8,180 research outputs found

    Efficient smile detection by Extreme Learning Machine

    Get PDF
    Smile detection is a specialized task in facial expression analysis with applications such as photo selection, user experience analysis, and patient monitoring. As one of the most important and informative expressions, smile conveys the underlying emotion status such as joy, happiness, and satisfaction. In this paper, an efficient smile detection approach is proposed based on Extreme Learning Machine (ELM). The faces are first detected and a holistic flow-based face registration is applied which does not need any manual labeling or key point detection. Then ELM is used to train the classifier. The proposed smile detector is tested with different feature descriptors on publicly available databases including real-world face images. The comparisons against benchmark classifiers including Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) suggest that the proposed ELM based smile detector in general performs better and is very efficient. Compared to state-of-the-art smile detector, the proposed method achieves competitive results without preprocessing and manual registration

    AgriColMap: Aerial-Ground Collaborative 3D Mapping for Precision Farming

    Full text link
    The combination of aerial survey capabilities of Unmanned Aerial Vehicles with targeted intervention abilities of agricultural Unmanned Ground Vehicles can significantly improve the effectiveness of robotic systems applied to precision agriculture. In this context, building and updating a common map of the field is an essential but challenging task. The maps built using robots of different types show differences in size, resolution and scale, the associated geolocation data may be inaccurate and biased, while the repetitiveness of both visual appearance and geometric structures found within agricultural contexts render classical map merging techniques ineffective. In this paper we propose AgriColMap, a novel map registration pipeline that leverages a grid-based multimodal environment representation which includes a vegetation index map and a Digital Surface Model. We cast the data association problem between maps built from UAVs and UGVs as a multimodal, large displacement dense optical flow estimation. The dominant, coherent flows, selected using a voting scheme, are used as point-to-point correspondences to infer a preliminary non-rigid alignment between the maps. A final refinement is then performed, by exploiting only meaningful parts of the registered maps. We evaluate our system using real world data for 3 fields with different crop species. The results show that our method outperforms several state of the art map registration and matching techniques by a large margin, and has a higher tolerance to large initial misalignments. We release an implementation of the proposed approach along with the acquired datasets with this paper.Comment: Published in IEEE Robotics and Automation Letters, 201

    Facial Expression Recognition

    Get PDF

    Higher-Order Momentum Distributions and Locally Affine LDDMM Registration

    Full text link
    To achieve sparse parametrizations that allows intuitive analysis, we aim to represent deformation with a basis containing interpretable elements, and we wish to use elements that have the description capacity to represent the deformation compactly. To accomplish this, we introduce in this paper higher-order momentum distributions in the LDDMM registration framework. While the zeroth order moments previously used in LDDMM only describe local displacement, the first-order momenta that are proposed here represent a basis that allows local description of affine transformations and subsequent compact description of non-translational movement in a globally non-rigid deformation. The resulting representation contains directly interpretable information from both mathematical and modeling perspectives. We develop the mathematical construction of the registration framework with higher-order momenta, we show the implications for sparse image registration and deformation description, and we provide examples of how the parametrization enables registration with a very low number of parameters. The capacity and interpretability of the parametrization using higher-order momenta lead to natural modeling of articulated movement, and the method promises to be useful for quantifying ventricle expansion and progressing atrophy during Alzheimer's disease
    • …
    corecore