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Abstract

DNA sequencing is undergoing a profound evolution into a mobile technology.

Unfortunately the effort needed to process the data emerging from this new se-

quencing technology requires a compute power only available to traditional desk-

top or cloud-based machines. To empower the full potential of portable DNA

solutions a means of efficiently carrying out their computing needs in an embed-

ded format will certainly be required. This thesis presents the design of a custom

fixed-point VLSI hardware implementation of an HMM-based multi-channel DNA

sequence processor. A 4096 state (6-mer nanopore sensor) basecalling architec-

ture is designed in a 32-nm CMOS technology with the ability to process 1 million

DNA base pairs per second per channel. Over a 100 mm2 silicon footprint the

design could process the equivalent of one human genome every 30 seconds at a

power consumption of around 5 W.
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Chapter 1

Introduction

1.1 Motivation

The process of sequencing in the context of genetics refers to the act of determin-

ing the primary structure of a linear biomolecule, that is the sequence of molec-

ular sub-components of which a large molecule is comprised. Very commonly,

this biomolecule is the deoxyribose nucleic acid (DNA), the familiar double-helix

molecular arrangement and so-called “blueprint of life” found in the cells of ter-

restrial organisms. In the case of DNA, the primary structure is stipulated by

the sequence of its monomeric components, the nucleotides: Adenine (A), Cy-

tosine (C), Guanine (G), Thymine (T). A simplified diagram of DNA as well as

its message carrying alternate, RNA, along with their nucleotide constituents is

shown in Fig. 1.1.
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Figure 1.1: Comparison of a single-stranded RNA and a double-stranded DNA with their corresponding nucle-

obases. Image credit: Chemical Structures of Nucleobases c©Roland Mattern, CC BY-SA 3.0

As may be expected, sequencing DNA in terms of its three billion monomeric

constituents (in the case of the human genome) is extremely challenging. Since

the dawn of first-generation DNA sequencers in the late 70s [1], DNA sequencing

technology has been revolutionized and improved in many profound ways.

Presently, so-called third-generation DNA sequencers [2], emergent only over

the last 2-3 years, have been able to measure a single DNA molecule and pro-

duce a real-time stream of data in proportion to those measurements. That is, a

continuous electronic output signal related to the primary structure of the DNA

is available as soon as the molecule interacts with the sensor. This is a truly
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Figure 1.2: Oblique view of simplified nanopore structure.

profound development as it effectively endows molecular sensors with the ability

to identify not only structure, but also the influence of dynamic, temporal, phe-

nomena on that structure. Among these third-generation devices are molecular

sensor arrays based on a nanometer-sized orifice called a nanopore sensor [3].

An abstract sketch of a nanopore sensor apparatus is given in Fig. 1.2. As

shown, it is a small hole (≈ 2 nm in diameter) created within some thin support

(≈ 5 nm in thickness) structure through which a single DNA molecule may be

threaded by applying a voltage. As the molecule moves through the pore (i.e. as

it translocates) it disrupts a pre-established direct current (DC) baseline signal,

Idc, resulting in a modulated time-series as shown in Fig. 1.3. This measured

signal is proportional to the molecular make-up of the DNA, the aforementioned

monomers: A, C, G, and T. A suitable feature-detection device, the basecaller of
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Figure 1.3: Example illustration of modulated current through a nanopore while the light blue trace denotes

the baseline corrupted by noise.

concern in this thesis, is responsible for converting this time-series (the piecewise-

constant signal in Fig. 1.3) to text label estimates of the DNA’s molecular make-

up, that is, its primary structure. This step, the basecalling step, is a critical

part of the DNA sequencing process [4] and often directly follows a mixed-signal

pre-processing stage as shown in Fig. 1.4.

Nanopore-based sensor arrays housed in palm-sized packages as shown in

Fig. 1.5 have entered the market over the last two years with the ability to process

DNA at rates in excess of 100 bp/s (basepairs-per-second) over 100s of channels

for dozens of hours in-a-row leading to data generation in the 100s of GB per
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Figure 1.4: A block diagram sketch of the sensor, analog pre-processing, and basecaller.

Figure 1.5: A close up of the MinION. Image credit: Oxford Nanopore Technologies.
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“modest” experiment. These numbers are astonishing compared to the metrics

of their proof-of-concept nanopore predecessors reported 20 years ago [5]; orig-

inal demonstrations of nanopore sensors consisted of a large desktop apparatus

housing only one-sensor and lacked the ability to discern individual molecular con-

stituents of the DNA molecule. As the technology improves, in no small part due

to its close interface with CMOS (complementary metal-oxide-semiconductor)

microelectronics technology, substantially higher performance can be expected.

At this time, the information processing load from such DNA measuring de-

vices is handled by traditional desktop and cloud-based computers wherein crit-

ical processing blocks such as the aforementioned basecaller are implemented in

code. However, the extremely compact physical dimensions of the new sensor

platform call out for a similarly scaled compute resource. In other words, in-

stead of realizing key features of a third-generation sequencer’s data processors

in commodity CPUs it is critical to devise custom embedded hardware versions of

these blocks. Molecular sensing coupled with embedded measurement processing

offers the possibility of significantly miniaturize DNA sequencing units and hence

opens the door to an extremely broad range of application opportunities for DNA

sequencing [6].
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1.2 Approaches and Contributions

This thesis focuses on very-large-scale-integration (VLSI) implementations of the

basecalling block in nanopore-based molecular sensors. The intention is that spe-

cialized hardware blocks of this function will be included as at least a part of com-

plete embedded sequencing solutions for miniature, portable DNA sequencers.

Although as already mentioned this is just one part of a sophisticated DNA

sequencing pipeline [7], the basecalling step needs to process large amounts of

raw data. Thus, the basecalling step is especially advantageous for processing

with a dedicated compute engine. This advantage is amplified if we achieve real-

time basecalling functionality alongside the small form-factors already inherent to

micro/nano technologies. Such a combination of size and speed in DNA sequenc-

ing machines should be particularly critical in promoting the vision of ubiquitous

genomics [8] a scenario where the sequencing of biological molecules become com-

moditized and thus available to a broad range of the population. (e.g. real-time

Ebola surveillance [9])

In this thesis I detail the potential of CMOS technology for a real-time em-

bedded DNA basecaller for nanopore sensors. Key contributions of this research

include:
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1. Definition of a HMM-based algorithm for nanopore basecalling and its char-

acterization for fixed-point implementation.

2. The translation of this algorithm into a custom hardware implementation

(32-nm CMOS).

3. The expansion of the custom hardware basecaller implementation into a

multi-channel sequence processor.

4. The characterization of the physical performance potential of basecaller

ASICs over a broad design space.

1.3 Thesis Outline

The organization of this thesis is as follows:

In Chapter 2 the details of nanopore basecalling are discussed. Models for

outlining the conversion of DNA features to electronic signals are described and

the Viterbi algorithm used to convert these electronic signals to DNA bases ex-

plained.

In Chapter 3 the performance potential of the Viterbi-based basecaller is

quantified in terms of fixed-point operation and its performance placed in context

of other technologies.
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In Chapter 4 a single-channel 32-nm CMOS ASIC implementation of the

Viterbi-based basecaller is described, designed, and simulated.

In Chapter 5 the single-channel design is expanded to a multi-channel design

and its performance as part of a multi-core realization predicted.

In Chapter 6 conclusions from the thesis research are given and future work

discussed.

8



Chapter 2

Nanopore-Base Basecalling: Models and

Algorithms

2.1 Sequencing and Basecalling: The State-of-the-Art

As mentioned in Chapter 1, in the nucleic acid sequencing context, the term

basecalling refers to the process of converting physical measurements of molecules

to a text prediction of their primary structure. Due to a myriad of technical

limitations, no sequencing machine has yet managed to measure an entire genome

directly, rather many short regions of DNA (very roughly, 1000 base-long regions)

are physically sensed. Thus, basecalling only forms the initial primary structure

prediction of these samples; basecalling results are then subjected to ensuing

bioinformatics methods to reconstruct the genome being analyzed. These ensuing

9



sequencing procedures fall out of the scope of this thesis.

Besides the nanopore-based DNA measurement method outlined above, a

number of other molecule measurement methods exist. These alternate methods

are in fact the current market leaders in terms of sales of sequencing machines that

employ them and represent the so-called next-generation sequencers (NGS). Most

prominent today is the sequencing technology from the biotechnology company

Illumina whose DNA measurements consist of optical pulses [10]. In fact, since

the evolution of the original Sanger-based sequencing into a colour-fluorescence

sensing technique [11], the use of optical methods to detect molecule feature have

been dominant.

A relatively recent addition to sequencing methodology has been the charge-

based approach introduced by Ion Torrent [12]. Rather than measuring molecules

in terms of light, this method does so in terms of charge. The physical advantage

of this approach relative to the optical methods rests largely with the simplicity

and cost of the measured signal detector. In the case of optical measurement

methods, a sophisticated apparatus must be installed to adequately pick-up the

released light. In the case of charge-based method, a detector made out of stan-

dard CMOS technology as used in production microelectronic chip fabrication can

be used. The benefits are a significantly reduced system size (roughly from a large
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Figure 2.1: Representation of Both Illumina’s MiSeq and Life Technologies’ Ion Torrent Personal Genome

Machine (PGM) platforms which support a broad range of applications and library construction protocols.

Image credit: Retrogen Inc,. Platform Comparison. 2016. Web. 17 Oct. 2016.

table-top apparatus to a profile matching a desktop PC as shown in Fig. 2.1) and

cost (roughly $10,000s to $100,000s). Other methods in the field include the py-

rosequencing approach [13] and the zero-mode waveguide (ZMW) sensing method

from Pacific Bioscience [14]. These approaches also leverage optical techniques

as part of their sensing.

The rates at which NGS machines work are impressive compared to their

Sanger-based predecessors. Where even relatively advances Sanger-based ma-

chines can produce measurements corresponding to 1-2M base pairs (bp) per

day [15], core NGS machines like those from Illumina’s HiSeq family can approach

1M bp/s. Nanopore machines just now entering the market (e.g. the PrometION

from Oxford Nanopore Tech. — ONT) are capable of achieving throughputs on

11



this order as well. Also impressive are palm-sized sequencing units (e.g. the Min-

ION also from ONT) which can achieve raw measurement throughputs (not to be

confused with basecalling throughput) of roughly 25,000 bp/s. For context, such

a throughput gives the ability to sequence a human genome at 1× coverage in

three hours and 20 minutes. For a typical bacterial genome consisting of 1 Mbp,

the 1× coverge can be completed in 4 seconds.

The diversity of available sequencing systems and the current state of the se-

quencing market have largely combined to prevent the emergence of any one base-

calling standard. Unlike communication technologies like wireless and wireline

communicators, hard-disk drives, etc. the signal channel in sequencing machines

varies profoundly depending on the sensing modality and system employed (i.e.

optics, charge, flow cell, laser, chemistry, etc.) and therefore requires a basecaller

tuned to the sensor used. Further, given that the main market for sequencing

machines is still the research community [16, 17], very often end-users still rely

on (or prefer) custom-designed bioinformatics tools to process their signals, thus

diversifying the basecalling field. The various approaches developed in disparate

labs are typically shared and, besides the availability of proprietary solutions,

have given rise to an active open-source community providing a multitude of

options for sequencing, including basecalling.
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Examples of basecalling algorithms include phred [18] for traditional Sanger-

based methods (a very cost-effective and hence very common sequencing tech-

nique in many university research labs), BayesCall [19], Ibis [20] AYB [21] for

Illumina reads. For nanopore basecalling there is the proprietary Metrichor [22]

offered by ONT, and the recently released open-source approximation to Metri-

chor, Nanocall [23].

The majority of available basecalling software employs sophisticated machine

learning techniques to achieve its objective. This approach presents a tremen-

dous computational burden and thus requires substantial computing resources to

complete in a timely manner. To the author’s knowledge all these computations

are carried out on commodity PC’s, on either stand-alone desktops or in data

centres. For more established sequencing methods, the impact of the comput-

ing delay is tempered somewhat by the intricate sample preparation process (i.e.

the chemistry needed to prepare DNA for sequencing) and the sheer size of the

sequencing equipment (which tends to promote centralized processing facilities

where the need for extensive computing resources can be more easily accommo-

dated). The scientific, research, nature of the work may also relax somewhat the

need to minimize “time-to-data”.

The research in this thesis is motivated by an anticipation that these cir-
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cumstance will change as sequencer technology improves. The aforementioned

MinION, a small, cheap, high-speed device capable of interfacing closely to infor-

mation technology (IT) is an indication that this change may be imminent. Under

these circumstances the prevailing emphasis on improving IT speed, power, cost,

size, etc. should be stressed for future basecalling units as well.

2.2 Background on Nanopore-Based Molecular Sensing

Nanopore sensors have been extensively studied and discussed in the literature

over the last two decades [24]. Building on this extensive history of work, ONT

has fabricated an advanced nanopore sensor array and packaged it in a device

called the MinION [25] pictured in Chapter 1. The MinION is a hand-held

appliance capable of measuring the characteristics of a variety of biomolecules

including DNA, RNA, proteins or small molecules in real-time.

The MinION weighs around 100 grams with a maximum dimension of 10 cm

making it the first truly portable DNA measurement device. The device is also

capable of processing its samples quickly (at present DNA translocation rates in

excess of 200 nucleotide-per-second-per sensor are being achieved).

For example, using the MinION, Prof. Nick Loman, a professional in infec-

tious diseases at the University of Birmingham, obtained enough bacterial genome
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information to isolate the strain responsible for a Salmonella outbreak within 15

minutes of obtaining laboratory samples [26]. Another impressive demonstration

of the MinION’s potential was its application to real-time Ebola surveillance in

Guinea [9].

The cross section of a typical nanopore is shown in Fig. 2.2. These are modi-

fied protein complexes that occur in nature (e.g. as virulence factors) and form

openings with diameters on the order of 1-2 nm through which DNA can be

threaded. Typically, a lipid or synthetic bilayer roughly 5-nm in thickness is

used to support a pore above a pick-up electrode and readout apparatus and de-

scribed shortly. As indicated in Fig. 2.2 DNA may translocate through the pore

as a singled-sided strand.

A very active area of research in nanopore sensors is focused on the realiza-

tion of solid-state nanopores [27, 28, 29]. Unlike the molecular (i.e. biological)

nanopore pictured in Fig. 2.2 solid-state nanopores realize appropriately sized

apertures in materials commonly found in standard semiconductor processes such

as silicon-nitride. This form of nanopore sensor has undergone substantial ad-

vances over the last 15 years and is of interest given its more robust make-up

and potential to benefit from established semiconductor techniques used in mass

chip production. However, this type of nanopore sensor has yet to demonstrate
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Figure 2.2: Representation of biological pore cross-section undergoing DNA translocation.

functionality of sufficient quality to support DNA sequencing.

During operation, the nanopore is immersed in a conductive fluid and a direct

current (dc) voltage on the order of 100-mV is applied across the apparatus. This

applied dc voltage causes a dc baseline current to flow through the sensor, the

current consisting of the ionic charges in the conductive fluid. For typical sensors

this dc current is on the order of 100 pA. The translocation of DNA through

the nanopore causes fluctuations in the baseline current resulting in a modulated

waveform of the type illustrated in Fig. 2.3. These minute ionic current fluctu-

ations Isignal, which are about 50-pA peak-to-peak, assume a piecewise constant

16



Figure 2.3: The character of the electronic signal from the nanopore before amplification.

(albeit corrupted by noise) profile versus time. Each plateau is associated with an

event indicative of a discrete structural feature of the molecule segment currently

in the pore. In the case of DNA we would expect these events to be indicative of

the nucleotides that make up the molecule.

To process the small current signals available from the sensor an amplifica-

tion and signal processing chain is needed as shown in Fig. 2.4. Typically these

consist of an electrode capable of forming Ohmic contacts in an electrolyte, a tran-

simpedance pre-amplifier (TIA), low-pass filter (LPF), analog-to-digital (A/D)

converter and finally an event detector (ED). The TIA-LPF-A/D chain ampli-

fies, conditions, and digitizes the raw signal while the ED predicts the event

17



Figure 2.4: Generic mixed-signal CMOS amplification, filtering, and event detection responsible for converting

Isignal to digital sequence of event values, Vsignal to be processed by the basecaller.

levels contained therein in terms of voltage Vsignal (consisting of a mean, stan-

dard deviation, start time, and duration). The output of this chain is suitable

for processing by the basecalling engine (i.e. the basecaller).

In the majority of experimental nanopore studies the features noted in Fig. 2.4

have been accomplished with off-the-shelf technology, a set-up that encumbers

the apparatus with significant parasitics and hence compromises the event rate

(i.e. the maximum Isignal frequency) than can be accurately processed. Instead,

employing co-packaged nanopore-CMOS TIAs has been shown to boost the work-

able event rate by orders of magnitude [30]; integrating the remaining functions

noted above in silicon naturally follows [31]. As noted earlier, the integrated

function of interest in this thesis is the basecaller (BC) that follows the ED.

18



Figure 2.5: a) Abstraction of a nanopore responding to only one polymer unit (base). b) A nanopore responding

to a 3-mer. c) A nanopore responding to a 4-mer translocating at an angle. d) A nanopore responding to an

angled 3-mer with varying base features (e.g. methylation).

2.3 Realistic Nanopore Sensor Considerations

Ideally, a nanopore sensor used for DNA sequencing would be able to resolve

each polymer unit (i.e. nucleotide or base) comprising the molecule. An abstract

example of such a case is shown in Fig. 2.5a where the effective thickness of

the nanopore is represented to be on the order of a single base. In theory the

ramification of such a fine, single nucleotide, nanopore resolution would be a

Vsignal from the event detector exhibiting only four distinct event levels, one for

each of the four unique bases of which DNA is composed.
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In reality, nanopore sensors operating on complete DNA strands have not

yet been engineered to discern individual bases. With roughly 0.5 nm between

adjacent bases in a DNA strand and critical thickness around 2-nm it is clear

that more than one base will be traversing critical regions of the sensor at any

one time. Generally speaking then, the signal emerging from the nanopore will

be related to some number, k, of bases (i.e. a k-mer) traversing the pore and its

surroundings at any one moment rather than a single base.

An abstracted example of a pore processing a 3-mer is shown in Fig. 2.5b.

A clear implication of multiple bases contributing to an output signal is the an

increase in the number of observable event levels. Generally, if k bases contribute

to the signal at any one time we may expect that 4k unique event levels are

present in the sensor’s output signal.

Even more complications behind measured nanopore signals are possible, two

of which are represented in Fig. 2.5c and Fig. 2.5d. In Fig. 2.5c a strand is shown

translocating through the nanopore at some angle. It can be expected that such

a fluctuation in the orientation of translocation will have an impact on the signal

levels emerging from the pore. Another possibility, implied in Fig. 2.5d, involves

fluctuations in the bases themselves. For example, the addition of molecules

such as methyl groups in a process referred to as methylation [32, 33, 34] can be
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expected to result in a difference between the signals measured for unmodified

bases and their methylated counterparts.

2.4 Nanopore Basecalling: Basics and Limits

Ideally, the Isignal emerging from the nanopore sensor and consequently Vsignal

emerging from the ED would assume only four possible levels in relation to the

four unique bases (A, C, G, T) that constitute DNA. In this case, the BC following

the ED could conceivably be realized as a form of threshold detector. Such a

thresholding design could be referenced to some model of the expected output

voltage levels, that is, a training-based model associating event levels with bases

in a one-to-one fashion. Endowing the ED with optimum filtering properties (e.g.

matched filter) and the BC with optimum detection properties (e.g. maximum-

likelihood) would then achieve the basecalling function sought.

As established by the discussion in Section 2.3 a 4-level signal from the ED is

unlikely in realistic nanopore scenarios. As already noted above, more than one

base (i.e. a k-mer) contributes to the electrical signal emerging from the nanopore

sensor and the number of observed signal levels is exponentially proportional to

this. For example, in one simulation study [35] of solid-state nanopores the pore

was modelled as a system responsive to at least three bases at a time and hence
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produced a 43 = 64 level output. For the ONT sensor this value can reach levels

of 45 = 1024 and 46 = 4096.

In theory, a simple thresholding BC could still be used for the k-mer scenarios.

As long as each level is correctly identified by the thresholding unit, the BC

could associate its prediction with the appropriate k-mer, say, in a 3-mer case,

the base combination: ACT. Using the convention where the right-most letter

denotes the most recent base to enter the pore, we expect that the following

signal will correspond to one of CTA, CTC, CTG, or CTA 3-mers. Once a simple

thresholding unit identifies the appropriate k-mer it is then a simple matter of

comparing adjacent k-mer predictions to come up with the appropriate basecall.

For example, in the example above, if a signal associated with the 3-mer ACT is

followed by a signal associated with the the 3-mer CTG, the bascaller predicts

the base A to have entered the nanopore. An example of this process is shown

in Fig. 2.6.

In practice this means of level-by-level prediction is insufficient. The range

of the underlying signal Isignal (roughly 50 pA as noted in Section 2.2) is simply

too small to sustain 64+ levels while providing an adequate signal-to-noise-ratio

(SNR) for a simplistic level-by-level thresholding scheme.

An alternate strategy, presents in many fields concerned with the general
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Figure 2.6: An example of GAGACTGTTCT(A) going through the pore and ACT directly in the pore, so a

signal associated with the 3-mer ACT followed by a signal associated with the the 3-mer CTG. The basecaller

would call an A.
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problem of sequence labelling including communications, memory systems, speech

processing, etc. is to seek the identification of bases not by looking at one signal

at a time, but rather to do so by examining a sequence of multiple values. The

definition, design, and CMOS hardware realization such a sequence detection

scheme for the purpose of nanopore-based basecalling is explored in this thesis.

The general strategy is detailed in the following sections.

2.5 Hidden Markov Model of Nanopore Basecalling

As already stated, the signal ultimately presented to the BC for analysis from

the ED possesses the stepwise-constant characteristics sketched in Fig. 2.3 (i.e.

the constant level approximated from the noisy waveform by the ED). The levels

in the stepwise-constant curve constitute an event sequence {ei}i∈N indicative of

the molecule passing through the nanopore.

As described above, for a nanopore sensor that responds to a k-mer we would

in general expect the event levels ei (i.e. a discrete-time abstraction of Vsignal) to

assume any one of 4k different values. Ideally, these values would be drawn from

some discrete set {µj} of expected levels where j ∈ {0, . . . , 4k − 1}. These ex-

pected values may be extracted via some preliminary sensor modelling or learned

(or adapted) via some training method. The means of attaining the {µj} values
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are not considered in this thesis.

Of course in practice the {ei} produced by the ED will have been corrupted by

noise present in both the sensor and signal conditioning blocks. As a result, they

cannot be expected to match exactly the expected values {µj}. An appropriate

detection strategy, the aforementioned sequence detection, must be used in the

BC in order to decide which {µj} an {ei} is most likely derived from.

An intuitive means of describing a sequence detection strategy in the BC is via

a picture that conveys all the possible signals that may emerge from the sensor.

This is the trellis diagram sketched in Fig. 2.7. In essence it is an unrolled state-

diagram denoting all the states that a system may exhibit over some time index

i. Along the vertical dimension are shown all of the states which the nanopore

sensor may assume at any time that an event ei is sampled. In the context of

basecalling the states merely refer to the k-mer present in the pore ranging in

lexicographical order from AA. . .A to TT. . .T. As a result, the sensor system can

take on any one of 4k states. The horizontal dimension of the trellis denotes the

progression of time, or more generally, samples of event levels taken over time.

The arrows (also referred to as branches) drawn joining the states in Fig. 2.7

denote which states at stage i may transition to states at stage i + 1. Over

time, as the molecule translocates through the nanopore, the state of our sensor

25



Figure 2.7: HMM trellis model of possible nanopore state progression over time index i. For clarity not all

branch metrics labels are included.

effectively traverses the trellis diagram along some route (e.g. the one highlighted

in Fig. 2.7) comprised of these transitions/branches.

The job of a BC sequence detector is then to process the sequence of some

N event measurements (i.e. events from the ED) {ei, . . . , ei+N} and from this

predict the route traversed by the sensor k-mer states through the trellis. As

already mentioned, from these k-mer states, the actual bases may be derived (i.e.

called). To emphasize the point, the sequence detector ultimately arrives at its

decisions not by processing one event at a time, but rather a sequence of events.

In essence it considers the joint probability of a multitude of events to extract
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individual decisions.

Of course, a practical detector needs the trellis representation of the sensor’s

state progression to be informed by, and hence constrained, an appropriate model

of the sensors behaviour. Importantly, this implies that only a subset of the 4k

possible transitions from stage i to i + 1 be considered in the model. Clearly,

allowing for all possibilities will impose an impractical computational burden on

a detector seeking to find an optimum path through the trellis.

A basic transition constraint to impose is to allow only those transitions which

link states whose suffix at stage i (i.e last k−1 letters as in CT of the state ACT)

match the prefix of the state at stage i+ 1 (i.e. first k− 1 letters as in CT of the

state CTG). Such links denote the basic case where each event is indicative of a

new base in the pore. Given that 4 such transitions are possible from any one

state at i to the appropriate state at i+ 1 a total of 4k+1 transitions are possible

from one stage to the next.

The identification of which transitions are possible and which transitions are

not possible is an extreme version of weight assignment wherein some transitions

are weighted to zero and hence removed entirely from the diagram and thus

from consideration in the BC detector design. Typically more nuance is required

and the weights assigned to the transitions are based on their probability of
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occurrence. These weights are symbolized by ajj′ [i] which are metrics related to

the likelihood of a transition from state j at i to state j′ at i+ 1. We detail the

selection of the weights in Section 2.7. In summary the weights assigned to the

branches determine the probability of that branch contributing to the final path

identified by the BC sequence detector.

2.6 Basecalling Trellis Reduction

To the extent that the trellis discussed Section 2.5 informs BC detector hardware

design (to be explored in the following chapters), our effort can be simplified by

reducing the size of the trellis needed to describe our problem.

In particular only the 4k−1 need to be enumerated in the trellis since the

remaining (most recent) base contribution to the full k-mer in the pore is essen-

tially identified by the transition made from stage i to stage i+1. As a result the

number of states is reduced by a factor of 4 as is the total number of branches

between stages which is now 4k.

This reduction is helpful, but still leaves us with a substantial problem to

solve. In particular, over some discrete time-span N the BC observers N event

levels from the nanopore via a space comprised of 4k branches per stage. The

number of complete paths over N event levels thus takes on a complexity measure
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of O(exp(N ·k)). As discussed next a dynamic programming [36] strategy is used

to reduce this to a problem requiring the examination of O(N exp k) in search

for the optimum path.

2.7 Viterbi Detection

A BC sequence-based decision over the HMM can be made in a statistically

optimum fashion – in the maximum likelihood sense [37] – by employing the

Viterbi algorithm (VA) [38]. As outlined in the preceding sections, this algorithm

seeks to identify the path through the trellis over N time steps whose path metric

Γ (i.e. the sum of its constituent branch metrics ajj′) is a minimum. The VA

achieves this in an iterative fashion by executing:

1. Calculating the ajj′ values as some distance

ajj′ [i] = ‖ei, µ(j, j′)‖ (2.1)

where ei is the event level provided to the BC from the ED at time i and

µ(j, j′) is the expected event for a transition/branch form state j to j′.

2. Using these values to update the set of 4, candidate so-called path metrics,

Γj′ going into each possible state, j′, of the 4k−1 states constituting a stage
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at i

Γj′ [i] = {Γj[i− 1] + ajj′ [i] | j′ ∈ A, |A| = 4, A ∈ Z}. (2.2)

3. Culling the candidate paths at each state to arrive at a single survivor

path: Γj′ [i] = min(Γj′ [i]) and noting the state j from which the last step

constituting Γ′j originated; the latter serving as a means of recording the

states visited by the survivor paths retained at each state in stage i+ 1.

After N iterations over this three-step procedure a sequence with terminus

state out = arg minj(Γj[N ]) is selected and the preceding N − 1 states identified

by referring to the associated values stored as part of step 3). The entire process

is repeated to extract the next N -state sequence.

In the following chapter the performance prospects for this approach to base-

calling are explored. These explorations take particular note of the hardware

limitations that such an approach may face.
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Chapter 3

VA Basecalling Performance

3.1 Metrics and System Considerations

From a purely bioinformatics perspective, the performance of a basecaller largely

boils down to the accuracy with which it calls its bases. Since basecallers do not

work on complete genomes, but rather on randomly obtained snippets of genomes

(i.e. strands ranging from 10s to 1000s of bases depending on the sequencing

machine used) they require a two-step process to evaluate their accuracy in a

full experimental setting [39]. This involves first using an alignment algorithm to

find an acceptable match between the called strand and a pre-existing reference

genome of the target organism; for strands with acceptable alignment, the number

of bases in error divided by the total number of bases in the strand defines the

error-rate for that strand. An average error-rate can be obtained by averaging
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over all the extracted (per-strand) error rates.

In practice, the error rate can be highly variable on, not only the method of

alignment, but also on the measurement technique and even the location of the

sequencing instrument from which measurements are extracted (e.g. lower quality

results tend to occur at the fringes of the physical substrate to which DNA is

affixed [21]). For basecallers operating on signals from Illumina sequencers error

rates around 10−2 to 10−3 have been reported [39, 40]. For nanopore basecaller

the reported rates are presently much worse, around 3 to 3.5 ×10−1 [23] with

recent communications of rates around 10−1 [41].

A major reason for this difference between Illumina and nanopore accuracies

likely originates from the physical signal-to-noise ratio (SNR) available to both

systems. Illumina systems benefit from chemical amplification (the creation of

1000s of identical copies of the subject DNA effectively boosting the signal) and

extremely slow operation (per-sensor base signals are released roughly one per

half-hour, although this includes the need for cyclical chemical treatment be-

tween base signals). The high throughput of Illumina systems is realized by the

engineering of an extremely large number of sensors (on the order of 1 billion)

working in parallel.

Conversely, nanopore-based sensors work directly on one molecule, converting
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this structure’s translocation through the nanopore into a minuscule current.

Of course, this direct measurement brings with it tremendous advantages for

sequencing including the small form-factor to which nanopore machines conform.

The small signal levels however do leave the device prone to inaccuracies from

noise in the physical sensor apparatus as well as noise from the electronic circuitry

intended to condition the raw signal to a digital format for BC processing.

We next explore the error rates achievable for a BC using the VA described

in the previous chapter. During this analysis we consider a variety of param-

eter settings that may be encountered in realistic systems subject to hardware

limitations.

3.2 VA-Based BC Simulation System

As alluded to above, the performance achievable for a VA-enabled BC is quan-

tified in terms of the “base-error rate” (BER). The BER is a measure of the

fraction of bases incorrectly predicted by the BC. The simulations used to ob-

tain the BER consisting of a simplified representation of the nanopore detection

system described earlier. In particular, they modelled the nanopore sensor as a

filter with the transfer function shown in Fig. 3.1. This transfer function was

reported in [35] and obtained from molecular dynamics simulations on a solid-
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Figure 3.1: Electronic current transfer function of a solid-state nanopore as simulated in [35] vs. ordered 3-mer

numerical state index.

state nanopore responsive to a 3-mer. For this reason the transfer function of

Fig. 3.1 is shown on an ordinate consisting of 64 states, the states numbered from

0 (AAA) to 63 (TTT). A plot of this transfer function with electronic current

output levels arranged in ascending order is shown in Fig. 3.2.

In the BER simulations below, nanopore models that process not only 3-mer

molecules, but also, 4, 5, and 6-mer molecules are considered which naturally

exhibit 256, 1024, and 4096 states, respectively. The transfer functions of these

higher-order sensors are derived from the 64-state system of Fig. 3.1 by simply
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Figure 3.2: The nanopore transfer function of Fig. 3.1 with output current arranged in ascending order.

interpolating current levels between the original 64 states.

The input to the transfer function consists of a 4-alphabet text stream repre-

senting the 4 DNA base constituents (i.e. A’s, C’s, G’s, and T’s). This input is

made uniformly distributed. When applied to the corresponding sensor transfer

function, each input produces a corresponding event current output i[k] (depend-

ing also on the L preceding mer’s into the pore). To this signal, for each output,

a random Gaussian noise value, n[k] is added. Over the course of a simulation of

35



N events the average power of the input signal is approximated with

σ2
i =

1

N

∑
k

i2[k]−

(
1

N

∑
k

i[k]

)2

(3.1)

while the noise power is approximated with

σ2
n =

1

N

∑
k

n2[k]. (3.2)

The signal-to-noise ratio (SNR) of such a simulation is then given by

SNR =
σ2
i

σ2
n

. (3.3)

The net signal x[k] = i[k]+n[k] is input to the VA-enabled BC which processes

it and outputs its best prediction of the input text stream. The BER is then

calculated as the ratio of incorrectly called bases to the total number of bases

processed.

3.3 VA-Based BC Performance

In Fig. 3.3 the simulated BER as a function of the SNR of the signal presented

to the BC is shown. A number of scenarios are considered in this picture; among

these are the BER of VA BC’s implemented using double-precision floating-point

computation. There are the so called ideal curves in Fig. 3.3. As shown, 4 ideal

scenarios are considered, one for BC’s designed to process signals from 3-mer,
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Figure 3.3: Base error rate (BER) as a function of SNR for 3-mer, 4-mer, 5-mer, and 6-mer sensor examples

processed by a VA-enabled BC.

4-mer, 5-mer, and 6-mer sensors respectively. In a nod towards more simplified

hardware realizations however, all the BER results presented in Fig. 3.3 employ

a simple l1-norm to calculate (2.1). In contrast to branch calculations based on

the l2-norm, this approach reduces hardware complexity.

Raw basecalling (i.e. before application of further bioinformatics) of good

quality can attain BERs around 10−2-10−3 [42] and in the ideal VA examples

considered these are achieved at SNRs of roughly 19, 19.5, 21 and 24 dB for

the 6, 5, 4, 3-mer sensors respectively. The exact results are of course heavily

dependent on sensor specifics and these examples are meant to be illustrative.
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In Fig. 3.3 it is apparent that for a given SNR the BER of the BC operating

on 3-mers suffer’s relative to the BC operating on 6-mers. This is a consequence

of decreased redundancy; that is, to the extent that 6-mer signals are correlated

over a longer sequence of event samples than 3-mer signals they better inform the

sequence detection computations of the VA and thus result in more accurate base

calls. These results however may be slightly deceiving to the extent that available

signal ranges are finite and therefore as the number of event states increases the

difference between any one transition shrinks.

For example, for a given SNR and a given signal range (i.e. peak-to-peak

value) ∆I the transition from a 3-mer signal to a 6-mer signal involves an increase

in the number of event states by a factor of 46/43 = 64. It would seem that this

may lead to a significant degradation in base calling performance, but the fact

that only a subset (i.e. 4) of transitions are allowed between a state at i and its

ensuing state at i + 1 coupled with the fact that VA decisions are made over a

sequence of considerations blunts the impact of this. As the length of the mer

processed however the advantage drops.

By the time the SNR drops to 15 dB the ideal 4, 5, and 6-mer performance

is nearly identical with an error rate around 10%. The 3-mer system crosses

this boundary at about 17 dB SNR. In a mature sequencing system where SNRs
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typically exceed 100 (i.e. above 20 dB) are expected [43, 44] such performance

levels would be very good (e.g. the 6-mer ideal BC simulates to an error rate

of 0.4% at 20 dB). In present-day nanopore systems however the SNR currently

hovers around 10 dB [45] where all solutions converge to a base calling accuracy

of roughly 75%.

Besides the ideal BER results, Fig. 3.3 also shows the VA BC behaviour when

calculations are limited to coarse fixed-point calculations. This obviously has

benefits for hardware simplifications, but comes at the expense of less accurate

base calls. This penalty is quite substantial for a 6-bit system as shown in Fig. 3.3

with an extra 2.5 dB SNR required by the 6-mer system to maintain a BER or

1%. Similarly, for a 20-dB SNR the 6-bit calculation achieves a 3% error rate

compared to the ideal BER of 0.3% at that setting.

The character of the degradation from ideal to fixed-point calculations with

limited bit depth is shown in Fig. 3.4. Therein are indicated BER improvements

of 40-90% as the bit width is increased from 6 to 10 bits for 3, 4, 5, and 6-mer

sensing systems and BC’s operating on a signal with 20-dB SNR.

Under this SNR setting we see that even a 1-bit improvement from 6 to 7-

bit calculations has a significant impact on the accuracy of the results. Ensuing

increases clearly saturate by bit-depths of 10. For existing nanopore system with
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Figure 3.4: Relative BER at 20-dB SNR (referenced to BER at bit depth of 6) vs. bit depth for 6, 5, 4, and

3-mer sensors.

their relatively low SNRs, even a 6-bit implementation may not be out of the

question. This is evident from the converged BER performance seen in Fig. 3.3

for SNR below roughly 14 dB.

An examination of the base error rate for the 6-bit VA BC as lower SNR,

those between 5 and 10-dB is shown in Fig. 3.5. In this case it becomes clear

that noise effects become dominant and only marginal differences exist between

pores operating on different mer counts. From this picture it is also clear that

minimal sacrifice is made by employing a 6-bit event word size with which to do

the basecalling. Of the results shown, the biggest performance drop off between
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Figure 3.5: Base Error Rate for SNR below 10 dB.

the ideal (floating point) and the 6-bit implementation is that for the 6-mer

sensor.
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Chapter 4

Single-Channel Architectural and Physical

Implementation

4.1 Viterbi Detection Hardware Context

As a means of detecting data based on a sequence of observations the Viterbi

algorithm (VA) has found use in a multitude of IT applications. In practice it’s

role as a decoder of convolutional channel codes is probably its most prominent

use in hardware [38, 46, 47]. In this context it has been employed in wireless

cellular as well as deep-space communications [48, 49, 50, 49]. Another well-

know VA application in hardware IT is in magnetic signal read-out, specifically

hard-drive readers [51].

The data-rates at which these applications needed to operate require dedicated
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hardware (HW) implementations of the VA. Ensuing improvements in microelec-

tronic semiconductor technology have resulted in higher application data rates

and thus largely maintained the realization of these algorithms in specialty chips

(rather than migrating to commodity microprocessors). The designs achieved as

part of this pursuit serve as inspiration for the VA BC HW researched in this

thesis. However, it is the case that the application context in which the present

work is done requires substantial modifications to the art. Some of the differences

include the presence of potentially 1000s of states for the VA to keep track of in

sequencing applications (rather than on the order of 10s for IT). The number

of channels needed in sensing applications can also easily reach into the 1000s,

orders of magnitude greater than typical IT needs. The nature of the sensing

application may also allow the VA to operate with a much lower accuracy than

needed by VA’s in wireless or data-storage applications although high accuracy

would never be a drawback in sensing. Per-channel speed may also be quite

different, where IT applications can easily be required to handle data rates in

the 100’s or 1000’s of megabits per second, sensor applications, specifically DNA

sequencing applications currently operate at rates of roughly 100 times slower

than this (but given their poor signal quality are usually faced with a heavier

computational burden).
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4.2 Pipelined Viterbi Architecture

To maximize data throughput VA HW typically relies on the well-known strate-

gies of data parallelism (i.e. replication) [52] and pipelined parallelism as in the

architecture example in [53]. The VA is particularly amenable to data paralleliza-

tion, the simultaneous execution of identical operations on physically distinct, but

computationally identical blocks, and this effort for the base calling operation is

described in Section 4.3. The VA system design also stands to benefit from

pipelining and the approach considered for this aspect is outlined presently.

In the pipelining strategy, a calculation is distilled into a sequence of sub-

computations that communicate information only with the computational blocks

logically adjacent to them. The ability to break-up a problem and distribute

it along such a structure is a form of parallelism as each block can be simul-

taneously engaged in achieving a part of the total computation. Unlike data

parallelism, a significant savings in physical resources can be realized with such

a technique. The immediate drawback of pipelining is the latency incurred by

the traversal of a computation from the input sub-computation to the final out-

put sub-computation. For many streaming applications, real-time basecalling

included, this is not a significant issue.

A proposed 7-stage pipeline for the BC VA is as follows (note that each single
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activity does not mean it is executed in one clock):

1. Distance Generation (DG)

• Calculate the branch metric (i.e. distance ajj′ [i] in Ch. 2) for all

transitions modelled in the trellis

2. Path Metric Update (UP)

• Calculate all the new path Γ′j[i] = {Γj[i− 1] + ajj′ [i]}

3. Path Metric and Pointer Selection (SE)

• Identify minimum path: Γj′ [i] = min(Γj′ [i])

• Identify pointer to preceding state: ptrj′ [i] = arg minj(Γj′ [i])

4. Path Metric Referencing (RE)

• Select minimum path metric over all states: Γ[i] = min∀j(Γ
′
j[i])

• Store pointer to the minimum state ptr[i] = arg min∀j(Γ
′
j[i])

5. Normalize Path Metrics and Traceback (NO)

• Offset all path metrics by minimum: Γj′ [i]← Γj′ [i]− Γ[i]

6. Traceback (TB)

45



Figure 4.1: Illustrates an instruction execution pipeline of the VA logical-cycle datapath developed previously,

with replication in space. The segments are arranged horizontally, and data flows from left to right, syn-

chronously with the clock cycles.

• Identify next state to output from traceback unit

7. Output base (OB)

• Convert predicted state to its corresponding base call and output

Fig. 4.1 the temporal arrangement of the pipeline actions outlined above is

shown. As this diagram shows, every one of these instructions in the processor

is operative in every logical cycle, increasing the instruction execution rate by 7

times. Setting up storage registers between each state of the pipeline allows for

the gathering of regional results between cycles.
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4.3 Single-Channel Hardware Design

I now characterize two extremes of VA-based BC design to express the boundaries

of a design-space for nanopore based CMOS basecallers: a uni-processor (UP)

serial iterative architecture geared to process one state per cycle (i.e. one of 4k−1

states per trellis stage per clock cycle) and a node-parallel (NP) architecture

geared to process one stage per cycle (i.e. all 4k−1 states per trellis stage per

clock cycle). These approaches trade size for speed; the UP minimizes area at

the expense of speed while NP does the opposite. As described, the NP is the

extreme form of structural parallelism mentioned in Section 4.2.

A functional diagram of the NP is shown in Fig. 4.2; it is composed of three

main blocks: the state, the stage, and the traceback blocks. The system’s function

in terms of these blocks is now elaborated.

4.3.1 The State Block

The conversion of event input signals, ei, into base predictions starts with the

state block. A finite bit width of d is assumed for this input. This input, along

with previous calculations and the nanopore model is used.

For a NP architecture, the state block shown is one of 4k−1 identical com-

ponents (the jth block is drawn in Fig. 4.2) working in parallel; a classic data
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parallel arrangement. The objective of this block is to carry out the first three

steps of the pipeline strategy described above. That is the steps: DG, UP, and

SE.

For each state, j′, associated with time index i the state block’s branch metric

generator (BMG) computes the four branch metrics, ajj′ [i], associated with that

state. That is, the four possible transitions into that state.

As discussed earlier, this BMG calculation may take the form of the l1-norm

between the measured event signal and the expected model value. In Fig. 4.2

the four branch metrics emerging from the BMG are labelled with the subscript

4j, 4j − 1, 4j − 2, and 4j − 3, respectively denoting the four possible transitions

into state j′ (j is used in the subscript to simplify notation). This is a reflection

of the state labelling scheme employed in the present work where a state j (at

time i) may be transitioned into by any four states j (from time i− 1) with the

aforementioned four labels.

The branch metrics ajj′ [i] are then added to their corresponding path metrics

Γj[i − 1] which are available in the state block’s Path Metric MemoryKp . The

subscript Kp denotes the number of nanopore channels being processed by a

basecalling unit. The topic of multiple-channel basecalling is discussed in the

following chapter and for the present discussion Kp may be ignored or simply
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Figure 4.2: Block diagram of VA.

assumed to be Kp = 1.

The event input, ei, into the state block’s BMG at time i, with bit-depth d is

fed into all 4k−1 state blocks which, in aggregate, calculate all 4k candidate path

metrics in one clock cycle and then whittle them down to the 4k−1 survivor states

corresponding to time index i.

This reduction to 4k−1 states is done with the help of the minimum-argument

49



function arg mini that effectively creates a local pointer, ptl, to the state labels of

minimum distance path values (to j′) . Given that each state block only processes

the transitions pertinent to a state (i.e. the four transitions), these pointer values

are local; they are essentially just referenced to the state block’s four transition

calculations. In ensuing parts (i.e. the stage block discussed in Section 4.3.2) a

global state reference is computed. Since only four states are considered in each

state block the local pointers only required two bits.

The UP’s state block is identical to the NP’s state block saving the fact that

the UP has only one state block that executes the 4k states in series. The UP is

simply a time-multiplexed version of the NP system.

4.3.2 The Stage Block

The state block’s results are gathered and processed by the stage block. As

shown in Fig. 4.2 the stage block considers the 4k−1 survivor paths from the

preceding 4k−1 stage blocks and, using the arg min function, determines the global

minimum path metric Γg[i]. The pointers generated by the preceding states are

also organized in a scratchpad memory, the Pointer MemoryKp .

A coarse global pointer, ptg referencing the state block with the minimum path

is simultaneously computed. As discussed in Section 4.3.3, ptg is combined with
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ptl in the traceback block to identify the exact identity of states on the optimal

path through the trellis.

The stage block also re-references all accrued path metric calculations as indi-

cated by the subtractor present in the feedback path from the stage block to the

state block. This re-referencing at each stage prevents overflow in a fixed-point

system.

4.3.3 The Traceback Block

The pointers generated in the state and stage blocks are used to populate (with

ptl) and drive (with ptg) the traceback block’s M -register first-in-first-out (FIFO)

component. Specifically, the collection of 4k−1 2-bit ptl[i] pointers organized in

the preceding stage block are stored in the FIFO with every new sample of ei

at time index i. At the same time, ptg[i], is used to identify the state block

corresponding to the minimum metric.

The combination of ptl[i] and ptg[i] can be used to calculate ptl[i − 1] and

ptg[i− 1] (i.e. preceding minima). This process is repeated over the length of the

FIFO until it’s final (Mth) entry from which the emerging global pointer pto can

be used (with a logical shifter) to identify the base identity corresponding to the

input signal at time i−M (i.e. out[i−M ]).
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Figure 4.3: Example layout of a 64-state VA-based BC whose bitwidths is 6 in a 32-nm CMOS technology.
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4.4 Single-Channel Hardware Realization

An example layout of a VA BC in a 32-nm CMOS technology is shown in Fig. 4.3.

As with all the physical instantiations in this thesis, this construction was com-

pleted automatically with an electronic-design-automation (EDA) tool. In this

particular example, the layout was accomplished using IC Compiler from Synop-

sys [54].

Chip areas vary from 1202 µm2 for a 64-state NP design to 5102 µm2 for a

1024-state chip with bitwidth d = 6, a footprint ratio of 16× in line with the

boost in states processed.

Chip power shows a similar characteristic, with an average value of 1.5 mW

for the 64-state NP and 20 mW for its 1024-state counterpart.

The UP area advantage progressively increases as the bit depth grows, drop-

ping from 75% to 60% to 55% relative to NP at d = 6, 8, 10, respectively.
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Chapter 5

Multi-Channel Basecalling

5.1 Multi-Channel DNA Sequencing

The basecalling system considered in the preceding chapter operated on a sin-

gle event sequence {ei}. All advanced sequencers, including the nanopore-based

sequencer from ONT generate a multitude of event sequences simultaneously.

For example, ONT’s palm-sized MinION system consists of 512 sequencing chan-

nels [55]. each one originating with a nanopore sensor and ending with some

digital encoding device from which a corresponding {ei} sequence emerges. A

DNA sample consisting of 1000s of DNA strands (on average about 5,000 bases

per strand) is poured over the channels which then start to simultaneously op-

erate on whatever strands begin translocating through their respective nanopore

sensor.
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As the nanopore-technology matures these numbers are expected to scale.

Indeed, a desktop sequencing unit has already been developed that possesses

144,000 nanopore channels.

Given these practical circumstances we now propose a means of adapting the

one-channel BC described in the previous chapter for the multi-channel scenario.

5.2 Multi-Channel Basecaller Arrangement

A high-level block diagram of a proposed multi-channel BC is shown in Fig. 5.1.

The system may be imagined as an intellectual property (IP) block that would

be included as part of a broader system. A common scenario would be for the

system to be implemented as a stand-alone chip and interfaced to a bigger sys-

tem via a printed circuit board (PCB). A growing trend, especially for mature

communications technologies would be to realize the system as component part

of a system-on-chip (SoC) and thus serve as potential contributor to a broader

complex of applications (e.g. basecalling plus down-stream bioinformatics, en-

cryption, communications, etc.)

The multi-channel BC (MCBC) design assumes a two-level hierarchy that,

from the top, consists of a data parallel array of Kc basecalling cores. At the

second level of the hierarchy, each core is assumed to be able to process Kp
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Figure 5.1: Representation of the internal contructure of the bioinformatical IP containing multiple parallel

channels.
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individual nanopore signals. That is each of the Kc cores receives a d-bit wide

input, that input being comprised of Kp multiplexed nanopore channels. As a

result, the total number of nanopore channels that can be addressed by such a

design is

Kt = Kc ×Kp. (5.1)

In other words, the MCBC is intended to handle data from a sequencer that

operates Kt nanopore channels in parallel. In this thesis, the exact details of

this sequencer are not considered. Also not considered in detail is the dispatch

block that would be employed between the physical sequencer and the MCBC

chip. Certainly, at least by virtue of the Kp multiplexed signals per core input,

some pre-processing on raw sequencer data by a dispatch block is assumed by

the MCBC. This may be as simple as aggregating signals from a single multi-

nanopore sequencer. It may also take on a more sophisticated configuration,

as for example aggregating and multiplexing signals from a multitude of multi-

nanopore sequencers. As long as the MCBC is given even the implicit facility

to identify which signals belong to which nanopore it will be able to consistently

apply the sequence detection methods described in previous chapters to achieve

correct basecalling.
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5.3 I/O Considerations: Pins and Speeds

As with many high-performance application-specific integrated circuits (ASICs),

the MCBC can be challenged by the number of signal inputs, Kt that are required

to be processed. In particular, the physical footprint of an MCBC chip needs to

provide enough space to physically accommodate these inputs. These inputs may

appear simply as on-chip metal wires routing signals from other parts of a shared

silicon substrate (i.e. an SoC) setting or they may be routed in from outside the

chip via PCB traces onto package pins and then to metal pads on the chip.

Given the design arrangement described above, the total number of input and

output signals handled by the MCBC is

KBC = 2×Kc ×Kp. (5.2)

Assuming an event word size of d bits as noted above, the number of input bits

(and potentially individual input pads) can be expressed with

IBC = Kc × d (5.3)

=
Kt

Kp

× d. (5.4)

To sustain real-time operation this input would have to be clocked into the MCBC

at

fclk = Kp × fin (5.5)
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where fin is the frequency at which events ei that are unique to individual

nanopore channels enter the system. For a real-time system fin simply equals

the average rate at which bases move through (i.e. translocate) the nanopore sen-

sor and thus generate new event levels. Recently, marketed nanopore sequencing

technology has exceeded fin = 100 Hz. Prototype systems have been reported

with fin = 1000 Hz. Experimental laboratory systems have reached transloca-

tion rates of fin = 1 MHz. These numbers are clearly within the clock ranges

of modern CMOS systems such as microprocessors, but the number of channels

that must be processes and the complexity of the processing required to achieve

basecalling combine to make it challenging.

The number of output pins required by an MCBC may vary depending on

the output strategy. Assuming a completely parallel output (i.e. no serializer

employed at the output of the MCBC) a total of number of output bits

OBCp = Kc ×Kp × 2 (5.6)

would be generated where the factor of 2 denotes the fact that base calls assume

only one of four labels (i.e. A or C or G or T). As a result the data may simply

be clocked out at fin.

Alternatively, assuming each core produces a multiplexed output in agreement
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with its multiplexed input then the total number of output pins drops to

OBCm = Kc × 2 (5.7)

in agreement with (5.3) save the change to a 2-bit output from a d-bit input. In

this case the data is clocked out at the same rate as the input, that is at Kp×fin.

Finally the possibility of completely serializing the output (2-bit) word over

all cores is available in which case only two output pins, OBCs = 2 would be

needed and the data would be clocked out at a frequency of Kc × fclk.

To establish a grasp for the quantities involved one may consider nanopore-

based sequencers operating with Kt = 1000 nanopore channels that simultane-

ously gather signals and forward these to the MCBC (perhaps via an appropriate

dispatch). Indeed, existing palm-sized platforms already incorporate 2048 sensors

that are multiplexed in a redundant processing scheme to 512 channels. Given

the emergent nature of this technology, 1000 nanopore channel operation in a

mobile sequencer seems foreseeable for the near-term.

Assuming an MCBC with Kc = 10 cores, then each core would need to

multiplex Kp = 100 nanopore signal channels to sustain Kt = 1000. Assuming

an input of d = 10 bits then, as per (5.3), only 100 input pins would need to be

connected to the MCBC, each pin operating at fclk = 10 kHz, according to (5.5),

assuming an fin of 100 Hz. At the output, only OBCm = 20 pins would be needed
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in this configuration each pin also operating at 10 kHz. Imagining a nanopore

channel signal increase to fin = 1 MHz, the total number of pins (i.e. 120)

does not change but the clocking requirement at the input and output goes from

10 kHz to 100 MHz.

In context of contemporary technology, an I/O count of 120 is not onerous. For

example flagship field-programmable-gate-arrays (FPGAs) such as the Virtex-7

in an advanced FLG1925 package contain about 2000 pins of which about 60%,

1200 pins, may be used for signal I/O [56].

In an SoC setting where the MCBC would share a silicon substrate with other

blocks this scenario may is even more easily accommodated as the full flexibility

of on-chip interconnect could be leveraged. This includes not only the possibility

of delivering the inputs to practically any portion of the chip, but also the ability

to benefit from the minimal wiring pitch (conservatively, < 1 µm) available to IP

embedded with an SoC.

Less convenient of course is the case where the MCBC is implemented as a

stand-alone chip and must then somehow accommodate inputs provided via a

package as considered above. Such a connection suffers from much more restric-

tive constraints in terms of arrangement and pitch than an SoC. Two classic

chip-to-package interface options include periphery and area bonding [57]. The
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Figure 5.2: Representation of the pad distribution across a chip capable of accommodating area bonding.

former implies the use of wire bonds between the package and the chip’s pads,

the pads being distributed around the four edges of the chip. Area bonding refers

to the ability to make connections to the chip, not only at its periphery but over

its surface as well. A representative sketch of the top-view of a chip capable of

accommodating area bonding is shown in Fig. 5.2.

For a given pad-pitch, lp, and chip dimension lc =
√

Chip Area a periphery-

bound design can accommodate 4lc/lp inputs while an area-bound design can

accommodate l2c/l
2
p inputs. For a pad pitch of 90 µm [58, 59] and a modest

stand-alone design of lc = 5 mm the edge bonded design can accommodate 222

pads while the area bonded configuration could accommodate 3086 pads. This is

a clear advantage and a signal that even more aggressive scenarios than the one

considered above are possible. We return to this point in Section 5.4.
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Besides its ability to host many more I/Os, area bonding is beneficial for

power distribution since the global power distribution is allowed to be placed in

thick-film (greater than 10 µm normally) power planes in the package instead of in

thin-film (less than 1 um typically) wires on the chip. Nevertheless, area bonding

is a more costly proposition relative to periphery bonding due to sophisticated

process needed to solder it as well as the complex multilayer packages needed to

route the multitude of signals from the PCB [60].

5.4 Performance of 64-State MCBC

Fig. 5.3 conveys a more complete picture of the scalability of the VA MCBC

for real-time performance over input frequency fin at which nanopore event data

is introduced (i.e. the frequency of new data per nanopore channel) and clock

fclk frequency at which the BC’s VA is clocked. Its derivation and meaning are

elaborated on presently.

5.4.1 64-State MCBC Performance Derivation

In particular, Fig. 5.3 summarizes the potential of a 64-state (i.e. k = 3, 3-mer)

MCBC utilizing either NP or UP VA arrangements with the intention of process-

ing 1000s of nanopore signal channels in a streaming (i.e. real-time) fashion. The
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Figure 5.3: Real-time speed and power performance of a 64-state, 10-bit, 32-nm VA BC array in a 25 mm2

die for NP (x+solid) and UP (o+dashed) arrangements vs. clock rate, fclk, at different nanopore translocation

rates, fin (colour-coded).

64



input event word size is set to be d = 10 bits. A nanopore sensor capable of such

performance is described in [35].

The chip is designed using a 32-nm CMOS technology and is limited to a 25-

mm2 ASIC die. This total area assumption serves as a constraint. For reference,

such an area would take up about 25% of an Apple A6 iPhone 5 chip (also in a

32-nm CMOS technology) [61]. This is slightly below the percentage of silicon

real-estate currently consumed by the graphics-processing-unit (GPU) on the A6

SoC.

Another constraint imposed on the study concerns the I/O count. Although

we have described the chip in terms of an SoC environment we conservatively

constrain it to I/O numbers as might be imposed by an area bonded system.

Assuming the aforementioned 90-µm area pad pitch and assuming that 60% of

the available connections can be used for signals, then the 25-mm2 device can

support approximately 1,850 I/Os. In general the total number of 10-bit inputs

and outputs is

IObp =
Kt

Kp

· (d+ 2)

= Kc · (d+ 2) (5.8)

with the data clocked in at fin. Under the present assumption IObp = 1850
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limits the number of on-channel cores to Kc = 154, a somewhat restrictive value.

Assuming that the I/O can be clocked in and out in bit-serial fashion for each

word of size d then the I/O clocking requirement goes up to d · fin, a manageable

increase given the typical values of fin (i.e. ≤ 1 MHz as discussed below) while

changing the I/O balance to

IObs = Kc ·
(

1 +
2

d

)
. (5.9)

Thus, in the case of IObs = 1850, the one-channel core count can reachKc ≈ 1,500.

In the calculations associated with Fig. 5.3 the maximum core count does not

exceed Kc = 919 and thus conforms to this I/O constraint.

The fin to which the MCBC is assumed to be subject is swept from 102 Hz

(speeds realized in state-of-the-art commercial sequencers with modified nanopore

proteins as noted above) to 106 Hz (the unfettered rate of bp translocation

through nanopores) [24].

As outlined in Section 5.3 via (5.5), each NP core can multiplex Kp = fclk/fin

signals. For a UP core this multiplexing value must roughly be diminished by 4k

(i.e. 64 in the present example) for sensors that report events based on k-mer

inputs since the UP sequentially calculates the 4k transitions at each event index

while the NP does so simultaneously. By arraying Kc such BCs on the ASIC die

a total base pair throughput of H = Kc ×Kp × fin can be managed.
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The results shown in Fig. 5.3 use data obtained from simulations on the single-

channel BC (SCBC) discussed in the previous chapter interpolated to an MCBC

architecture. Power values are extracted using the Synopsys tool PrimeTime [62]

after synthesis and layout are completed using Synopsys DC Compiler [63] and

IC Compiler [54] tools respectively which allow for area estimation.

In the case of Kp = 1 the area of a MCBC core, Amc, is equal to the area of

a SCBC, Asc. Otherwise, the following approximation can be used

Amc = Asc · [(Kp − 1)Ptb + 1] (5.10)

where Ptb is the percentage of Asc consumed by the traceback block. The rea-

soning behind this associated is that whereas the state and stage blocks are only

needed to carry out blind computations on incoming data and hence can be re-

used over the different Kp input channels the traceback block must hold results

unique to each channel and hence needs a separate instantiation. In the designs

considered for this thesis Ptb ≈ 12%.

5.4.2 64-State MCBC Performance Summary

In Fig. 5.3 it thus approximated that at current nanopore sequencer translocation

rates (fin = 102 Hz) the manageable H can reach 7 × 105 bp/s, the equivalent

of 20 human genomes per day (or 1 human genome in 70 minutes), achieved at
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fclk = 0.1 MHz for a NP implementation and Kc = 7 and Kp = 1000. The power

consumption of this solution is 1.2 W with a power density of 4.8 W/cm2, well be-

low the 100 W/cm2 capability of contemporary air cooling technology [64]. Still,

from a smartphone technology perspective this power value is not insubstantial.

For example, average smartphone power consumption during a 2G cellular phone

call hovers around 1 W [65].

At the other extreme, processing input at the fin = 106 Hz peak, the NP ASIC

can achieve H = 7 × 109 bp/s (200k human genomes/day or 1 human genome

in about 0.5 seconds) a rate competitive with the abilities of core sequencing

facilities. The chip can accomplish this at fclk = 100 MHz with 10-W power

consumption and with a power flux of roughly 40 W/cm2.

In all cases we see a couple of interesting trends. First as the clock rate

is increased we observer an initial improved in H followed by a saturation in

performance and then a decline. The initial improvement is clearly due to the

area efficiency gained by multiplexing channels within cores. The area required

by a core increases as Kp goes up of course, but not as fast. Eventually however

the limited chip area (i.e. 25 mm2) prevents the ability to host more of these

large cores and the performance saturates and eventually drops as more Kp are

introduced.
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Another interesting trend is the drop in power noticeable for the NP designs

as the clock starts to increase from its minimum setting. Normally, the opposite

effect would be expected and indeed this increase eventually does occur as the

clock exceeds 1 MHz. Clearly, the multiplexing of channels into cores must be

at work and likely results in a power drop due to a trade-off between the static

power consumed in between switches of a large number (i.e. Kc) of cores and the

dynamic power of a limited set of cores.

Although its throughput performance would become seriously compromised

for state counts in excess of 64, a UP approach demonstrates the ability to perform

competitively relative to its NP counterpart. For example, the UP with fclk =

250 MHz achieves H = 3.7× 109 bp/s, about half of NP’s maximum throughput,

for fin = 1 MHz while consuming less than 10 W for a power density of 35 W/cm2.

5.5 Performance of 4096-State MCBC

The previous design analysis considered a MCBC for a 3-mer (64-state) nanopore

system. Although devices with such resolution are in development, present sys-

tems call for basecallers capable of analyzing state counts as high as 4096. We

consider the performance potential for an MCBC in such a context presently.

Given the scale of the problem, only the NP architecture was explored.
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5.5.1 Operations per Second

To gauge the complexity of a 4096 system, we start by enumerating the number of

fundamental core operations (COP) per event. Fundamental operations are define

here as add, subtract, compare, load, and store. With reference to the system

drawn in Fig. 5.4 the operations count per component block are as follows:

1. Controller: 8;

2. BMG: 4k+1+1;

3. PMU: (Kp+10)·4k−1+3;

4. Selector: 15·4k−1;

5. MPM: 5·4k−1;

6. Reductor: 4·4k−1+1;

7. Traceback: 90·4k−1+9Kp+40;

8. Baseout: 7;

These components result in a net COP count of

COP(k,Kp) = (Kp + 130) · 4k−1 + 9Kp + 60. (5.11)

Since a 4096 state system is assumed, k = 6. The setting of Kp is of course

variable, but due to the pipelined nature of its design and the fact that there is

a six event delay between the calculation of a branch metric and the availability
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Figure 5.4: Simplified block diagram of the VA BC.
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Figure 5.5: Estimate of core operations per second as a function of the nanopore sensor speed, fin, and channels

multiplexed per core, Kp.

of a normalized path metric choosing a Kp ≥ 6 is convenient.

Thus, under the assumption that am MCBC core process Kp = 6 nanopore

channels and that each nanopore channel produces events in response to a k = 6

mer the number of operations that a core must execute per event is COP(k =

6, Kp = 6) = 557,170.

Of course of most interest is a measure of the number of operations that the

unit is asked to perform in a unit time, in our case we invoke the core-operations-

per-second (COPS) metric. This measure, based on (5.11), is shown in Fig. 5.5

as a function of fin which, as already noted in (5.5), requires a clock (and hence
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an operations execution rate) of fclk = Kpfin.

Fig. 5.5 plots the COPS of the 4096 design at various Kp settings over the

range of present and anticipated future nanopore channel speeds, fin. At minimal

fin = 100 Hz and preferred Kp ≈ 10 we predict that COPS ≈ 108 are required of

the 4096-state core. As expected, increasing fin by four orders of magnitude to 1

MHz requires a COPS around 1012. Assuming the need to scale these to value by

100 to accommodate Kt = 1000 puts the potential COPS values at 1010–1014. To

put these values in context, Intel Core i7 chips have been benchmarked at over

1011 instructions per second on Dhrystone tests [66]. These numbers at least

imply the computational suitability of commodity processors like the i7 for the

problem at hand, but with their roughly 100 W consumption per chip [67], power

becomes a concern, and thus practically necessitates custom designs.

5.5.2 Power Consumption

Fig. 5.6 displays information about the power consumption of the 4096-state NP

MCBC Kp = 6 core at different clock speeds as extracted using the Synopsys

PrimeTime tool. The input word size for this design is d = 6.

As can be seen from this graph, when the clock speed is lower than 100 kHz,

the average power consumption is always at round 0.135 W. Between 10−1 MHz
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Figure 5.6: The comparison of power consumption and clock speed.

and 50 MHz, the average power consumption increases from round 0.135 W to

round 0.21 W. After 50 MHz, it goes dramatically to the peak at round 0.5

W when the clock speed is 100 MHz. These value are roughly two-orders of

magnitude higher than a 64-state core an understandable relationship given the

relative number of states being processes. The power efficiency of the custom

core relative to a commodity solution is clear however.

5.5.3 Core Counts

The number, Kc, of Kp = 6, d = 6 4096-state MCBC cores that could be ac-

commodated on a 5 × 5 mm2 and a 10 × 10 mm2 chip, respectively, are noted
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Figure 5.7: The number of 4096-state NP (Kp = 6) MCBC cores as a function of die area and clock speed.

in Fig. 5.7. The core counts are considered with respect to the clock frequency,

fclk, and the nanopore translocation frequency, fin. As expected, the core counts

scale linearly with area and we elaborate on the result for the 100-mm2 chip only

in the following discussion.

In the 100 mm2 chip a maximum of Kc = 24 4096-state cores can be placed

when fclk >= 6fin. This means a chip capable of handling Kt = 24 × 6 = 144

nanopore channels over input frequencies, fin, between 100 Hz and 100-MHz. At

fin = 100 Hz this means a net throughput 14.4 kbp/s or 0.4 human genomes

per 24-hours. With reference to Fig. 5.6 the power consumption of such a chip

is 0.135× 24 = 3.24 W, roughly 30× less than a run on a typical desktop CPU.

This basecalling speed is more than 10× faster than HMM-based basecallers

implemented on such CPUs [23].

Of course the above basecalling rate is a reflection of the input data rate
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and not the innate speed of the 4096-state basecaller. At fin = 1 MHz (and

hence a clock rate is greater than only 6-MHz) the basecalling rate goes up to

14.4 × 107 bp/s or 2.9 human genomes per minute at a power consumption of

0.2× 24 = 4.8 W.

Clearly, the ceiling for a custom 4096-state basecaller’s speed is high, but

more effort is needed in minimizing the physical footprint — the chip area — of

such a design. In this case, the design’s layout was entirely automated (using the

Synopsys IC Compiler tool). It is likely that an effort at hand guided placement

could result in a more efficient use of space and hence a higher throughput per

chip area.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis considered the design of specialized ASIC hardware for the processing

of signals for emerging miniature sequencing platforms. Roughly it considered

this problem over a design space spanning six orders of magnitude (i.e. the range

of the Viterbi state, bit-width, and input data speed).

At the present state of the sensing art with measured SNR below 10 dB, a

basecaller input bit width of 6-dB seems adequate, but should probably oper-

ate at around 8-10 bits once SNRs improve towards 20-dB levels (the values of

incumbent sequencing technologies).

For nanopores that produce signals in proportion to 3-mer DNA inputs, at

present only an experimental technology under development, a single-channel 32-
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nm CMOS basecalling core can be implement in a space of only 1202 µm2. For

a comparable SoC (e.g. the 32-nm Apple A6) 380 such cores can be place in an

area equivalent to the footprint of the GPU IP.

The potential for data throughput of such systems was explored in Chapter

5 where an arrangement of 445 64-state 32-nm cores with 10 channels per core

could be placed within a 25 µm2 area and, assuming a translocation rate of

1 Mbp/s per nanopore channel achieve the equivalent of calling a human genome

in less than one second. Although actually achieving this rate depends on a

sequencing sensor system capable of providing measurements at this rate from

a multitude of channels, the trajectory of sequencer advances does not rule-out

such a scenario. Further, the fact that such a calculation could be done at a

power level of roughly 2 W underscores the advantage of this approach relative

to desktop implementations which range around 100 W.

More contemporary scenarios were considered assuming a 4096-state 32-nm

multi channel implementation. Although certainly much more resource inten-

sive than its 64-state counterpart, the 4096-state implementation was predicted,

in a 100 mm2 silicon footprint and per-nanopore channel translocation rate of

1 Mbp/s, to achieve a throughput equivalent to about one human genome every

30 seconds. This is achieved at a power consumption of around 5 W. Again, these
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value far outperform what is possible using commodity computing hardware.

6.2 Future Work

Improvements on the work presented herein could be made on a number of

fronts. Perhaps the most pressing need is to demonstrate the performance lev-

els predicted herein with actual measurements. An implementation in field-

programmable-gate-array (FPGA) form could serve as an initial and very relevant

step towards this.

Further, although the performance levels of the 4096-state design are impres-

sive assuming a high enough nanopore channel input (i.e. 1 Mbp/s), present

systems operate at four orders of magnitude below this value. For basecaller

ASIC designers this implies that slower inputs must be multiplexed more effi-

ciently per core, in other words each core must be kept sufficiently busy for a

given operating clock. The present 4096-state system fails at this challenge for

nanopore translocations speeds of 100 bp/s where its throughput is equivalent to

only 0.4 human genomes per 24 hours.

Another improvement to the design would fall back on the construction of a

more sophisticated trellis. The present design assumes that each new input to

the base caller corresponds to a new base, but the measurement process may be
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less ideal than this. Possible complications include the possibility that adjacent

measurements correspond to the same base or that a measurement of a base

is missed altogether. A statistical means of accounting for such behaviour is

possible, but requires a more sophisticated trellis and hence a more complex

hardware implementation.
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