The separability assumption (Donoho & Stodden, 2003; Arora et al., 2012)
turns non-negative matrix factorization (NMF) into a tractable problem.
Recently, a new class of provably-correct NMF algorithms have emerged under
this assumption. In this paper, we reformulate the separable NMF problem as
that of finding the extreme rays of the conical hull of a finite set of
vectors. From this geometric perspective, we derive new separable NMF
algorithms that are highly scalable and empirically noise robust, and have
several other favorable properties in relation to existing methods. A parallel
implementation of our algorithm demonstrates high scalability on shared- and
distributed-memory machines.Comment: 15 pages, 6 figure