6,332 research outputs found

    Fast Conical Hull Algorithms for Near-separable Non-negative Matrix Factorization

    Full text link
    The separability assumption (Donoho & Stodden, 2003; Arora et al., 2012) turns non-negative matrix factorization (NMF) into a tractable problem. Recently, a new class of provably-correct NMF algorithms have emerged under this assumption. In this paper, we reformulate the separable NMF problem as that of finding the extreme rays of the conical hull of a finite set of vectors. From this geometric perspective, we derive new separable NMF algorithms that are highly scalable and empirically noise robust, and have several other favorable properties in relation to existing methods. A parallel implementation of our algorithm demonstrates high scalability on shared- and distributed-memory machines.Comment: 15 pages, 6 figure

    Sympiler: Transforming Sparse Matrix Codes by Decoupling Symbolic Analysis

    Full text link
    Sympiler is a domain-specific code generator that optimizes sparse matrix computations by decoupling the symbolic analysis phase from the numerical manipulation stage in sparse codes. The computation patterns in sparse numerical methods are guided by the input sparsity structure and the sparse algorithm itself. In many real-world simulations, the sparsity pattern changes little or not at all. Sympiler takes advantage of these properties to symbolically analyze sparse codes at compile-time and to apply inspector-guided transformations that enable applying low-level transformations to sparse codes. As a result, the Sympiler-generated code outperforms highly-optimized matrix factorization codes from commonly-used specialized libraries, obtaining average speedups over Eigen and CHOLMOD of 3.8X and 1.5X respectively.Comment: 12 page

    An efficient multi-core implementation of a novel HSS-structured multifrontal solver using randomized sampling

    Full text link
    We present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination, and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factorization leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite. The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK -- STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices

    PT-Scotch: A tool for efficient parallel graph ordering

    Get PDF
    The parallel ordering of large graphs is a difficult problem, because on the one hand minimum degree algorithms do not parallelize well, and on the other hand the obtainment of high quality orderings with the nested dissection algorithm requires efficient graph bipartitioning heuristics, the best sequential implementations of which are also hard to parallelize. This paper presents a set of algorithms, implemented in the PT-Scotch software package, which allows one to order large graphs in parallel, yielding orderings the quality of which is only slightly worse than the one of state-of-the-art sequential algorithms. Our implementation uses the classical nested dissection approach but relies on several novel features to solve the parallel graph bipartitioning problem. Thanks to these improvements, PT-Scotch produces consistently better orderings than ParMeTiS on large numbers of processors
    • …
    corecore