56 research outputs found

    New High-Performance Materials: Bio-Based, Eco-Friendly Polyimides

    Get PDF
    The development of high-performance bio-based polyimides (PIs) seems a difficult task due to the incompatibility between petrochemical-derived, aromatic monomers and renewable, natural resources. Moreover, their production usually implies less eco-friendly experimental conditions, especially in terms of solvents and thermal conditions. In this chapter, we touch some of the most significant research endeavors that were devoted in the last decade to engineering naturally derived PI building blocks based on nontoxic, bio-renewable feedstocks. In most cases, the structural motifs of natural products are modified toward amine functionalities that are then used in classical or nonconventional methods for PI synthesis. We follow their evolution as viable alternatives to traditional starting compounds and prove they are able to generate eco-friendly PI materials that retain a combination of high-performance characteristics, or even bring some novel, enhanced features to the field. At the same time, serious progress has been made in the field of nonconventional synthetic and processing options for the development of PI-based materials. Greener experimental conditions such as ionic liquids, supercritical fluids, microwaves, and geothermal techniques represent feasible routes and reduce the negative environmental footprint of PIs’ development. We also approach some insights regarding the sustainability, degradation, and recycling of PI-based materials

    Polymères π-conjugués contenant des fonctions imides pour le stockage de l’énergie dans les batteries Li-ion

    Get PDF

    Polymeric-based membranes for hydrogen enrichment and natural gas sweetening

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Catalyzed Mizoroki–Heck Reaction or C–H activation

    Get PDF
    In the last few decades, research on the elaboration by palladium-catalytic processes of C-C bonds or the activation of C–H bonds has increased considerably. Yet there is still room for much improvement in terms of selectivity, or enantioselectivity, via the development of new ligands or the study of the catalytic effect of other metals to carry out the same chemical transformations. In addition, the attention paid to environmentally friendly methods in terms of the quantities of catalysts, ligands, and solvents is currently indispensable. The Mizoroki-Heck reaction is one of these important catalytic methods which generates C-C bonds in organic synthesis and is also possible by C-H activation. This book, titled “Catalyzed Mizoroki-Heck Reaction or C-H activation” focuses on new advances in the formation of C-C bonds or new C-H activation methods. It contains original research papers and short reviews on the synthesis of biologically active compounds using these catalytic processes, the identification of new catalysts, of new conditions allowing selectivity or enantioselectivity, the activity and stability of catalyst under turnover conditions, and all improvements in catalytic processes
    corecore