2 research outputs found

    Hardware Accelerated DNA Sequencing

    Get PDF
    DNA sequencing technology is quickly evolving. The latest developments ex- ploit nanopore sensing and microelectronics to realize real-time, hand-held devices. A critical limitation in these portable sequencing machines is the requirement of powerful data processing consoles, a need incompatible with portability and wide deployment. This thesis proposes a rst step towards addressing this problem, the construction of specialized computing modules { hardware accelerators { that can execute the required computations in real-time, within a small footprint, and at a fraction of the power needed by conventional computers. Such a hardware accel- erator, in FPGA form, is introduced and optimized specically for the basecalling function of the DNA sequencing pipeline. Key basecalling computations are identi- ed and ported to custom FPGA hardware. Remaining basecalling operations are maintained in a traditional CPU which maintains constant communications with its FPGA accelerator over the PCIe bus. Measured results demonstrated a 137X basecalling speed improvement over CPU-only methods while consuming 17X less power than a CPU-only method

    Embedded CMOS Basecalling for Nanopore DNA Sequencing

    Get PDF
    DNA sequencing is undergoing a profound evolution into a mobile technology. Unfortunately the effort needed to process the data emerging from this new sequencing technology requires a compute power only available to traditional desktop or cloud-based machines. To empower the full potential of portable DNA solutions a means of efficiently carrying out their computing needs in an embedded format will certainly be required. This thesis presents the design of a custom fixed-point VLSI hardware implementation of an HMM-based multi-channel DNA sequence processor. A 4096 state (6-mer nanopore sensor) basecalling architecture is designed in a 32-nm CMOS technology with the ability to process 1 million DNA base pairs per second per channel. Over a 100 mm^2 silicon footprint the design could process the equivalent of one human genome every 30 seconds at a power consumption of around 5 W
    corecore