pBEdge−>

pos t id+pAEdge−>pos t id ∗nbvert ) ;
887 pBEdge=pBEdge−>r ;
888 }
889 pAEdge=pAEdge−>r ;
890 }
891 }
892
893 void CGraph : : s t r e ch (double x , double y , double z )
894 {
895 SVertex ∗pv=pVert ;
896 while ( pv!=NULL)
897 {
898 pv−>x∗=x ;
899 pv−>y∗=y ;
900 pv−>z∗=z ;
901 pv=pv−>r ;
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902 }
903 }
904
905 void CGraph : : rotxy (double arc )
906 {
907 SVertex ∗pv=pVert ;
908 double x , y ;
909 while ( pv!=NULL)
910 {
911 x=pv−>x ;
912 y=pv−>y ;
913 pv−>x=x∗ cos ( arc )−y∗ s i n ( arc ) ;
914 pv−>y=x∗ s i n ( arc )+y∗ cos ( arc ) ;
915 pv=pv−>r ;
916 }
917 }
918
919 void CGraph : : ro txz (double arc )
920 {
921 SVertex ∗pv=pVert ;
922 double x , z ;
923 while ( pv!=NULL)
924 {
925 x=pv−>x ;
926 z=pv−>z ;
927 pv−>x=x∗ cos ( arc )−z∗ s i n ( arc ) ;
928 pv−>z=x∗ s i n ( arc )+z∗ cos ( arc ) ;
929 pv=pv−>r ;
930 }
931 }
932
933 void CGraph : : ro tyz (double arc )
934 {
935 SVertex ∗pv=pVert ;
936 double y , z ;
937 while ( pv!=NULL)
938 {
939 y=pv−>y ;
940 z=pv−>z ;
941 pv−>y=y∗ cos ( arc )−z∗ s i n ( arc ) ;
942 pv−>z=y∗ s i n ( arc )+z∗ cos ( arc ) ;
943 pv=pv−>r ;
944 }
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945 }
946
947 void CGraph : : sty le_edge (char edg e s t y l e [ ] , int part )
948 {
949 int i =0,n ;
950 while ( edg e s t y l e [ i ] != ’\0’ ) i++;
951 n=i +1;
952 SEdge ∗pE=pEdge ;
953 while (pE!=NULL) {
954 i f (pE−>pa r t i t i o n==part | | part==−1)
955 {
956 i f (pE−>s t y l e !=NULL)
957 delete pE−>s t y l e ;
958 pE−>s t y l e=new char [ n ] ;
959 for ( i =0; i<n ; i++) pE−>s t y l e [ i ]= edge s t y l e [ i ] ;
960 }
961 pE=pE−>r ;
962 }
963 }
964
965 void CGraph : : color_edge (char edgeco l o r [ ] , int part )
966 {
967 int i =0,n ;
968 while ( edgeco l o r [ i ] != ’\0’ ) i++;
969 n=i +1;
970 SEdge ∗pE=pEdge ;
971 while (pE!=NULL) {
972 i f (pE−>pa r t i t i o n==part | | part==−1)
973 {
974 i f (pE−>co l o r !=NULL)
975 delete pE−>co l o r ;
976 pE−>co l o r=new char [ n ] ;
977 for ( i =0; i<n ; i++) pE−>co l o r [ i ]= edgeco l o r [ i ] ;
978 }
979 pE=pE−>r ;
980 }
981 }
982
983 void CGraph : : labe l_edge ( int id , int l a b e l )
984 {
985 SEdge ∗pE=pEdge ;
986 while (pE!=NULL) {
987 i f (pE−>id==id )
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988 {
989 pE−>l ab e l=l a b e l ;
990 return ;
991 }
992 pE=pE−>r ;
993 }
994 }
995
996 void CGraph : : edge_color_delta ( )
997 {
998 const char c o l o r s [ 1 0 ] [ 1 5 ]={ "red" ,"green" ,"brown" ,"blue"

,"black" ,"orange" ,"MyLightMagenta" ,"cyan" ,"yellow" ,"
pink" } ;

999 int i =0;
1000 SEdge ∗pE=pEdge ;
1001 while (pE!=NULL) {
1002 i f (pE−>co l o r !=NULL)
1003 delete pE−>co l o r ;
1004 pE−>co l o r=NULL;
1005 pE=pE−>r ;
1006 }
1007 pE=pEdge ;
1008 while (pE!=NULL) {
1009 i f (pE−>co l o r==NULL)
1010 {
1011 edge_color_delta_rek (pE , c o l o r s [ i %10] , i /10) ;
1012 i++;
1013 }
1014 pE=pE−>r ;
1015 }
1016 }
1017
1018 void CGraph : : edge_color_delta_rek (SEdge ∗pE , const char

c o l o r [ ] , int i )
1019 {
1020 SEdge ∗pE_=pEdge ;
1021
1022 i f (pE−>co l o r !=NULL) return ;
1023
1024 int n=0;
1025 while ( c o l o r [ n ] != ’\0’ ) n++;
1026 n++;
1027 pE−>co l o r=new char [ n ] ;
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1028 for (n−−;n>=0;n−−)pE−>co l o r [ n]= co l o r [ n ] ;
1029
1030 while (pE_!=NULL) {
1031 i f ( (pE−>pos t id==pE_−>pos t id | | pE−>pre id==pE_−>

pre id ) && pE_−>co l o r==NULL )
1032 edge_color_delta_rek (pE_, co lo r , i ) ;
1033 pE_=pE_−>r ;
1034 }
1035 }
1036
1037 void CGraph : : edge_color_delta_part ( int part )
1038 {
1039 const char c o l o r s [ 1 0 ] [ 1 5 ]={ "red" ,"green" ,"brown" ,"blue"

,"black" ,"orange" ,"MyLightMagenta" ,"cyan" ,"yellow" ,"
pink" } ;

1040 int i =0;
1041 SEdge ∗pE=pEdge ;
1042 while (pE!=NULL) {
1043 i f (pE−>pa r t i t i o n==part )
1044 {
1045 i f (pE−>co l o r !=NULL)
1046 delete pE−>co l o r ;
1047 pE−>co l o r=NULL;
1048 }
1049 pE=pE−>r ;
1050 }
1051 pE=pEdge ;
1052 while (pE!=NULL) {
1053 i f (pE−>co l o r==NULL && pE−>pa r t i t i o n==part )
1054 {
1055 edge_color_delta_part_rek (pE , c o l o r s [ i %10] , i /10 ,

part ) ;
1056 i++;
1057 }
1058 pE=pE−>r ;
1059 }
1060 }
1061
1062 void CGraph : : edge_color_delta_part_rek ( SEdge ∗pE , const

char c o l o r [ ] , int i , int part )
1063 {
1064 SEdge ∗pE_=pEdge ;
1065
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1066 i f (pE−>co l o r !=NULL | | pE−>pa r t i t i o n !=part ) return ;
1067
1068 int n=0;
1069 while ( c o l o r [ n ] != ’\0’ ) n++;
1070 n++;
1071 pE−>co l o r=new char [ n ] ;
1072 for (n−−;n>=0;n−−)pE−>co l o r [ n]= co l o r [ n ] ;
1073
1074 while (pE_!=NULL) {
1075 i f ( (pE−>pos t id==pE_−>pos t id | | pE−>pre id==pE_−>

pre id ) && pE_−>co l o r==NULL && pE_−>pa r t i t i o n==
part )

1076 edge_color_delta_part_rek (pE_, co lo r , i , part ) ;
1077 pE_=pE_−>r ;
1078 }
1079 }
1080
1081 void CGraph : : get s t ra ightmean ( int id , double &x , double &y ,

double &z )
1082 {
1083 SEdge ∗pE=pEdge ;
1084 SVertex ∗pV=pVert ;
1085 x=y=z=0;
1086 while (pE!=NULL) {
1087 i f (pE−>id==id ) {
1088 while (pV!=NULL) {
1089 i f (pE−>pre id==pV−>id ) {
1090 x+=pV−>x ;
1091 y+=pV−>y ;
1092 z+=pV−>z ;
1093 }
1094 i f (pE−>pos t id==pV−>id ) {
1095 x+=pV−>x ;
1096 y+=pV−>y ;
1097 z+=pV−>z ;
1098 }
1099 pV=pV−>r ;
1100 }
1101 x/=2;
1102 y/=2;
1103 z /=2;
1104 return ;
1105 }
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1106 pE=pE−>r ;
1107 }
1108 }
1109
1110 bool CGraph : : v i s i b l e v e r t s ( int id )
1111 {
1112 SEdge ∗pE=pEdge ;
1113 SVertex ∗pV=pVert ;
1114 while (pE!=NULL) {
1115 i f (pE−>id==id ) {
1116 while (pV!=NULL) {
1117 i f ( (pE−>pre id==pV−>id | | pE−>pos t id==pV−>id )&&

!pV−>draw ) return fa l se ;
1118 pV=pV−>r ;
1119 }
1120 return true ;
1121 }
1122 pE=pE−>r ;
1123 }
1124 return fa l se ;
1125 }
1126
1127 void CGraph : : pa int (char Datei [ ] , char Befeh l [ ] , double s ca l e

, bool name)
1128 {
1129 FILE ∗ fp ;
1130 fp=fopen ( Datei , "w" ) ;
1131
1132 f p r i n t f ( fp , "\\def\\%s{\n" , Be feh l ) ;
1133 f p r i n t f ( fp , "\\begin{tikzpicture}\n" ) ;
1134 f p r i n t f ( fp , "[scale=%0.2f,\n" , s c a l e ) ;
1135 f p r i n t f ( fp , "inner␣sep=1.5,\n" ) ;
1136 f p r i n t f ( fp , "vertex/.style={circle,draw=black!50,fill=

black!20,␣very␣thick},\n" ) ;
1137 f p r i n t f ( fp , "parta/.style={circle,draw=black!50,fill=

black!0,␣very␣thick},\n" ) ;
1138 f p r i n t f ( fp , "partb/.style={circle,draw=black!50,fill=

black!100,␣very␣thick},\n" ) ;
1139 f p r i n t f ( fp , "edgevertex/.style={circle,draw=blue!80,fill

=blue!40,␣very␣thick},\n" ) ;
1140 f p r i n t f ( fp , "normal/.style=,\n" ) ;
1141 f p r i n t f ( fp , "post/.style={->,␣>=stealth’},\n" ) ;
1142 f p r i n t f ( fp , "pre/.style={<-,␣>=stealth ’}]\n" ) ;
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1143
1144 SVertex ∗pv=pVert ;
1145 SEdge ∗pe=pEdge ;
1146
1147 int nedge=plastEdge==NULL?0 : plastEdge−>id+1;
1148 int nvert=p la s tVer t==NULL?0 : p lastVert−>id+1;
1149 bool ∗vertdrawn ;
1150 bool ∗edgedrawn ;
1151 double ∗z ;
1152 i f ( nvert >0)
1153 {
1154 vertdrawn=new bool [ nvert ] ;
1155 z=new double [ nvert ] ;
1156 }
1157 i f ( nedge>0)
1158 edgedrawn=new bool [ nedge ] ;
1159
1160 int zcount=0, i ;
1161 bool z e x i s t s ;
1162
1163 for ( i =0; i<nvert ; i++)
1164 vertdrawn [ i ]= fa l se ;
1165 for ( i =0; i<nedge ; i++)
1166 edgedrawn [ i ]= fa l se ;
1167
1168 while ( pv!=NULL)
1169 {
1170 z e x i s t s=fa l se ;
1171 for ( i =0; i<zcount ; i++)
1172 i f (pv−>z==z [ i ] )
1173 {
1174 z e x i s t s=true ;
1175 break ;
1176 }
1177 i f ( ! z e x i s t s )
1178 {
1179 z [ zcount ]=pv−>z ;
1180 zcount++;
1181 }
1182 pv=pv−>r ;
1183 }
1184 i f ( nvert >0)
1185 qso r t ( z , zcount , s izeof (double ) , doublecomp ) ;
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1186
1187 for ( i =0; i<zcount ; i++)
1188 {
1189 pv=pVert ;
1190 while ( pv!=NULL)
1191 {
1192 i f (pv−>z==z [ i ] )
1193 {
1194 f p r i n t f ( fp , "\\node" ) ;
1195 i f (name) {
1196 f p r i n t f ( fp , "(a%d)␣at␣(%f,%f)␣{\\tiny␣%s};\n

" , pv−>id , pv−>x+pv−>z∗z_x , pv−>y+pv−>z∗z_y
, pv−>name) ;

1197 }
1198 else
1199 {
1200 i f (pv−>draw )
1201 {
1202 switch (pv−>pa r t i t i o n )
1203 {
1204 case 1 : f p r i n t f ( fp , "[parta]" ) ; break ;
1205 case 2 : f p r i n t f ( fp , "[partb]" ) ; break ;
1206 case 3 : f p r i n t f ( fp , "[edgevertex]" ) ; break

;
1207 default : f p r i n t f ( fp , "[vertex]" ) ; break ;
1208 }
1209
1210 }
1211 f p r i n t f ( fp , "(a%d)␣at␣(%f,%f)␣{};\n" , pv−>id ,

pv−>x+pv−>z∗z_x , pv−>y+pv−>z∗z_y) ;
1212 }
1213
1214 vertdrawn [ pv−>id ]=true ;
1215 }
1216 pv=pv−>r ;
1217 }
1218 pe=pEdge ;
1219 while ( pe !=NULL)
1220 {
1221 i f ( vertdrawn [ pe−>pre id ]&&vertdrawn [ pe−>pos t id ]&&!

edgedrawn [ pe−>id ] )
1222 {
1223 f p r i n t f ( fp , "\\draw␣[" ) ;

130



A Sources A.10 graph.h

1224 i f ( pe−>d i r e c t ed )
1225 f p r i n t f ( fp , "post" ) ;
1226 else
1227 f p r i n t f ( fp , "normal" ) ;
1228 i f ( pe−>co l o r !=NULL && pe−>co l o r [ 0 ] != ’\0’ )

f p r i n t f ( fp , ",%s" , pe−>co l o r ) ;
1229 i f ( pe−>s t y l e !=NULL && pe−>s t y l e [ 0 ] != ’\0’ )

f p r i n t f ( fp , ",%s" , pe−>s t y l e ) ;
1230 i f ( pe−>pre id==pe−>pos t id ) f p r i n t f ( fp , ",␣loop" )

;
1231 f p r i n t f ( fp , "]␣(a%d)␣to␣(a%d);\n" , pe−>preid , pe

−>pos t id ) ;
1232 edgedrawn [ pe−>id ]=true ;
1233 }
1234 pe=pe−>r ;
1235 }
1236 }
1237 f p r i n t f ( fp , "\\end{tikzpicture}\n}\n" ) ;
1238 f c l o s e ( fp ) ;
1239 delete z ;
1240 }
1241
1242 bool check_simpleseq ( const char a [ ] , const char b [ ] )
1243 {
1244 int i ;
1245 for ( i =0;b [ i +1]!=’\0’&&a [ i ] != ’\0’ ; i++)
1246 i f ( a [ i ] !=b [ i +1])
1247 return fa l se ;
1248
1249 return true ;
1250 }
1251
1252 int seqx ( int n , int m, int depth , char vertexname [ ] )
1253 {
1254 int x=0, i , t ;
1255 bool i s n u l l=true ;
1256 i f ( seqy ( depth , vertexname )>=0)
1257 {
1258 for ( i =1; i <2∗depth+1; i++)
1259 i f ( vertexname [ i ] != ’0’ )
1260 i s n u l l=fa l se ;
1261 i f ( i s n u l l )
1262 return 0 ;
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1263 i =0;
1264 while ( vertexname [ i ]==’0’ ) i++;
1265 x+=vertexname [ i ]−’0’−1;
1266 for ( t=i+depth , i++;i<t ; i++)
1267 {
1268 x∗=( i<depth+1?n :m) ;
1269 x+=vertexname [ i ]−’0’ ;
1270 }
1271 }
1272 else
1273 {
1274 i =2∗depth+1;
1275 while ( vertexname [ i ]==’0’ ) i−−;
1276 x+=vertexname [ i ]−’0’−1;
1277 for ( t=i−depth , i−−; i>t ; i−−)
1278 {
1279 x∗=( i>=depth+1?m: n) ;
1280 x+=vertexname [ i ]−’0’ ;
1281 }
1282 }
1283 return x ;
1284 }
1285
1286 int seqy ( int depth , char vertexname [ ] )
1287 {
1288 int y=0, i ;
1289 for ( i =0; vertexname [ i ]==’0’&&i<depth+1; i++) y−−;
1290 for ( i=2∗depth+1; vertexname [ i ]==’0’&&i>=depth+1; i−−) y

++;
1291 return y ;
1292 }
1293
1294 bool check_seq ( const char a [ ] , const char b [ ] , int depth )
1295 {
1296 int i ;
1297 for ( i =0; i<depth ; i++)
1298 {
1299 i f ( a [ i ] !=b [ i +1]) return fa l se ;
1300 i f ( a [ depth+1+i ] !=b [ depth+1+i +1]) return fa l se ;
1301 }
1302 return true ;
1303 }
1304
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1305 int makeseq ( int i , int n , int m, int depth , char vertexname [ ] )
1306 {
1307 int l =2∗depth+2, j ;
1308 for ( j=2∗depth ; j>=depth+1; j−−)
1309 {
1310 vertexname [ j ]=’0’+i%m;
1311 i /=m;
1312 }
1313 for ( ; j >=0; j−−)
1314 {
1315 vertexname [ j ]=’0’+i%n ;
1316 i /=n ;
1317 }
1318 vertexname [0 ]= vertexname [2∗ depth+1]=’0’ ;
1319 vertexname [2∗ depth+2]=’\0’ ;
1320 for ( j =0; vertexname [ j ]==’0’&&j <2∗depth+2; j++) l−−;
1321 for ( j=2∗depth+1; vertexname [ j ]==’0’&&j >0; j−−) l−−;
1322 i f ( l <0) l =0;
1323 return l ;
1324 }
1325
1326 #endif
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