1,144 research outputs found

    C-DIFFERENTIALS AND GENERALIZED CRYPTOGRAPHIC PROPERTIES OF VECTORIAL BOOLEAN AND P-ARY FUNCTIONS

    Get PDF
    This dissertation investigates a newly defined cryptographic differential, called a c-differential, and its relevance to the nonlinear substitution boxes of modern symmetric block ciphers. We generalize the notions of perfect nonlinearity, bentness, and avalanche characteristics of vectorial Boolean and p-ary functions using the c-derivative and a new autocorrelation function, while capturing the original definitions as special cases (i.e., when c=1). We investigate the c-differential uniformity property of the inverse function over finite fields under several extended affine transformations. We demonstrate that c-differential properties do not hold in general across equivalence classes typically used in Boolean function analysis, and in some cases change significantly under slight perturbations. Thus, choosing certain affine equivalent functions that are easy to implement in hardware or software without checking their c-differential properties could potentially expose an encryption scheme to risk if a c-differential attack method is ever realized. We also extend the c-derivative and c-differential uniformity into higher order, investigate some of their properties, and analyze the behavior of the inverse function's second order c-differential uniformity. Finally, we analyze the substitution boxes of some recognizable ciphers along with certain extended affine equivalent variations and document their performance under c-differential uniformity.Commander, United States NavyApproved for public release. Distribution is unlimited

    Algorithm 959: VBF: A Library of C plus plus Classes for Vector Boolean Functions in Cryptography

    Full text link
    VBF is a collection of C++ classes designed for analyzing vector Boolean functions (functions that map a Boolean vector to another Boolean vector) from a cryptographic perspective. This implementation uses the NTL library from Victor Shoup, adding new modules that call NTL functions and complement the existing ones, making it better suited to cryptography. The class representing a vector Boolean function can be initialized by several alternative types of data structures such as Truth Table, Trace Representation, and Algebraic Normal Form (ANF), among others. The most relevant cryptographic criteria for both block and stream ciphers as well as for hash functions can be evaluated with VBF: it obtains the nonlinearity, linearity distance, algebraic degree, linear structures, and frequency distribution of the absolute values of the Walsh Spectrum or the Autocorrelation Spectrum, among others. In addition, operations such as equality testing, composition, inversion, sum, direct sum, bricklayering (parallel application of vector Boolean functions as employed in Rijndael cipher), and adding coordinate functions of two vector Boolean functions are presented. Finally, three real applications of the library are described: the first one analyzes the KASUMI block cipher, the second one analyzes the Mini-AES cipher, and the third one finds Boolean functions with very high nonlinearity, a key property for robustness against linear attacks

    A survey of metaheuristic algorithms for the design of cryptographic Boolean functions

    Get PDF
    Boolean functions are mathematical objects used in diverse domains and have been actively researched for several decades already. One domain where Boolean functions play an important role is cryptography. There, the plethora of settings one should consider and cryptographic properties that need to be fulfilled makes the search for new Boolean functions still a very active domain. There are several options to construct appropriate Boolean functions: algebraic constructions, random search, and metaheuristics. In this work, we concentrate on metaheuristic approaches and examine the related works appearing in the last 25 years. To the best of our knowledge, this is the first survey work on this topic. Additionally, we provide a new taxonomy of related works and discuss the results obtained. Finally, we finish this survey with potential future research directions.</p

    STATISTICAL PROPERTIES OF PSEUDORANDOM SEQUENCES

    Get PDF
    Random numbers (in one sense or another) have applications in computer simulation, Monte Carlo integration, cryptography, randomized computation, radar ranging, and other areas. It is impractical to generate random numbers in real life, instead sequences of numbers (or of bits) that appear to be ``random yet repeatable are used in real life applications. These sequences are called pseudorandom sequences. To determine the suitability of pseudorandom sequences for applications, we need to study their properties, in particular, their statistical properties. The simplest property is the minimal period of the sequence. That is, the shortest number of steps until the sequence repeats. One important type of pseudorandom sequences is the sequences generated by feedback with carry shift registers (FCSRs). In this dissertation, we study statistical properties of N-ary FCSR sequences with odd prime connection integer q and least period (q-1)/2. These are called half-ℓ-sequences. More precisely, our work includes: The number of occurrences of one symbol within one period of a half-ℓ-sequence; The number of pairs of symbols with a fixed distance between them within one period of a half-ℓ-sequence; The number of triples of consecutive symbols within one period of a half-ℓ-sequence. In particular we give a bound on the number of occurrences of one symbol within one period of a binary half-ℓ-sequence and also the autocorrelation value in binary case. The results show that the distributions of half-ℓ-sequences are fairly flat. However, these sequences in the binary case also have some undesirable features as high autocorrelation values. We give bounds on the number of occurrences of two symbols with a fixed distance between them in an ℓ-sequence, whose period reaches the maximum and obtain conditions on the connection integer that guarantee the distribution is highly uniform. In another study of a cryptographically important statistical property, we study a generalization of correlation immunity (CI). CI is a measure of resistance to Siegenthaler\u27s divide and conquer attack on nonlinear combiners. In this dissertation, we present results on correlation immune functions with regard to the q-transform, a generalization of the Walsh-Hadamard transform, to measure the proximity of two functions. We give two definitions of q-correlation immune functions and the relationship between them. Certain properties and constructions for q-correlation immune functions are discussed. We examine the connection between correlation immune functions and q-correlation immune functions

    A Survey of Metaheuristic Algorithms for the Design of Cryptographic Boolean Functions

    Get PDF
    Boolean functions are mathematical objects used in diverse domains and have been actively researched for several decades already. One domain where Boolean functions play an important role is cryptography. There, the plethora of settings one should consider and cryptographic properties that need to be fulfilled makes the search for new Boolean functions still a very active domain. There are several options to construct appropriate Boolean functions: algebraic constructions, random search, and metaheuristics. In this work, we concentrate on metaheuristic approaches and examine the related works appearing in the last 25 years. To the best of our knowledge, this is the first survey work on this topic. Additionally, we provide a new taxonomy of related works and discuss the results obtained. Finally, we finish this survey with potential future research directions

    Rotation symmetric Boolean functions---count and cryptographic properties

    Get PDF
    The article of record as published may be located at http://dx.doi.org/10.1.1.137.6388Rotation symmetric (RotS) Boolean functions have been used as components of different cryptosystems. This class of Boolean functions are invariant under circular translation of indices. Using Burnsideメs lemma it can be seen that the number of n-variable rotation symmetric Boolean functions is 2gn, where gn = 1 nPt|n (t) 2n t , and (.) is the Euler phi-function. In this paper, we find the number of short and long cycles of elements in Fn2 having fixed weight, under the RotS action. As a consequence we obtain the number of homogeneous RotS functions having algebraic degree w. Our results make the search space of RotS functions much reduced and we successfully analyzed important cryptographic properties of such functions by executing computer programs. We study RotS bent functions up to 10 variables and observe (experimentally) that there is no homogeneous rotation symmetric bent function having degree > 2. Further, we studied the RotS functions on 5, 6, 7 variables by computer search for correlation immunity and propagation characteristics and found some functions with very good cryptographic properties which were not known earlier

    Construction of Balanced Boolean Functions with High Nonlinearity and Good Autocorrelation Properties

    Get PDF
    Boolean functions with high nonlinearity and good autocorrelation properties play an important role in the design of block ciphers and stream ciphers. In this paper, we give a method to construct balanced Boolean functions on nn variables, where n10n\ge 10 is an even integer, satisfying strict avalanche criterion (SAC). Compared with the known balanced Boolean functions with SAC property, the constructed functions possess the highest nonlinearity and the best global avalanche characteristics (GAC) property
    corecore