
Towards Tight Lower Bounds for Range Reporting
on the RAM∗†

Allan Grønlund1 and Kasper Green Larsen2

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
jallan@cs.au.dk

2 Department of Computer Science, Aarhus University, Aarhus, Denmark
larsen@cs.au.dk

Abstract
In the orthogonal range reporting problem, we are to preprocess a set of n points with integer
coordinates on a U ×U grid. The goal is to support reporting all k points inside an axis-aligned
query rectangle. This is one of the most fundamental data structure problems in databases
and computational geometry. Despite the importance of the problem its complexity remains
unresolved in the word-RAM.

On the upper bound side, three best tradeoffs exist, all derived by reducing range reporting to
a ball-inheritance problem. Ball-inheritance is a problem that essentially encapsulates all previous
attempts at solving range reporting in the word-RAM. In this paper we make progress towards
closing the gap between the upper and lower bounds for range reporting by proving cell probe
lower bounds for ball-inheritance. Our lower bounds are tight for a large range of parameters,
excluding any further progress for range reporting using the ball-inheritance reduction.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Data Structures, Lower Bounds, Cell Probe Model, Range Reporting

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.92

1 Introduction

In the orthogonal range reporting problem, we are to preprocess a set of n points with
integer coordinates on a U × U grid. The goal is to support reporting all k points inside an
axis-aligned query rectangle. This is one of the most fundamental data structure problems
in databases and computational geometry. Given the importance of the problem, it has been
extensively studied in all the relevant models of computation including e.g. the word-RAM,
pointer machine and external memory model. In the latter two models, we typically work
under an assumption of indivisibility, meaning that input points have to be stored as they
are, i.e. compression techniques such as rank-space reduction and word-packing cannot be
used to reduce the space consumption of data structures. The indivisibility assumption
greatly alleviates the task of proving lower bounds, which has resulted in a completely tight
characterisation of the complexity of orthogonal range reporting in these two models. More
specifically, Chazelle [7] presented a pointer machine data structure answering queries in

∗ A full version of this paper is available at http://arxiv.org/abs/1411.0644.
† Both authors are supported in part by Center for Massive Data Algorithmics, a Center of the Danish

National Research Foundation, grant DNRF84. Larsen is also supported by a Villum Young Investigator
Grant and an AUFF Starting Grant. Grønlund is also supported by an Industrial Post Doc Grant from
Innovation Fund Denmark.

EA
T

C
S

© Allan Grønlund and Kasper Green Larsen;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 92; pp. 92:1–92:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.92
http://arxiv.org/abs/1411.0644
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

92:2 Towards Tight Lower Bounds for Range Reporting on the RAM

optimal O(lgn+k) time using O(n lgn/ lg lgn) space and later proved that this space bound
is optimal for any query time of the form O(lgc n+k), where c ≥ 1 is an arbitrary constant [8].
In the external memory model, Arge et al. [2] presented a data structure answering queries in
optimal O(lgB n+ k/B) I/Os with O(n lgn/ lg lgB n) space and also proved the space bound
to be optimal for any query time of the form O(lgcB n+k/B), where c ≥ 1 is a constant. Here
B is the disk block size. Thus the orthogonal range reporting problem has been completely
closed for at least 15 years in both these models of computation. If we instead abandon
the indivisibility assumption and consider orthogonal range reporting in the arguably more
realistic model of computation, the word-RAM, our understanding of the problem is much
more disappointing. Assuming the coordinates are polynomial in n (U = nO(1)), the current
best word-RAM data structures, by Chan et al. [5], achieve the following tradeoffs:
1. Optimal query time O(lg lgn+ k) with O(n lgε n) words of space for any constant ε > 0.
2. Query time O((1 + k) lg lgn) with O(n lg lgn) words of space.
3. Query time O((1 + k) lgε n) with optimal O(n) words of space.
Thus we can achieve linear space by paying a lgε n penalty per point reported. And even if
we insist on an optimal O(lg lgn+ k) query time, it is possible to improve over the optimal
space bound in the pointer machine and external memory model by almost a lgn factor.
Naturally the improvements rely heavily on points not being indivisible.

On the lower bounds side, Pǎtraşcu and Thorup [12, 14] proved that the query time must
be Ω(lg lgn+ k) for space n lgO(1) n. This lower bound was obtained by reduction from the
predecessor search problem. For predecessor search, the query time of lg lgn is known to
be achievable with linear space. Thus the reduction is incapable of distinguishing the three
space regimes of the current best data structures for range reporting. Perhaps it might just
be possible to construct a linear space data structure with O(lg lgn+ k) query time. This
would have a huge impact in practice, since the non-linear space solutions are most often
abandoned for the kd-trees [3], using linear space and answering queries in O(

√
n+ k) time.

This is simply because more than a constant factor above linear space is prohibitive for most
applications. Thus ruling out the existence of fast linear space data structures would be a
major contribution. The focus of this paper is on understanding this gap and the complexity
of orthogonal range reporting in the word-RAM. This boils down to understanding how
much compression and word-packing techniques can help us in the regime between linear
space and O(n lgε n) space. Since our results concern definitions made by Chan et al. [5], we
first give a more formal definition of the word-RAM and briefly review the technique of rank
space reduction and the main ideas in [5].

1.1 Range Reporting in the word-RAM
The word-RAM model was designed to mimic what is possible in modern imperative program-
ming languages such as C. In the word-RAM, the memory is divided into words of Θ(lgn)
bits. The words have integer addresses and we allow random access to any word in constant
time. We also assume all standard word operations from modern programming languages
takes constant time. This includes e.g. integer addition, subtraction, multiplication, division,
bit-wise AND, OR, XOR, SHIFT etc. Having Θ(lgn) bit words is a reasonable assumption
since machine words on standard computers have enough bits to address the input and to
store pointers into a data structure.

Rank Space Reduction. Most of the previous range reporting data structures for the
word-RAM have used rank space reduction (or variants thereof) to save space, see e.g. [1, 11].
Rank space reduction is the following: Given a set P of n points on a U × U grid, compute

A. Grønlund and K. G. Larsen 92:3

for each point (x, y) ∈ P the rank rx(x) of x amongst the x-coordinates of points in P .
Similarly compute the rank ry(x) of y amongst the y-coordinates of points in P . Construct
a new point set P ∗ with each point (x, y) ∈ P replaced by (rx(x), ry(y)). The point set P ∗
is said to be in rank space. A point (x, y) ∈ P lies inside a query range q = [x0;x1]× [y0; y1]
precisely if (rx(x), ry(y)) lies inside the range q∗ = [rx(x0); rx(x1)]× [ry(y0); ry(y1)]. Thus
if we store a data structure for mapping q to q∗ and a table mapping points in P ∗ back to
points in P , the output of a query q can be computed from the output of the query q∗ on
P ∗. Since the coordinates of a point in P ∗ can be represented using lgn bits, this gives a
saving in space if lgn� lgU .

In previous range reporting data structures, rank space reductions are often used recurs-
ively on smaller and smaller point sets Pt ⊂ Pt−1 ⊂ · · · ⊂ P1 ⊂ P . Applying t rounds of
rank space reduction however results in a query time of O(f(n) + tk) since each reported
point has to be decompressed through t rank space reduction tables.

The Ball-Inheritance Problem. In the following, we present the main ideas of the current
best data structures, due to Chan et al. [5]. Their solution is based on an elegant way of
combining rank space reductions over all levels of a range tree:

Construct a complete binary tree with the points of P stored in the leaves ordered from
left to right by their x-coordinate. Every internal node v is associated with the subset of
points Pv stored in the leaves of the subtree rooted at v. For every internal node v, map
the points Pv to rank space and denote the resulting set of points P ∗v . Store in v a data
structure for answering 3-sided range queries on P ∗v . Here a 3-sided query is either of the form
[x0;∞)× [y0; y1] or (−∞, x1]× [y0; y1]. If we require that only the rank space y-coordinate
of a point is reported (and not the rank space x-coordinate), these 3-sided data structures
can be implemented in O(n) bits and with O(k) query time using succinct data structures
for range minimum queries, see e.g. [9]. For each leaf, we simply store the associated point.
The total space usage is O(n lgn+ n lgU) bits, which is O(n) words.

To answer a query q = [x0;x1]× [y0; y1], find the lowest common ancestor, w, of the leaves
storing the successor of x0 and the predecessor of x1 respectively. Let w` be the left child of
w and wr the right child. The points inside q are precisely the points Pw` ∩ [x0;∞)× [y0; y1]
plus Pwr ∩ (−∞, x1]× [y0; y1]. The data structures of Chan et al. now proceeds by mapping
these two 3-sided queries to rank space amongst points in P ∗w` and P ∗wr respectively and
answering the two queries using the 3-sided data structures stored at w` and wr. This
reports, for every point (x, y) ∈ Pw` ∩ q (and (x, y) ∈ Pwr ∩ q), the rank of y amongst the
y-coordinates of all points in Pw` (Pwr). Assuming one can build an S word auxiliary data
structure that supports mapping these rank space y-coordinates back to the original points
in t time per point (i.e. through t rank space decompressions), this gives a data structure for
orthogonal range reporting that answers queries in O(lg lgn+ t(1 + k)) time using S +O(n)
space, see [5] for full details. Chan et al. named this abstract decompression problem the
ball-inheritance problem and defined it as follows:

I Definition 1 (Chan et al. [5]). In the ball-inheritance problem, the input is a complete
binary tree with n leaves. In the root node, there is an ordered list of n balls. Each ball is
associated with a unique leaf of the tree and we say the ball reaches that leaf. Every internal
node v also has an associated list of balls, containing those balls reaching a leaf in the subtree
rooted at v. The ordering of the balls in v’s list is the same as their ordering in the root’s
list. We think of each ball in v’s list as being inherited from v’s parent.

A query is specified by a pair (v, i) where v is a node in the tree and i is an index into
v’s list of balls. The goal is to return the index of the leaf reached by the i’th ball in v’s list
of balls.

ICALP 2016

92:4 Towards Tight Lower Bounds for Range Reporting on the RAM

It is not hard to see that a solution to the ball-inheritance problem is precisely what is
needed in Chan et al.’s data structures: We have one ball per point. The ball corresponding to
a point (x, y) reaches the rx(x)’th leaf, where rx(x) is the rank of x amongst all x-coordinates.
The ordering of the balls inside the lists is just the ordering on the y-coordinates of the
corresponding points. Thus answering a ball-inheritance query (v, i) corresponds exactly to
determining the leaf storing the point from Pv having a rank space y-coordinate of i. Since
Chan et al. stored the points in the leaves, this also recovers the original point.

All three tradeoffs by Chan et al. come from solving the ball-inheritance problem with
the following bounds:

I Theorem 2 (Chan et al. [5]). For any 2 ≤ B ≤ lgε n, we can solve the ball-inheritance
problem with: (1) space O(nB lg lgn) and query time O(lgB lgn); or (2) space O(n lgB lgn)
and query time O(B lg lgn).

While not all previous range reporting data structures directly solve the ball-inheritance
problem, they are all based on rank space reductions and decompression of one point at a
time, just in less efficient ways. Thus the ball-inheritance problem in some sense captures
the essence of all previous approaches to solving range reporting and the bounds obtained
for the ball-inheritance problem also sets the current limits for orthogonal range reporting.

We remark that the ball-inheritance problem also has been used to improve the upper
bounds for various other problems with a range reporting flavor to them, see e.g. [6, 4]. Thus
in light of the lack of progress in proving tight lower bounds for range reporting, it seems
like a natural goal to understand the complexity of the ball-inheritance problem.

1.2 Our Results
In this paper, we prove a lower bound for the ball-inheritance problem. Our lower bound is
tight for a large range of parameters and is as follows:

I Theorem 3. Any word-RAM data structure for the ball-inheritance problem which uses S
words of space, must have query time t satisfying:

t = Ω
(

lg lgn
lg(S/n) + lg lg lgn

)
.

Comparing to the ball-inheritance upper bounds of Chan et al. (Theorem 2), we see that
this essentially matches their first tradeoff and is tight for any S = Ω(n lg1+ε lgn) where
ε > 0 is an arbitrarily small constant. Most importantly, it implies that for constant query
time, one needs space n lgε n words. Thus any range reporting data structure based on the
ball-inheritance problem cannot improve over the bounds of Chan et al. in the regime of
space S = Ω(n lg1+ε lgn) words. We believe this holds true for any data structure that is
based on decompressing one point at a time from some subproblem in rank space. Since
decompressing from a subproblem in rank space is hard to formalize exactly, we leave it at
this.

One can view our lower bound in two ways: Either as a strong indicator that the data
structure of Chan et al. is optimal, or as a suggestion for how to find better upper bounds.
The lower bound above shows that if we want to develop faster data structures, we have
to find a technique that in some sense allows us to decompress ω(1) points in one batch,
faster than decompressing each point in turn. This is not necessarily impossible given the
large success of batched evaluations in other problems such as matrix multiplication and
multipoint evaluation of polynomials.

A. Grønlund and K. G. Larsen 92:5

We also want to make a remark regarding the gap between the second tradeoff of Chan
et al. and our lower bound. We conjecture that the upper bound of Chan et al. is tight, but
note that current lower bound techniques (in the cell probe model) are incapable of proving
any lower bounds exceeding the one we obtain in Theorem 3: The ball-inheritance problem
has only n lgn queries and the strongest lower bound for any data structure problem with
m queries (for any m) is t = Ω(lg(m/n)/ lg(S/n)) [10], thus apart from our lg lg lgn “dirt
factor”, our lower bound is as strong as it possibly can be with current techniques. Note that
previous papers have stated their lower bounds with a lgm rather than lg(m/n) since the
data structure problems considered there have m polynomially larger than n. It is however
not too difficult to see that previous techniques really are limited to lg(m/n). For the cell
sampling technique [10], one needs to have n/ poly(lgn) queries surviving the cell sampling,
hence queries have to survive the sampling with probability at least (n/(mpoly(lgn))), thus
requiring an m/n term. For the communication game by Pǎtraşcu and Thorup [13], the
player holding queries has n/poly(lgn) queries, thus she can specify her set of queries with
lg

(
m

n/ poly(lgn)
)
bits of communication. This again results in a lg(m/n) term rather than

lgm.

Technical Contributions. As a side remark, we believe our lower bound proof has interest
from a purely technical point of view. In the lower bound proof, we carefully exploit that
a data structure is not non-deterministic. While this might sound odd at first, Wang and
Yin [15] recently showed that, with only few exceptions (e.g. the predecessor lower bounds),
all previous lower bound techniques yield lower bounds that hold non-deterministically. Thus
having a new proof outside this category is an important contribution and may hopefully
help in closing fundamental problems where avoiding non-determinism in proofs is crucial.
This is e.g. the case for the deterministic dictionaries problem, which is amongst the most
fundamental open problems in the field of data structures. This problem is trivially solved
with constant update time and query time non-deterministically (just maintain a sorted
linked list) and hence lower bound proofs must use ideas similar to those we present in this
paper to prove super constant lower bounds for this important problem.

2 Lower Bound Proof

We prove our lower bound in the cell probe model [16], where the complexity of a data
structure is the number of cells it reads/probes. More specifically, a data structure with
query time t and space S consists of memory of S cells with consecutive integer addresses
0, . . . , S − 1. Each cell stores w bits and we assume w = Ω(lgn). When answering a query,
the data structure may probe up to t cells and must announce the answer to the query
solely based on the contents of the probed cells. The cell to probe in each step may depend
arbitrarily on the query and the contents of previously probed cells. Thus computation is
free of charge in the cell probe model and lower bounds proved in this model clearly applies
to word-RAM data structures.

2.1 Main Ideas
In the following, we sketch the overall approach in our proof. Assume we have a data
structure for the ball-inheritance problem, having space S cells of w bits and with query time
t. Assume furthermore that the data structure performs very poorly in the following sense:
For every input I to the ball-inheritance problem and every leaf index b ∈ [n] = {0, . . . , n−1},
let Q(b, I) be the set of queries that have b as its answer. Each such query probes at most t

ICALP 2016

92:6 Towards Tight Lower Bounds for Range Reporting on the RAM

cells of the data structure on input I. Assume these sets of cells are disjoint, i.e. information
about the leaf b is stored in |Q(b, I)| = lgn disjoint t-sized locations in the memory.

Now pick a uniform random set C of lg(n!)/(4w) memory cells. For a query q, we say
that q survives if all its t probes lie in C. Then by the disjointness of the probed cells,
there will be a surviving query in Q(b, I) with probability roughly 1 − (1 − (|C|/S)t)lgn.
If t = o(lg lgn/ lg(S/|C|)), this is about 1 − exp(lgn · (|C|/S)t) = 1 − exp(lg1−o(1) n),
i.e. each leaf index is almost certainly the answer to a surviving query. Thus C must
basically store the entire input. But |C| is too small for this and we get a contradiction, i.e.
t = Ω(lg lgn/ lg(Sw/(n lgn))), which roughly equals the lower bound we claim. There are
obviously a few more details to it, but this is the main idea.

Of course any realistic attempt at designing a data structure for the ball-inheritance
problem would try to make the queries in Q(b, I) probe the same cells (which is exactly what
Chan et al.’s solution does [5]). In our actual proof, we get around this using the following
observation: Consider two queries q1, q2 to the ball-inheritance problem, where q2 is asked in
a node d levels below the node of q1. The probability q1 and q2 return the same leaf index is
exponentially decreasing in d for a uniform random input. In particular this means that for
the very first probe, the queries in Q(b, I) will almost certainly read different cells, which is
precisely the property we exploited above. If we pick a random sample of cells, there will be
many queries in Q(b, I) that have their first probe in the sample. To handle the remaining
t − 1 probes, we follow [12] and extend the cell probe model with the concepts published
bits and accepted queries. A data structure is allowed to publish bits at preprocessing time
that the query algorithm may read free of charge. After inspecting a given query and the
published bits, a data structure can choose to reject the query and not return an answer.
Otherwise, the query is accepted and the algorithm must output the correct answer. Note
that it is only allowed to reject queries before performing any probes.

The crucial idea is now the following: If the data structure has few published bits, then
for most leaves b ∈ [n], the published bits simply contains too little information to make the
queries in Q(b, I) probe the same cells. Thus for t rounds, we can pick a random sample
of cells and publish their contents. For every accepted query, we check if its first probe is
amongst the published cells. If so, we continue to accept it and may skip the first probe since
we know the contents of the requested cell. Otherwise we simply reject it. If the published
cell sets are small enough, there continues to be too little information in the published bits
to make the queries in Q(b, I) meet. Since this holds for all t probes, the argument above for
the poorly performing data structures carry through and we get our lower bound.

2.2 Deriving the Lower Bound
With the ideas from Section 2.1 in mind, we present our technical lemma that allows us to
publish bits for t rounds to eliminate probes while ensuring that most leaves are still the
answer to many accepted queries. Before we present the lemma, consider partitioning the
ball-inheritance tree into into lgn/Y disjoint layers of Y consecutive tree levels and group
the accepted queries by these layers. Think of Y as looking at the queries at a given zoom
level. To measure how much information we have left about the different leaves, we count
for each leaf b ∈ [n] how many layers that have at least one accepted query with b as its
answer. If this count is large, then intuitively the answers to all accepted queries carry much
information.

Formally, given a data structure for the ball-inheritance problem, define for every 1 ≤
Y ≤ lgn and index i ∈ [lgn/Y] the query-support set of a leaf b ∈ [n] on an input I as the
set QYi (b, I) of accepted queries in the tree levels {iY, . . . , (i + 1)Y − 1} that has b as its

A. Grønlund and K. G. Larsen 92:7

answer. Observe that |QYi (b, I)| ∈ {0, . . . , Y } since there is precisely one query in each tree
level that has b as its answer (it may be less than Y since some queries might be rejected).
Define also the Y -level-support of an input I, denoted LY (I), as the the number of pairs
(b, i) such that QYi (b, I) is non-empty.

With this notation in hand we are ready to state our main Probe Elimination Lemma.

I Lemma 4. Let I be a set of inputs to the ball-inheritance problem where |I| ≥ n!/2n.
Assume a ball-inheritance data structure uses S cells of w bits, answers queries in t probes,
has p < n lgn/ lg9 lgn published bits and satisfies LY (I) ≥ (1−1/Z)n lgn/Y for all I ∈ I for
some parameters Z ≥ 2 and 64 lgw ≤ Y ≤ lgn/α, where α = (Sw lg18 lgn)/(n lgn). Then
there exists a subset of inputs I∗ ⊆ I, with |I∗| ≥ |I|/2, and another ball-inheritance data
structure using S cells of w bits, answering queries in t− 1 probes with p+O(n lgn/ lg10 lgn)
published bits, and satisfying LαY (I) ≥ (1− 1/Z − 1/ lg lg3 n)n lgn/(αY) for all I ∈ I∗.

In laymans terms, the lemma states that we can decrease the number of probes of a data
structure by one, while only increasing the published bits with a lower order term. When
we do this, we maintain the essential property that the leaves still have high support, just
on a coarser zoom level. The Z factor is basically just a dirt factor. The proof of Lemma 4
can be found in the full version of the paper. In the following we use Lemma 4 to prove our
main result, Theorem 3.

Assume for contradiction that a ball-inheritance data structure exists satisfying t =
o(lg lgw n/ lgα), where α = (Sw lg18 lgn)/(n lgn). We proceed by repeatedly applying
Lemma 4 to eliminate all t probes of the data structure. In order to guarantee we can apply
Lemma 4 t times, we check the conditions for applying it. The conditions involve the number
of published bits p, the parameters Z and Y and |I|. The values of these parameters will
change for each application, thus we use p(i), Z(i), Y (i) and |I(i)| to denote these parameters
just before the i’th invocation of the lemma. For the first round, we have p(1) = 0 and
|I(1)| = n!. Note also that LY (I) = n lgn/Y for any Y before the first round. Thus we
choose Y (1) = 64 lgw to satisfy the conditions 64 lgw ≤ Y (1) ≤ lgn/α. This also means that
we are free to choose Z(1) ≥ 2 as we wish. We simply let Z(1) = lg3 lgn. Examining the
lemma, we conclude that our parameters evolve in the following way (assuming we do not
violate any of the conditions):

p(1+i) = O(i(n lgn/ lg10 lgn)), |I(1+i)| ≥ n!/2i, Y (1+i) = 64 lgw ·αi, Z(i) ≥ lg3 lgn/i.

Since we assumed t = o(lg lgw n/ lgα), this means that

p(1+t) = o(n lgn/ lg9 lgn), |I(1+t)| ≥ n!/ lgn, Y (1+t) = o(lgn), Z(1+t) ≥ lg2 lgn.

We conclude that we can apply our lemma for t rounds under the contradictory assumption.
Furthermore, the data structure we are left with answers queries in 0 probes on a subset
I∗ = I(1+t) of inputs, where |I∗| ≥ n!/ lgn. It has o(n lgn/ lg9 lgn) published bits and there
is some Y ∗ = o(lgn) such that LY ∗(I) ≥ (1− 1/ lg2 lgn)n lgn/Y ∗ for all I ∈ I∗. That this
is contradictory should not come as a surprise: our 0-probe data structure is capable of
answering queries about almost all leaves using only the o(n lgn/ lg9 lgn)� lg |I∗| published
bits. The formal argument we use to reach the contradiction is as follows: we show that the
0-probe data structure can be used to uniquely encode every input I ∈ I∗ into a bit string
of length less than lg(|I∗|) = lg(n!)− lg lgn bits. This gives the contradiction since there are
fewer such bit strings than inputs. We present the encoding and decoding algorithms in the
following:

ICALP 2016

92:8 Towards Tight Lower Bounds for Range Reporting on the RAM

Encoding. Let I ∈ I∗ be an input to encode. Observe that if we manage to encode the leaf
index reached by each ball in the root node’s list of balls, then that information completely
specifies I. With this in mind, we implement the 0-probe data structure above on I and
proceed as follows:
1. First we write down the published bits on input I. This cost o(n lgn/ lg9 lgn) bits.
2. For i = 1, . . . , n consider the i’th ball in the root node’s list of balls. Let bi denote the

index of the leaf reached by that ball. We write down lgn/2 bits for each such ball in
turn, specifying the subtree at depth lgn/2 that contains the leaf bi. This costs n lgn/2
bits.

3. Finally, we go through all leaf nodes from left to right. For a leaf b, we check if there is
an accepted query returning b as its answer amongst all queries in all nodes of depth at
most lgn/2. If so, we continue to the next leaf. Otherwise we write lgn bits denoting the
rank of the ball reaching b amongst balls the root node’s list of balls. If X is the number
of leaves with no accepted query reporting it in tree levels {0, . . . , lgn/2}, this step costs
X lgn bits.

Decoding. To recover I from the above encoding, we do as follows.
1. We first go through all nodes v of depth d for d = 0, . . . , lgn/2. For each such node, let

qv1 , . . . , q
v
n/2d denote the queries we can ask at node v, i.e. qvi asks for the leaf reached by

the i’th ball in v’s list of balls. We run the query algorithm for each such query in turn
using the published bits written in step 1. of the encoding procedure. Since our data
structure makes 0 probes, this returns the answer to each such accepted query, i.e. we
have collected a set Q of pairs (qvi , b) such that b is the index of the leaf reached by the
i’th ball in v’s list of balls.

2. We now partition Q into one set Qb for each leaf index b. The set Qb contains all pairs
(qvi , b′) ∈ Q such that b′ = b. There are precisely X empty such sets.

3. For each empty set Qb in turn (ordered based on b), we use the bits written in step 3. of
the encoding procedure to recover the rank of the ball reaching b amongst all balls in the
root node’s list of balls.

4. For every non-empty set Qb, pick an arbitrary pair (qvi , b) ∈ Qb. From this pair alone, we
know that the ball reaching b has rank i amongst all balls ending in a leaf of the subtree
rooted at v. Now initialize a counter ∆ to 0. Using the bits written in step 2. of the
encoding procedure, we now go through all balls in the root node’s list of balls in turn.
For the r’th ball, r = 1, . . . , n, we check the lgn/2 bits written for it and from this we
determine if the ball reaches a leaf in v’s subtree (possible since v can only be in the first
lgn/2 levels by construction). If so, we increment ∆ by 1. If this causes ∆ to reach i, we
conclude that the ball ending in b has rank r in the root node’s list of balls.

5. From the above steps, we have for every leaf b determined the rank of the ball reaching it
amongst all balls in the root node’s list of balls. This information completely specifies I.

Analysis. The encoding above costs

o(n lgn/ lg9 lgn) + n lgn/2 +X lgn

bits. Now observe that if Qb is empty for a leaf index b, this means QY ∗

i (b, I) is empty for
every i ∈ {0, . . . , lgn/(2Y ∗)− 1}. This gives LY ∗(I) ≤ n lgn/Y ∗ −X(lgn/(2Y ∗)). But we
know LY

∗(I) ≥ (1− 1/ lg2 lgn)n lgn/Y ∗ and we conclude

X ≤ 2n/ lg2 lgn.

A. Grønlund and K. G. Larsen 92:9

The encoding thus costs

n lgn/2 +O(n lgn/ lg2 lgn).

Since lg(n!) = n lgn−O(n), we conclude that our encoding uses no more than

lg(|I∗|)− n lgn/2 +O(n lgn/ lg2 lgn) = lg(|I∗|)− Ω(n lgn)

bits, which completes the proof.
We have thus shown t = Ω(lg lgw n/ lgα) where α = (Sw lg18 lgn)/(n lgn). In the

word-RAM, we assume w = Θ(lgn) and the lower bound becomes the claimed t =
Ω(lg lgn/(lg(S/n) + lg lg lgn)).

2.3 Eliminating Probes
In this section we prove Lemma 4. Recalling the intuition presented in Section 2.1, we want
to show that for a data structure with few published bits, the different accepted queries
reporting a fixed leaf index b ∈ [n] have to probe distinct cells in their first probe. If we can
establish this, we can pick a small random sample of memory cells and there are many of the
accepted queries that make their first probe in the sample.

To formalize the above, we define a memory cell c to be k-popular on input I, if at least k
accepted queries make their first probe in c on I. Define for every query-support set QYi (b, I)
the cell-support set CYi (b, I) as the set of memory cells that are read in the first probe of
a query in QYi (b, I) on input I. We measure to what extend the queries in QYi (b, I) probe
distinct cells using the following definitions.

I Definition 5. For an input I and value Y ∈ {1, . . . , lgn}, we say that a pair (b, i), where
b ∈ [n] and i ∈ {0, . . . , lgn/Y − 1}, is Y -scattered on input I if one of the following three
holds:
1. QYi (b, I) contains a query making 0 probes.
2. CYi (b, I) contains a w3-popular cell.
3. |CYi (b, I)| ≥ α/ lg6 lgn.
We define the Y -scatter-number of I, denoted ΓY (I), as the number of pairs (b, i) that are
Y -scattered on I.

If a query makes zero probes, all the information needed to answer it is contained in the
already published bits. There are very few w3-popular cells, so publishing all of them costs
few bits. Most interestingly, if the queries in each support QYi (b, I) set probe many distinct
cells in their first probe (case 3.), then a random sample of cells will contain at least one of
these cells with good probability.

We need the following lemma that captures the correspondence between large support
on zoom level Y , the properties maintained by our Probe Elimination Lemma, and large
scattering on a higher zoom level αY .

I Lemma 6. Let I be a set of inputs to the ball-inheritance problem where |I| ≥ n!/2n.
Assume a ball-inheritance data structure uses S cells of w bits, has p < n lgn/ lg9 lgn
published bits and satisfies LY (I) ≥ (1 − 1/Z)n lgn/Y for all I ∈ I for some parameters
Z ≥ 2 and 64 lgw ≤ Y ≤ lgn/α, where α = (Sw lg18 lgn)/(n lgn). Then there exists a
subset I∗ ⊆ I of inputs such that |I∗| ≥ |I|/2 and

ΓαY (I) ≥
(

1− 1
lg3 lgn

)
·
(

1− 1
Z

)
· n lgn
αY

.

for all I ∈ I∗.

ICALP 2016

92:10 Towards Tight Lower Bounds for Range Reporting on the RAM

We refer to the full version for the proof of Lemma 6, and use it to Prove Lemma 4 instead.
Let I be a set of at least n!/2n inputs to the ball inheritance problem. Assume furthermore
we are given a ball inheritance data structure that uses S cells of w bits, answers queries in t
probes, has p < n lgn/ lg9 lgn published bits, and satisfies LY (I) ≥ (1− 1/Z)n lgn/Y for all
I ∈ I for some parameters Z ≥ 2 and 64 lgw ≤ Y ≤ lgn/α where α = (Sw lg18 lgn)/(n lgn)
(as in the assumptions of Lemma 4 and Lemma 6). Let I∗ ⊆ I be the subset of I promised
by Lemma 6. Our goal is to construct a new ball inheritance data structure answering queries
in t− 1 probes for the inputs I∗ while publishing few bits and keeping LαY (I) fairly large
for all I ∈ I∗. Given an input I ∈ I∗, we keep the (old) p published bits and publish some
additional bits from our data structure as follows:
1. First we publish all memory cells that are w3-popular on input I. Since there are no

more than n lgn accepted queries, there are no more than n lgn/w3 popular cells. The
addresses and contents of all such cells can be described using O(n lgn/w2) = O(n/ lgn)
bits.

2. Next we collect all αY -scattered pairs (b, i) for input I. We remove those pairs for which
QαYi (b, I) contains a query making 0 probes, or CαYi (b, I) contains a w3-popular cell. By
definition, the remaining αY -scattered pairs (b, i) must satisfy |CαYi (b, I)| ≥ α/ lg6 lgn.
We now consider all subsets of n lgn/(w lg10 lgn) memory cells and publish the subset
P ∗ ⊆ [S] for which most remaining pairs (b, i) satisfies CαYi (b, I) ∩ P ∗ 6= ∅. Specifying
the addresses and contents of cells in P ∗ costs O(n lgn/ lg10 lgn) bits.

The query algorithm of our modified data structure is simple: We start running the old
query algorithm with the p “old” published bits and stop once one of the following happens:
1. If the old query algorithm rejects the query, we also reject it.
2. If the old query algorithm answers the query without any probes, we know the answer to

the query and return it.
3. Otherwise the old query algorithm makes at least one memory probe. The (address of

the) first cell probed, denoted c, can be determined solely from the old published bits.
Before making the actual probe, we check the newly published cells to see if c is amongst
them. If so, we have the contents of c in the published bits and therefore skip the probe.
We then continue executing the old query algorithm and have successfully reduced the
number of probes by one. If c was not published, we simply reject the query.

Clearly our new data structure answers queries in t−1 probes and has p+O(n lgn/ lg10 lgn)
published bits. What remains is to argue that LαY (I) is high for all I ∈ I∗ for this new data
structure. To distinguish the new data structure and the old, we use L̄, Q̄ and Γ̄ in place
of L,Q and Γ when referring to the new data structure. L,Q and Γ refers to the old data
structure.

So fix an I ∈ I∗. By our choice of I∗, we have

ΓαY (I) ≥
(

1− 1
lg3 lgn

)
·
(

1− 1
Z

)
· n lgn
αY

.

i.e. the old data structure has many pairs (b, i) that are αY -scattered on input I. By definition
of L̄αY (I), we need to lower bound the number of such pairs (b, i) that have Q̄αYi (b, I) non-
empty, i.e. at least one query reporting b in tree-levels {iαY, . . . , (i+ 1)αY − 1} is accepted
by our new query algorithm. For this, let (b, i) be a pair that was αY -scattered for I in
the old data structure. By definition of αY -scattered we know that QαYi (b, I) is non-empty.
Now observe that if QαYi (b, I) contains a query that made 0 probes, then that query is also
in Q̄αY (b, I). Similarly if QαYi (b, I) contains a query making its first probe in a w3-popular

A. Grønlund and K. G. Larsen 92:11

cell, then that query is also in Q̄αYi (b, I) since we publish all w3-popular cells. Hence
Q̄αYi (b, I) can be empty only if QαYi (b, I) contains no queries making 0 probes and no queries
probing a w3-popular cell. Since (b, i) was αY -scattered, this implies |CαYi (b, I)| ≥ α/ lg6 lgn.
Furthermore, we get that Q̄αYi (b, I) becomes empty only if none of these cells are in P ∗.

Letting µ = n lgn/(w lg10 lgn), we get that CαYi (b, I) has a non-zero intersection with
the following fraction of µ-sized cell sets:

1−
(
S−|CαYi (b,I)|

µ

)(
S
µ

) ≥ 1− (S − α/ lg6 lgn)!(S − µ)!µ!
S!(S − α/ lg6 lgn− µ)!µ!

≥ 1− (S − µ)α/ lg6 lgn

(S − α/ lg6 lgn)α/ lg6 lgn
=

1−
(
S − α/ lg6 lgn+ α/ lg6 lgn− µ

S − α/ lg6 lgn

)α/ lg6 lgn

= 1−
(

1− µ− α/ lg6 lgn
S − α/ lg6 lgn

)α/ lg6 lgn

.

Since α = (Sw lg18 lgn)/(n lgn) = S lg8 lgn/µ� µ/2, this is at least a

1−
(

1− µ

2S

)α/ lg6 lgn
≥ 1− exp

(
−αµ/(2S lg6 lgn)

)
≥ 1− 1/ lgn

fraction. Since we chose P ∗ to maximize the number sets CαYi (b, I) having a non-empty
intersection, we conclude that at least(

1− 1
lgn

)
·
(

1− 1
lg3 lgn

)
·
(

1− 1
Z

)
· n lgn
αY

≥
(

1− 1
Z
− 2
Z lg3 lgn

)
n lgn
αY

sets Q̄αYi (b, I) must be non-empty. Since Z ≥ 2, we finally conclude

L̄αY (I) ≥
(

1− 1
Z
− 1

lg3 lgn

)
n lgn
αY

.

References
1 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. New data structures for or-

thogonal range searching. In Proc. 41st IEEE Symposium on Foundations of Computer
Science, pages 198–207, 2000.

2 Lars Arge, Vasilis Samoladas, and Jeffrey Scott Vitter. On two-dimensional indexability and
optimal range search indexing. In Proc. 18th ACM Symposium on Principles of Database
Systems, pages 346–357, 1999.

3 Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

4 Gerth Stølting Brodal and Kasper Green Larsen. Optimal planar orthogonal skyline count-
ing queries. In Proc. 14th Scandinavian Workshop on Algorithms Theory, pages 110–121,
2014.

5 Timothy M. Chan, Kasper Larsen, and Mihai Pǎtraşcu. Orthogonal range searching on
the ram, revisited. In Proc. 27th ACM Symposium on Computational Geometry, pages
354–363, 2011. See also arXiv:1011.5200.

6 Timothy M. Chan and Bryan T. Wilkinson. Adaptive and approximate orthogonal range
counting. In Proc. 24th ACM/SIAM Symposium on Discrete Algorithms, pages 241–251,
2013.

7 Bernard Chazelle. Filtering search: a new approach to query answering. SIAM Journal on
Computing, 15(3):703–724, 1986. iddoi:10.1137/0215051.

8 Bernard Chazelle. Lower bounds for orthogonal range searching: I. the reporting case.
Journal of the ACM, 37(2):200–212, 1990.

ICALP 2016

http://dx.doi.org/10.1137/0215051

92:12 Towards Tight Lower Bounds for Range Reporting on the RAM

9 Johannes Fischer. Optimal succinctness for range minimum queries. In Proc. 9th Latin
American Theoretical Informatics Symposium, pages 158–169, 2010.

10 Kasper Green Larsen. Higher cell probe lower bounds for evaluating polynomials. In Proc.
53rd IEEE Symposium on Foundations of Computer Science, pages 293–301, 2012.

11 Yakov Nekrich. Orthogonal range searching in linear and almost-linear space. Computa-
tional Geometry: Theory and Applications, 42:342–351, 2009.

12 Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In Proc.
38th ACM Symposium on Theory of Computation, pages 232–240, 2006.

13 Mihai Pǎtraşcu and Mikkel Thorup. Higher lower bounds for near-neighbor and further
rich problems. SIAM Journal on Computing, 39(2):730–741, 2010.

14 Mihai Pǎtraşcu and Mikkel Thorup. Randomization does not help searching predecessors.
In Proc. 18th ACM/SIAM Symposium on Discrete Algorithms, pages 555–564, 2007.

15 Yaoyu Wang and Yitong Yin. Certificates in data structures. In Proc. 41st International
Colloquium on Automata, Languages, and Programming, pages 1039–1050, 2014.

16 Andrew Chi Chih Yao. Should tables be sorted? Journal of the ACM, 28(3):615–628, 1981.

	Introduction
	Range Reporting in the word-RAM
	Our Results

	Lower Bound Proof
	Main Ideas
	Deriving the Lower Bound
	Eliminating Probes

