7,226 research outputs found

    Free vacuum for loop quantum gravity

    Full text link
    We linearize extended ADM-gravity around the flat torus, and use the associated Fock vacuum to construct a state that could play the role of a free vacuum in loop quantum gravity. The state we obtain is an element of the gauge-invariant kinematic Hilbert space and restricted to a cutoff graph, as a natural consequence of the momentum cutoff of the original Fock state. It has the form of a Gaussian superposition of spin networks. We show that the peak of the Gaussian lies at weave-like states and derive a relation between the coloring of the weaves and the cutoff scale. Our analysis indicates that the peak weaves become independent of the cutoff length when the latter is much smaller than the Planck length. By the same method, we also construct multiple-graviton states. We discuss the possible use of these states for deriving a perturbation series in loop quantum gravity.Comment: 30 pages, 3 diagrams, treatment of phase factor adde

    Complex Network Tools to Understand the Behavior of Criminality in Urban Areas

    Full text link
    Complex networks are nowadays employed in several applications. Modeling urban street networks is one of them, and in particular to analyze criminal aspects of a city. Several research groups have focused on such application, but until now, there is a lack of a well-defined methodology for employing complex networks in a whole crime analysis process, i.e. from data preparation to a deep analysis of criminal communities. Furthermore, the "toolset" available for those works is not complete enough, also lacking techniques to maintain up-to-date, complete crime datasets and proper assessment measures. In this sense, we propose a threefold methodology for employing complex networks in the detection of highly criminal areas within a city. Our methodology comprises three tasks: (i) Mapping of Urban Crimes; (ii) Criminal Community Identification; and (iii) Crime Analysis. Moreover, it provides a proper set of assessment measures for analyzing intrinsic criminality of communities, especially when considering different crime types. We show our methodology by applying it to a real crime dataset from the city of San Francisco - CA, USA. The results confirm its effectiveness to identify and analyze high criminality areas within a city. Hence, our contributions provide a basis for further developments on complex networks applied to crime analysis.Comment: 7 pages, 2 figures, 14th International Conference on Information Technology : New Generation

    POISED: Spotting Twitter Spam Off the Beaten Paths

    Get PDF
    Cybercriminals have found in online social networks a propitious medium to spread spam and malicious content. Existing techniques for detecting spam include predicting the trustworthiness of accounts and analyzing the content of these messages. However, advanced attackers can still successfully evade these defenses. Online social networks bring people who have personal connections or share common interests to form communities. In this paper, we first show that users within a networked community share some topics of interest. Moreover, content shared on these social network tend to propagate according to the interests of people. Dissemination paths may emerge where some communities post similar messages, based on the interests of those communities. Spam and other malicious content, on the other hand, follow different spreading patterns. In this paper, we follow this insight and present POISED, a system that leverages the differences in propagation between benign and malicious messages on social networks to identify spam and other unwanted content. We test our system on a dataset of 1.3M tweets collected from 64K users, and we show that our approach is effective in detecting malicious messages, reaching 91% precision and 93% recall. We also show that POISED's detection is more comprehensive than previous systems, by comparing it to three state-of-the-art spam detection systems that have been proposed by the research community in the past. POISED significantly outperforms each of these systems. Moreover, through simulations, we show how POISED is effective in the early detection of spam messages and how it is resilient against two well-known adversarial machine learning attacks

    Dynamics of continuous-time quantum walks in restricted geometries

    Full text link
    We study quantum transport on finite discrete structures and we model the process by means of continuous-time quantum walks. A direct and effective comparison between quantum and classical walks can be attained based on the average displacement of the walker as a function of time. Indeed, a fast growth of the average displacement can be advantageously exploited to build up efficient search algorithms. By means of analytical and numerical investigations, we show that the finiteness and the inhomogeneity of the substrate jointly weaken the quantum walk performance. We further highlight the interplay between the quantum-walk dynamics and the underlying topology by studying the temporal evolution of the transfer probability distribution and the lower bound of long time averages.Comment: 25 pages, 13 figure
    • …
    corecore