9 research outputs found

    Higher-Order Threshold Implementation of the AES S-Box

    Get PDF
    In this paper we present a threshold implementation of the Advanced Encryption Standard’s S-box which is secure against first- and second-order power analysis attacks. This security guarantee holds even in the presence of glitches, and includes resistance against bivariate attacks. The design requires an area of 7849 Gate Equivalents and 126 bits of randomness per S-box execution. The implementation is tested on an FPGA platform and its security claim is supported by practical leakage detection tests

    Improved Side-Channel Resistance by Dynamic Fault-Injection Countermeasures

    Get PDF
    Side-channel analysis and fault-injection attacks are known as serious threats to cryptographic hardware implementations and the combined protection against both is currently an open line of research. A promising countermeasure with considerable implementation overhead appears to be a mix of first-order secure Threshold Implementations and linear Error-Correcting Codes. In this paper we employ for the first time the inherent structure of non-systematic codes as fault countermeasure which dynamically mutates the applied generator matrices to achieve a higher-order side-channel and fault-protected design. As a case study, we apply our scheme to the PRESENT block cipher that do not show any higher-order side-channel leakage after measuring 150 million power traces

    A First-Order SCA Resistant AES without Fresh Randomness

    Get PDF
    Since the advent of Differential Power Analysis (DPA) in the late 1990s protecting embedded devices against Side-Channel Analysis (SCA) attacks has been a major research effort. Even though many different first-order secure masking schemes are available today, when applied to the AES S-box they all require fresh random bits in every evaluation. As the quality criteria for generating random numbers on an embedded device are not well understood, an integrated Random Number Generator (RNG) can be the weak spot of any protected implementation and may invalidate an otherwise secure implementation. We present a new construction based on Threshold Implementations and Changing of the Guards to realize a first-order secure AES with zero per-round randomness. Hence, our design does not need a built-in RNG, thereby enhancing security and reducing the overhead

    Second-Order Low-Randomness d+1d+1 Hardware Sharing of the AES

    Get PDF
    In this paper, we introduce a second-order masking of the AES using the minimal number of shares and a total of 1268 bits of randomness including the sharing of the plaintext and key. The masking of the S-box is based on the tower field decomposition of the inversion over bytes where the changing of the guards technique is used in order to re-mask the middle branch of the decomposition. The sharing of the S-box is carefully crafted such that it achieves first-order probing security without the use of randomness and such that the sharing of its output is uniform. Multi-round security is achieved by re-masking the state where we use a theoretical analysis based on the propagation of probed information to reduce the demand for fresh randomness per round. The result is a second-order masked AES which competes with the state-of-the-art in terms of latency and area, but reduces the randomness complexity over eight times over the previous known works. In addition to the corresponding theoretical analysis and proofs for the security of our masked design, it has been implemented on FPGA and evaluated via lab analysis

    Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

    Get PDF
    Masking schemes are the most popular countermeasure to mitigate Side-Channel Analysis (SCA) attacks. Compared to software, their hardware implementations require certain considerations with respect to physical defaults, such as glitches. To counter this extended leakage effect, the technique known as Threshold Implementation (TI) has proven to be a reliable solution. However, its efficiency, namely the number of shares, is tied to the algebraic degree of the target function. As a result, the application of TI may lead to unaffordable implementation costs. This dependency is relaxed by the successor schemes where the minimum number of d + 1 shares suffice for dth-order protection independent of the function’s algebraic degree. By this, although the number of input shares is reduced, the implementation costs are not necessarily low due to their high demand for fresh randomness. It becomes even more challenging when a joint low-latency and low-randomness cost is desired. In this work, we provide a methodology to realize the second-order glitch-extended probing-secure implementation of cubic functions with three shares while allowing to reuse fresh randomness. This enables us to construct low-latency second-order secure implementations of several popular lightweight block ciphers, including Skinny, Midori, and Prince, with a very limited number of fresh masks. Notably, compared to state-of-the-art equivalent implementations, our designs lower the latency in terms of the number of clock cycles while keeping randomness costs low

    Higher-Order Threshold Implementation of the AES S-box

    No full text
    © Springer International Publishing Switzerland 2016. In this paper we present a threshold implementation of the Advanced Encryption Standard’s S-box which is secure against firstand second-order power analysis attacks. This security guarantee holds even in the presence of glitches, and includes resistance against bivariate attacks. The design requires an area of 7849 Gate Equivalents and 126 bits of randomness per S-box execution. The implementation is tested on an FPGA platform and its security claim is supported by practical leakage detection tests.status: publishe
    corecore