3 research outputs found

    An intelligent, multi-transducer signal conditioning design for manufacturing applications

    Get PDF
    This paper describes a flexible, intelligent, high bandwidth, signal conditioning reference design and implementation, which is suitable for a wide range of force and displacement transducers in manufacturing applications. The flexibility inherent in the design has allowed more than 10 specialised transducer conditioning boards to be replaced by this single design, in a range of bespoke mechanical test equipment manufactured by the authors. The board is able to automatically reconfigure itself for a wide range of transducers and calibrate and balance the transducer. The range of transducers includes LVDT, AC/DC strain gauge and inductive bridges, and a range of standard industrial voltage current interface transducers. Further, with a minor lowcost addition to the transducer connector, the board is able to recognise the type of transducer, reconfigure itself and store the calibration data within the transducer, thereafter allowing a plugand-play operation as transducers are changed. The paper provides an example of the operation in typical manufacturing test application and illustrates the stability and noise performance of the design

    Optimal and Robust Design Method for Two-Chip Out-of-Plane Microaccelerometers

    Get PDF
    In this paper, an optimal and robust design method to implement a two-chip out-of-plane microaccelerometer system is presented. The two-chip microsystem consists of a MEMS chip for sensing the external acceleration and a CMOS chip for signal processing. An optimized design method to determine the device thickness, the sacrificial gap, and the vertical gap length of the M EMS sensing element is applied to minimize the fundamental noise level and also to achieve the robustness to the fabrication variations. In order to cancel out the offset and gain variations due to parasitic capacitances and process variations, a digitally trimmable architecture consisting of an 11 bit capacitor array is adopted in the analog front-end of the CMOS capacitive readout circuit. The out-of-plane microaccelerometer has the scale factor of 372 mV/g∼389 mV/g, the output nonlinearity of 0.43% FSO∼0.60% FSO, the input range of ±2 g and a bias instability of 122 μg∼229 μg. The signal-to-noise ratio and the noise equivalent resolution are measured to be 74.00 dB∼75.23 dB and 180 μg/rtHz∼190 μg/rtHz, respectively. The in-plane cross-axis sensitivities are measured to be 1.1%∼1.9% and 0.3%∼0.7% of the out-of-plane sensitivity, respectively. The results show that the optimal and robust design method for the MEMS sensing element and the highly trimmable capacity of the CMOS capacitive readout circuit are suitable to enhance the die-to-die uniformity of the packaged microsystem, without compromising the performance characteristics

    Design of agile signal conditioning circuits for microelectromechanical sensors

    Get PDF
    Microelectromechanical systems (MEMS) are used in many applications to detect physical parameters and convert them to an electrical signal. The output of MEMS-based transducers is usually not suitable to be directly processed in the digital or the analog domain, and they could be as small as femto farads in capacitive sensing and micro volts in resistive sensing. Consequently, high sensitivity signal conditioning circuits are essential. In this thesis, it is shown that both the noise and input capacitance are important parameters to ensure optimal capacitive sensing. The dominant noise source in MEMS conditioning circuits is flicker noise, and one of the best methods to mitigate flicker noise is the chopping technique. Three different chopping techniques are considered: single chopper amplifier (SCA), dual chopper amplifier (DCA), and two-stage single chopper amplifier (TCA). Also, their sensitivity and power consumption based on the total gain and sensing capacitance are extracted. It is shown that the distribution of gain between the two stages in the DCA and TCA has a significant effect on the sensitivity, and, based on this distribution, the sensitivity and power consumption change significantly. For small sensor capacitances, the highest sensitivity could be achieved by a DCA because of its ability to decrease the noise floor and the input sensor capacitance simultaneously. A novel DCA is proposed to reach higher sensitivity and reduced power consumption. In this DCA, two supply voltages are utilized, and the second stage is composed of two parallel paths that improve the SNR and provide two gain settings. This circuit is fabricated in the GlobalFoundries 0.13 μm CMOS technology. The measurement results show a power consumption of 2.66 μW for the supply voltage of 0.7 V and of 3.26 μW for the supply voltage of 1.2 V. The single path DCA has a gain of 34 dB with bandwidth of 4 kHz and input noise floor of 25 nV/√Hz. The dual path DCA has a gain of 38 dB with bandwidth of 3 kHz and input noise floor of 40 nV/√Hz. To be able to detect the signal near DC frequencies, another circuit is proposed which has a configurable bandwidth and a sub-μHz noise corner frequency. This circuit is composed of three stages, and three chopping frequencies are used to mitigate the flicker noise of the three stages. The simulated circuit is designed in the GlobalFoundries 0.13 μm CMOS technology with supply voltages of 0.4 V and 1.2 V. The total power consumption is of 6.7 μW. A gain of 68 dB and bandwidths of 1, 10, 100 and 1000 Hz are achieved. The input referred noise floor is of 20.5 nV/√Hz and the design attains a good power efficiency factor of 4.0. In the capacitive mode, the noise floor is of 3.6 zF for a 100 fF capacitance sensor
    corecore