167 research outputs found

    Hardware implementation of elliptic curve Diffie-Hellman key agreement scheme in GF(p)

    Get PDF
    With the advent of technology there are many applications that require secure communication. Elliptic Curve Public-key Cryptosystems are increasingly becoming popular due to their small key size and efficient algorithm. Elliptic curves are widely used in various key exchange techniques including Diffie-Hellman Key Agreement scheme. Modular multiplication and modular division are one of the basic operations in elliptic curve cryptography. Much effort has been made in developing efficient modular multiplication designs, however few works has been proposed for the modular division. Nevertheless, these operations are needed in various cryptographic systems. This thesis examines various scalable implementations of elliptic curve scalar multiplication employing multiplicative inverse or field division in GF(p) focussing mainly on modular divison architectures. Next, this thesis presents a new architecture for modular division based on the variant of Extended Binary GCD algorithm. The main contribution at system level architecture to the modular division unit is use of counters in place of shift registers that are basis of the algorithm and modifying the algorithm to introduce a modular correction unit for the output logic. This results in 62% increase in speed with respect to a prototype design. Finally, using the modular division architecture an Elliptic Curve ALU in GF(p) was implemented which can be used as the core arithmetic unit of an elliptic curve processor. The resulting architecture was targeted to Xilinx Vertex2v6000-bf957 FPGA device and can be implemented for different elliptic curves for almost all practical values of field p. The frequency of the ALU is 58.8 MHz for 128-bits utilizing 20% of the device at 27712 gates which is 30% faster than a prototype implementation with a 2% increase in area utilization. The ALU was tested to perform Diffie-Hellman Key Agreement Scheme and is suitable for other public-key cryptographic algorithms

    FPGA IMPLEMENTATION FOR ELLIPTIC CURVE CRYPTOGRAPHY OVER BINARY EXTENSION FIELD

    Get PDF
    Elliptic curve cryptography plays a crucial role in network and communication security. However, implementation of elliptic curve cryptography, especially the implementation of scalar multiplication on an elliptic curve, faces multiple challenges. One of the main challenges is side channel attacks (SCAs). SCAs pose a real threat to the conventional implementations of scalar multiplication such as binary methods (also called doubling-and-add methods). Several scalar multiplication algorithms with countermeasures against side channel attacks have been proposed. Among them, Montgomery Powering Ladder (MPL) has been shown an effective countermeasure against simple power analysis. However, MPL is still vulnerable to certain more sophisticated side channel attacks. A recently proposed modified MPL utilizes a combination of sequence masking (SM), exponent splitting (ES) and point randomization (PR). And it has shown to be one of the best countermeasure algorithms that are immune to many sophisticated side channel attacks [11]. In this thesis, an efficient hardware architecture for this algorithm is proposed and its FPGA implementation is also presented. To our best knowledge, this is the first time that this modified MPL with SM, ES, and PR has been implemented in hardware

    Hardware Implementations of Scalable and Unified Elliptic Curve Cryptosystem Processors

    Get PDF
    As the amount of information exchanged through the network grows, so does the demand for increased security over the transmission of this information. As the growth of computers increased in the past few decades, more sophisticated methods of cryptography have been developed. One method of transmitting data securely over the network is by using symmetric-key cryptography. However, a drawback of symmetric-key cryptography is the need to exchange the shared key securely. One of the solutions is to use public-key cryptography. One of the modern public-key cryptography algorithms is called Elliptic Curve Cryptography (ECC). The advantage of ECC over some older algorithms is the smaller number of key sizes to provide a similar level of security. As a result, implementations of ECC are much faster and consume fewer resources. In order to achieve better performance, ECC operations are often offloaded onto hardware to alleviate the workload from the servers' processors. The most important and complex operation in ECC schemes is the elliptic curve point multiplication (ECPM). This thesis explores the implementation of hardware accelerators that offload the ECPM operation to hardware. These processors are referred to as ECC processors, or simply ECPs. This thesis targets the efficient hardware implementation of ECPs specifically for the 15 elliptic curves recommended by the National Institute of Standards and Technology (NIST). The main contribution of this thesis is the implementation of highly efficient hardware for scalable and unified finite field arithmetic units that are used in the design of ECPs. In this thesis, scalability refers to the processor's ability to support multiple key sizes without the need to reconfigure the hardware. By doing so, the hardware does not need to be redesigned for the server to handle different levels of security. Unified refers to the ability of the ECP to handle both prime and binary fields. The resultant designs are valuable to the research community and industry, as a single hardware device is able to handle a wide range of ECC operations efficiently and at high speeds. Thus, improving the ability of network servers to handle secure transaction more quickly and improve productivity at lower costs

    Coupled FPGA/ASIC Implementation of Elliptic Curve Crypto-Processor

    Full text link

    Efficient Arithmetic for the Implementation of Elliptic Curve Cryptography

    Get PDF
    The technology of elliptic curve cryptography is now an important branch in public-key based crypto-system. Cryptographic mechanisms based on elliptic curves depend on the arithmetic of points on the curve. The most important arithmetic is multiplying a point on the curve by an integer. This operation is known as elliptic curve scalar (or point) multiplication operation. A cryptographic device is supposed to perform this operation efficiently and securely. The elliptic curve scalar multiplication operation is performed by combining the elliptic curve point routines that are defined in terms of the underlying finite field arithmetic operations. This thesis focuses on hardware architecture designs of elliptic curve operations. In the first part, we aim at finding new architectures to implement the finite field arithmetic multiplication operation more efficiently. In this regard, we propose novel schemes for the serial-out bit-level (SOBL) arithmetic multiplication operation in the polynomial basis over F_2^m. We show that the smallest SOBL scheme presented here can provide about 26-30\% reduction in area-complexity cost and about 22-24\% reduction in power consumptions for F_2^{163} compared to the current state-of-the-art bit-level multiplier schemes. Then, we employ the proposed SOBL schemes to present new hybrid-double multiplication architectures that perform two multiplications with latency comparable to the latency of a single multiplication. Then, in the second part of this thesis, we investigate the different algorithms for the implementation of elliptic curve scalar multiplication operation. We focus our interest in three aspects, namely, the finite field arithmetic cost, the critical path delay, and the protection strength from side-channel attacks (SCAs) based on simple power analysis. In this regard, we propose a novel scheme for the scalar multiplication operation that is based on processing three bits of the scalar in the exact same sequence of five point arithmetic operations. We analyse the security of our scheme and show that its security holds against both SCAs and safe-error fault attacks. In addition, we show how the properties of the proposed elliptic curve scalar multiplication scheme yields an efficient hardware design for the implementation of a single scalar multiplication on a prime extended twisted Edwards curve incorporating 8 parallel multiplication operations. Our comparison results show that the proposed hardware architecture for the twisted Edwards curve model implemented using the proposed scalar multiplication scheme is the fastest secure SCA protected scalar multiplication scheme over prime field reported in the literature

    Computer Architectures for Cryptosystems Based on Hyperelliptic Curves

    Get PDF
    Security issues play an important role in almost all modern communication and computer networks. As Internet applications continue to grow dramatically, security requirements have to be strengthened. Hyperelliptic curve cryptosystems (HECC) allow for shorter operands at the same level of security than other public-key cryptosystems, such as RSA or Diffie-Hellman. These shorter operands appear promising for many applications. Hyperelliptic curves are a generalization of elliptic curves and they can also be used for building discrete logarithm public-key schemes. A major part of this work is the development of computer architectures for the different algorithms needed for HECC. The architectures are developed for a reconfigurable platform based on Field Programmable Gate Arrays (FPGAs). FPGAs combine the flexibility of software solutions with the security of traditional hardware implementations. In particular, it is possible to easily change all algorithm parameters such as curve coefficients and underlying finite field. In this work we first summarized the theoretical background of hyperelliptic curve cryptosystems. In order to realize the operation addition and doubling on the Jacobian, we developed architectures for the composition and reduction step. These in turn are based on architectures for arithmetic in the underlying field and for arithmetic in the polynomial ring. The architectures are described in VHDL (VHSIC Hardware Description Language) and the code was functionally verified. Some of the arithmetic modules were also synthesized. We provide estimates for the clock cycle count for a group operation in the Jacobian. The system targeted was HECC of genus four over GF(2^41)

    High speed world level finite field multipliers in F2m

    Get PDF
    Finite fields have important applications in number theory, algebraic geometry, Galois theory, cryptography, and coding theory. Recently, the use of finite field arithmetic in the area of cryptography has increasingly gained importance. Elliptic curve and El-Gamal cryptosystems are two important examples of public key cryptosystems widely used today based on finite field arithmetic. Research in this area is moving toward finding new architectures to implement the arithmetic operations more efficiently. Two types of finite fields are commonly used in practice, prime field GF(p) and the binary extension field GF(2 m). The binary extension fields are attractive for high speed cryptography applications since they are suitable for hardware implementations. Hardware implementation of finite field multipliers can usually be categorized into three categories: bit-serial, bit-parallel, and word-level architectures. The word-level multipliers provide architectural flexibility and trade-off between the performance and limitations of VLSI implementation and I/O ports, thus it is of more practical significance. In this work, different word level architectures for multiplication using binary field are proposed. It has been shown that the proposed architectures are more efficient compared to similar proposals considering area/delay complexities as a measure of performance. Practical size multipliers for cryptography applications have been realized in hardware using FPGA or standard CMOS technology, to similar proposals considering area/delay complexities as a measure of performance. Practical size multipliers for cryptography applications have been realized in hardware using FPGA or standard CMOS technology. Also different VLSI implementations for multipliers were explored which resulted in more efficient implementations for some of the regular architectures. The new implementations use a simple module designed in domino logic as the main building block for the multiplier. Significant speed improvements was achieved designing practical size multipliers using the proposed methodology

    Hardware Architectures for Post-Quantum Cryptography

    Get PDF
    The rapid development of quantum computers poses severe threats to many commonly-used cryptographic algorithms that are embedded in different hardware devices to ensure the security and privacy of data and communication. Seeking for new solutions that are potentially resistant against attacks from quantum computers, a new research field called Post-Quantum Cryptography (PQC) has emerged, that is, cryptosystems deployed in classical computers conjectured to be secure against attacks utilizing large-scale quantum computers. In order to secure data during storage or communication, and many other applications in the future, this dissertation focuses on the design, implementation, and evaluation of efficient PQC schemes in hardware. Four PQC algorithms, each from a different family, are studied in this dissertation. The first hardware architecture presented in this dissertation is focused on the code-based scheme Classic McEliece. The research presented in this dissertation is the first that builds the hardware architecture for the Classic McEliece cryptosystem. This research successfully demonstrated that complex code-based PQC algorithm can be run efficiently on hardware. Furthermore, this dissertation shows that implementation of this scheme on hardware can be easily tuned to different configurations by implementing support for flexible choices of security parameters as well as configurable hardware performance parameters. The successful prototype of the Classic McEliece scheme on hardware increased confidence in this scheme, and helped Classic McEliece to get recognized as one of seven finalists in the third round of the NIST PQC standardization process. While Classic McEliece serves as a ready-to-use candidate for many high-end applications, PQC solutions are also needed for low-end embedded devices. Embedded devices play an important role in our daily life. Despite their typically constrained resources, these devices require strong security measures to protect them against cyber attacks. Towards securing this type of devices, the second research presented in this dissertation focuses on the hash-based digital signature scheme XMSS. This research is the first that explores and presents practical hardware based XMSS solution for low-end embedded devices. In the design of XMSS hardware, a heterogenous software-hardware co-design approach was adopted, which combined the flexibility of the soft core with the acceleration from the hard core. The practicability and efficiency of the XMSS software-hardware co-design is further demonstrated by providing a hardware prototype on an open-source RISC-V based System-on-a-Chip (SoC) platform. The third research direction covered in this dissertation focuses on lattice-based cryptography, which represents one of the most promising and popular alternatives to today\u27s widely adopted public key solutions. Prior research has presented hardware designs targeting the computing blocks that are necessary for the implementation of lattice-based systems. However, a recurrent issue in most existing designs is that these hardware designs are not fully scalable or parameterized, hence limited to specific cryptographic primitives and security parameter sets. The research presented in this dissertation is the first that develops hardware accelerators that are designed to be fully parameterized to support different lattice-based schemes and parameters. Further, these accelerators are utilized to realize the first software-harware co-design of provably-secure instances of qTESLA, which is a lattice-based digital signature scheme. This dissertation demonstrates that even demanding, provably-secure schemes can be realized efficiently with proper use of software-hardware co-design. The final research presented in this dissertation is focused on the isogeny-based scheme SIKE, which recently made it to the final round of the PQC standardization process. This research shows that hardware accelerators can be designed to offload compute-intensive elliptic curve and isogeny computations to hardware in a versatile fashion. These hardware accelerators are designed to be fully parameterized to support different security parameter sets of SIKE as well as flexible hardware configurations targeting different user applications. This research is the first that presents versatile hardware accelerators for SIKE that can be mapped efficiently to both FPGA and ASIC platforms. Based on these accelerators, an efficient software-hardwareco-design is constructed for speeding up SIKE. In the end, this dissertation demonstrates that, despite being embedded with expensive arithmetic, the isogeny-based SIKE scheme can be run efficiently by exploiting specialized hardware. These four research directions combined demonstrate the practicability of building efficient hardware architectures for complex PQC algorithms. The exploration of efficient PQC solutions for different hardware platforms will eventually help migrate high-end servers and low-end embedded devices towards the post-quantum era
    • …
    corecore