33 research outputs found

    Time lower bounds for nonadaptive turnstile streaming algorithms

    Full text link
    We say a turnstile streaming algorithm is "non-adaptive" if, during updates, the memory cells written and read depend only on the index being updated and random coins tossed at the beginning of the stream (and not on the memory contents of the algorithm). Memory cells read during queries may be decided upon adaptively. All known turnstile streaming algorithms in the literature are non-adaptive. We prove the first non-trivial update time lower bounds for both randomized and deterministic turnstile streaming algorithms, which hold when the algorithms are non-adaptive. While there has been abundant success in proving space lower bounds, there have been no non-trivial update time lower bounds in the turnstile model. Our lower bounds hold against classically studied problems such as heavy hitters, point query, entropy estimation, and moment estimation. In some cases of deterministic algorithms, our lower bounds nearly match known upper bounds

    Equivalence of Systematic Linear Data Structures and Matrix Rigidity

    Get PDF
    Recently, Dvir, Golovnev, and Weinstein have shown that sufficiently strong lower bounds for linear data structures would imply new bounds for rigid matrices. However, their result utilizes an algorithm that requires an NPNP oracle, and hence, the rigid matrices are not explicit. In this work, we derive an equivalence between rigidity and the systematic linear model of data structures. For the nn-dimensional inner product problem with mm queries, we prove that lower bounds on the query time imply rigidity lower bounds for the query set itself. In particular, an explicit lower bound of ω(nrlogm)\omega\left(\frac{n}{r}\log m\right) for rr redundant storage bits would yield better rigidity parameters than the best bounds due to Alon, Panigrahy, and Yekhanin. We also prove a converse result, showing that rigid matrices directly correspond to hard query sets for the systematic linear model. As an application, we prove that the set of vectors obtained from rank one binary matrices is rigid with parameters matching the known results for explicit sets. This implies that the vector-matrix-vector problem requires query time Ω(n3/2/r)\Omega(n^{3/2}/r) for redundancy rnr \geq \sqrt{n} in the systematic linear model, improving a result of Chakraborty, Kamma, and Larsen. Finally, we prove a cell probe lower bound for the vector-matrix-vector problem in the high error regime, improving a result of Chattopadhyay, Kouck\'{y}, Loff, and Mukhopadhyay.Comment: 23 pages, 1 tabl

    Tight Cell Probe Bounds for Succinct Boolean Matrix-Vector Multiplication

    Full text link
    The conjectured hardness of Boolean matrix-vector multiplication has been used with great success to prove conditional lower bounds for numerous important data structure problems, see Henzinger et al. [STOC'15]. In recent work, Larsen and Williams [SODA'17] attacked the problem from the upper bound side and gave a surprising cell probe data structure (that is, we only charge for memory accesses, while computation is free). Their cell probe data structure answers queries in O~(n7/4)\tilde{O}(n^{7/4}) time and is succinct in the sense that it stores the input matrix in read-only memory, plus an additional O~(n7/4)\tilde{O}(n^{7/4}) bits on the side. In this paper, we essentially settle the cell probe complexity of succinct Boolean matrix-vector multiplication. We present a new cell probe data structure with query time O~(n3/2)\tilde{O}(n^{3/2}) storing just O~(n3/2)\tilde{O}(n^{3/2}) bits on the side. We then complement our data structure with a lower bound showing that any data structure storing rr bits on the side, with n<r<n2n < r < n^2 must have query time tt satisfying tr=Ω~(n3)t r = \tilde{\Omega}(n^3). For rnr \leq n, any data structure must have t=Ω~(n2)t = \tilde{\Omega}(n^2). Since lower bounds in the cell probe model also apply to classic word-RAM data structures, the lower bounds naturally carry over. We also prove similar lower bounds for matrix-vector multiplication over F2\mathbb{F}_2

    Towards Tight Lower Bounds for Range Reporting on the RAM

    Full text link
    In the orthogonal range reporting problem, we are to preprocess a set of nn points with integer coordinates on a U×UU \times U grid. The goal is to support reporting all kk points inside an axis-aligned query rectangle. This is one of the most fundamental data structure problems in databases and computational geometry. Despite the importance of the problem its complexity remains unresolved in the word-RAM. On the upper bound side, three best tradeoffs exists: (1.) Query time O(lglgn+k)O(\lg \lg n + k) with O(nlgεn)O(nlg^{\varepsilon}n) words of space for any constant ε>0\varepsilon>0. (2.) Query time O((1+k)lglgn)O((1 + k) \lg \lg n) with O(nlglgn)O(n \lg \lg n) words of space. (3.) Query time O((1+k)lgεn)O((1+k)\lg^{\varepsilon} n) with optimal O(n)O(n) words of space. However, the only known query time lower bound is Ω(loglogn+k)\Omega(\log \log n +k), even for linear space data structures. All three current best upper bound tradeoffs are derived by reducing range reporting to a ball-inheritance problem. Ball-inheritance is a problem that essentially encapsulates all previous attempts at solving range reporting in the word-RAM. In this paper we make progress towards closing the gap between the upper and lower bounds for range reporting by proving cell probe lower bounds for ball-inheritance. Our lower bounds are tight for a large range of parameters, excluding any further progress for range reporting using the ball-inheritance reduction

    A directed isoperimetric inequality with application to Bregman near neighbor lower bounds

    Full text link
    Bregman divergences DϕD_\phi are a class of divergences parametrized by a convex function ϕ\phi and include well known distance functions like 22\ell_2^2 and the Kullback-Leibler divergence. There has been extensive research on algorithms for problems like clustering and near neighbor search with respect to Bregman divergences, in all cases, the algorithms depend not just on the data size nn and dimensionality dd, but also on a structure constant μ1\mu \ge 1 that depends solely on ϕ\phi and can grow without bound independently. In this paper, we provide the first evidence that this dependence on μ\mu might be intrinsic. We focus on the problem of approximate near neighbor search for Bregman divergences. We show that under the cell probe model, any non-adaptive data structure (like locality-sensitive hashing) for cc-approximate near-neighbor search that admits rr probes must use space Ω(n1+μcr)\Omega(n^{1 + \frac{\mu}{c r}}). In contrast, for LSH under 1\ell_1 the best bound is Ω(n1+1cr)\Omega(n^{1+\frac{1}{cr}}). Our new tool is a directed variant of the standard boolean noise operator. We show that a generalization of the Bonami-Beckner hypercontractivity inequality exists "in expectation" or upon restriction to certain subsets of the Hamming cube, and that this is sufficient to prove the desired isoperimetric inequality that we use in our data structure lower bound. We also present a structural result reducing the Hamming cube to a Bregman cube. This structure allows us to obtain lower bounds for problems under Bregman divergences from their 1\ell_1 analog. In particular, we get a (weaker) lower bound for approximate near neighbor search of the form Ω(n1+1cr)\Omega(n^{1 + \frac{1}{cr}}) for an rr-query non-adaptive data structure, and new cell probe lower bounds for a number of other near neighbor questions in Bregman space.Comment: 27 page

    Towards Tight Lower Bounds for Range Reporting on the RAM

    Get PDF
    In the orthogonal range reporting problem, we are to preprocess a set of n points with integer coordinates on a UxU grid. The goal is to support reporting all k points inside an axis-aligned query rectangle. This is one of the most fundamental data structure problems in databases and computational geometry. Despite the importance of the problem its complexity remains unresolved in the word-RAM. On the upper bound side, three best tradeoffs exist, all derived by reducing range reporting to a ball-inheritance problem. Ball-inheritance is a problem that essentially encapsulates all previous attempts at solving range reporting in the word-RAM. In this paper we make progress towards closing the gap between the upper and lower bounds for range reporting by proving cell probe lower bounds for ball-inheritance. Our lower bounds are tight for a large range of parameters, excluding any further progress for range reporting using the ball-inheritance reduction

    Cell-probe Lower Bounds for Dynamic Problems via a New Communication Model

    Full text link
    In this paper, we develop a new communication model to prove a data structure lower bound for the dynamic interval union problem. The problem is to maintain a multiset of intervals I\mathcal{I} over [0,n][0, n] with integer coordinates, supporting the following operations: - insert(a, b): add an interval [a,b][a, b] to I\mathcal{I}, provided that aa and bb are integers in [0,n][0, n]; - delete(a, b): delete a (previously inserted) interval [a,b][a, b] from I\mathcal{I}; - query(): return the total length of the union of all intervals in I\mathcal{I}. It is related to the two-dimensional case of Klee's measure problem. We prove that there is a distribution over sequences of operations with O(n)O(n) insertions and deletions, and O(n0.01)O(n^{0.01}) queries, for which any data structure with any constant error probability requires Ω(nlogn)\Omega(n\log n) time in expectation. Interestingly, we use the sparse set disjointness protocol of H\aa{}stad and Wigderson [ToC'07] to speed up a reduction from a new kind of nondeterministic communication games, for which we prove lower bounds. For applications, we prove lower bounds for several dynamic graph problems by reducing them from dynamic interval union
    corecore