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Abstract

As the amount of information exchanged through the network grows, so does the de-

mand for increased security over the transmission of this information. As the growth of

computers increased in the past few decades, more sophisticated methods of cryptography

have been developed. One method of transmitting data securely over the network is by

using symmetric-key cryptography. However, a drawback of symmetric-key cryptography

is the need to exchange the shared key securely. One of the solutions is to use public-key

cryptography.

One of the modern public-key cryptography algorithms is called Elliptic Curve Cryptog-

raphy (ECC). The advantage of ECC over some older algorithms is the smaller number of

key sizes to provide a similar level of security. As a result, implementations of ECC are much

faster and consume fewer resources. In order to achieve better performance, ECC operations

are often offloaded onto hardware to alleviate the workload from the servers’ processors.

The most important and complex operation in ECC schemes is the elliptic curve point

multiplication (ECPM). This thesis explores the implementation of hardware accelerators

that offload the ECPM operation to hardware. These processors are referred to as ECC pro-

cessors, or simply ECPs. This thesis targets the efficient hardware implementation of ECPs

specifically for the 15 elliptic curves recommended by the National Institute of Standards

and Technology (NIST).

The main contribution of this thesis is the implementation of highly efficient hardware for

scalable and unified finite field arithmetic units that are used in the design of ECPs. In this

thesis, scalability refers to the processor’s ability to support multiple key sizes without the

need to reconfigure the hardware. By doing so, the hardware does not need to be redesigned

for the server to handle different levels of security. Unified refers to the ability of the ECP

to handle both prime and binary fields. The resultant designs are valuable to the research

community and industry, as a single hardware device is able to handle a wide range of ECC

operations efficiently and at high speeds. Thus, improving the ability of network servers to

handle secure transaction more quickly and improve productivity at lower costs.
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Chapter 1

Introduction

The growth of secure online transactions in recent years has created a demand for higher

security needs for information transmitted over the Internet, which requires servers of online

service providers to process a large number data coming from all the users. In addition, in

today’s fast-paced society, increasing security at the expense of the users’ long wait times

for the information to be processed is not desirable. Thus, this thesis looks to improve on

the current cryptographic processors to provide a high-speed and secured communication

channel for data transmission.

One of the protocols used to establish such a secure channel is the Secure Socket Layer

(SSL) or its successor Transport Layer Security (TLS) protocol [1]. The SSL protocol can be

separated into two stages: handshaking and bulk-data. In the handshaking stage, the client

and the server exchange messages in order to establish a shared secret key using public-key

cryptography. The shared secret key is in turn used in the bulk-data stage, which uses private-

key cryptography. Generally, public-key cryptography is only used during the handshaking

stage due to its computational complexity compared to private-key cryptography. However,

even though SSL reduces the number of public-key cryptographic operations by transmit-

ting data using private-key cryptography and by supporting reuse of previously established

keys, public-key cryptography is still the most time consuming operation in the transmission

channel [2]. Thus, in order to accelerate processing of the public-key cryptography opera-

tions, secure server systems offload these complex operations into faster running hardware

platforms, such as SSL accelerator cards or standalone SSL processing units [3]. Companies,

such as Elliptic Technologies1 and Broadcom2, have created such products that either support

1http://www.elliptictech.com/
2http://www.broadcom.com/
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Table 1.1: Comparison between ECC and RSA Security [13]

Symmetric ECC RSA Protection Lifetime

80 163 1024 Until 2010

112 233 2048 Until 2030

128 283 3072 Beyond 2030

192 409 7680

256 571 15360

the complete SSL protocol [4, 5, 6, 7] or simply some of the underlying operations [8, 9].

In recent years, the use of elliptic curve cryptography (ECC) for public-key cryptography

has been increasingly popular among researchers and industry members. ECC was inde-

pendently proposed by Miller [10] and Koblitz [11] in the 1980s. The advantage of ECC

over the more commonly used Rivest-Shamir-Adleman (RSA) [12] algorithm for public-key

cryptography is that ECC allows for reduced key sizes while providing a similar level of secu-

rity. Table 1.1 [13] shows the comparison of the key sizes for symmetric-key and public-key

cryptosystems and their respective protection lifetimes. The security levels shown assume

that the adversary has computational powers limited to the state-of-the-art at the time (i.e.

computational security), as opposed to informational theoretic security where the algorithms

can be proven to be secure. The shorter key sizes allow implementations of ECC to be more

efficient either in terms of higher throughput or lower area. Higher throughput implementa-

tions can be found in applications where high speeds are required, such as network servers,

at the expense of area and power consumptions [14, 15]. In more restricted environments,

such as Personal Digital Assistant (PDA), cell phones and Radio Frequency Identification

(RFID) readers [16, 17], the design goal becomes to reduce the area and power consumptions

at the expense of lower throughput. Due to these advantages, ECC has been adopted by

many standards, such as National Institute of Standards and Technology (NIST) [18], Stan-

dards for Efficient Cryptography Group (SECG) [19], and Federal Information Processing

Standards (FIPS) 186-3 [20].

In particular, NIST [18] and SECG [19] recommend the use of different specific named

curves to be used for various purposes. For example, the United States National Security

2



Protocol

Point Multiplication

Point Addition/Doubling

Finite Field Arithmetic

Figure 1.1: Levels of abstraction in ECC implementations

Agency (NSA) chose to use prime field elliptic curves of key size 256, 384 and 521 published by

NIST [18] for both classified and unclassified information [21]. These recommended curves can

be divided into two categories: prime Galois fields (or prime fields), GF (p), and binary Galois

fields (or binary fields), GF (2m). Furthermore, the binary field curves can be further divided

into pseudo-random and Koblitz curves. In order to maximize the usability of a server, it

should be able to support all the named curves recommended by the standards. Thus, this

thesis investigates scalable and unified ECC processor architectures that can support all the

curves recommended by NIST [18].

Offloading complex public-key cryptography operations to hardware can take place in any

level of abstraction shown in Figure 1.1. In other words, hardware accelerator implementa-

tions can range from offloading only the finite field arithmetic operations to hardware and

implementing all the overlaying levels in software to implementing a complete protocol, such

as Elliptic Curve Digital Signature Algorithm (ECDSA) or Elliptic Curve Diffie-Hellman

(ECDH), including all its underlying levels in hardware, such that the interface merely needs

to input the message to be signed, in case of ECDSA, and the module outputs the resultant

signed message.

In this thesis, scalability is defined as the ability for the design to be able to support a

range of key sizes without the need to redesign or reprogram the hardware, and a unified

design is one that is able to compute both GF (p) and GF (2m) operations using the same

hardware. Designing a scalable and unified ECC processor improves the efficiency of the

hardware utilization, since the same hardware is able to handle both primes and binary fields

3



and a range of key sizes without the need for any human intervention.

The remainder of this chapter is organized as follows: Section 1.1 looks at the current

literature on scalable and unified ECC processors; Section 1.2 further discusses the motivation

of this thesis; Section 1.3 describes the research problem and the major contributions of this

thesis; and Section 1.4 outlines the organization of the remainder of this thesis.

1.1 Literature Review of ECC Processors

Savas et al. [22] proposed a scalable and unified multiplier in 2000, which uses the Montgomery

multiplication algorithm and it can handle operands of any size, but requires precomputations

and transformations. The design has been implemented on application-specific integrated

circuit (ASIC). Furthermore, it only offloads the finite field arithmetic. In [23], two more

dual-field multiplier architectures are presented by Savas et al. that use precomputation

technique and dual-radix design to achieve faster computation times in both fields at the

expense of larger area utilization on ASIC.

In 2004, Chelton and Benaissa [24] propose a scalable arithmetic unit that can operate

over any field in GF (2m), but not prime fields. It proposes architectures for both a scalable

multiplier and a scalable divider that can be used in a ECC processor, but does not design

the complete processor.

In [25], Tanimura et al. propose a hardware implementation of the Montgomery multipli-

cation in ASIC using 4 parallel radix-216 multipliers in GF (p) and a radix-264 multiplier in

GF (2m) in order to balance the time delay difference when computing prime field and binary

field arithmetic in hardware.

In 2009, Chiou et al. [26] propose a scalable unified multiplier architecture for both fields,

but it only supports prime fields of modulo P = 2m − 1 and all-one polynomials (AOP),

which most NIST [18] and SECG [19] recommended curves are not.

In all of the above describe implementations, only the finite field arithmetic is offloaded

into hardware. Hardware implementations of designs that also include higher levels of ab-

straction are described below.

In 2001, Goodman and Chandrakasan [27] describes a microcode-based design that im-

4



plements finite field arithmetic in both fields, point addition, point doubling and point mul-

tiplication. The design is implemented using ASIC and provides an energy-efficient solution.

It also uses the Montgomery multiplication algorithm.

In 2003, Satoh and Takano [28] propose a scalable dual-field processor that supports any

prime or binary field, but only shows results up to 256 bits. The design uses Montgomery

multiplication algorithm and is implemented on ASIC. It also supports protocol level opera-

tions, such as DSA and ECDSA.

In 2008, Wang et al. [29] present a coprocessor that operates over both fields that is

capable of performing both RSA and ECC operations. The implemented arithmetic unit

includes multiplication, addition, subtraction and inversion for both prime and binary fields.

However, the design only supports 1 field size at a time. Implementation results are presented

for both field programmable gate array (FPGA) and ASIC platforms.

In 2008, Lai and Huang [30] proposed a dual-field coprocessor that supports arbitrary

prime or binary fields and arbitrary elliptic curves. It optimizes the scheduling of the point

operations to increase performence. However, the buffer size of the processor limits the key

size of the processor. The paper only presents results up to 256-bit key sizes. Lai and Huang

have also presented 2 other designs that improve on the first one in [31, 32].

Chen et al. [33] propose a unified design for both RSA and ECC. The authors implement

a microcode-based architecture, where 3 tiers of instruction sets can be executed depending

on desired level of abstraction in RSA or ECC operations. Furthermore, the proposed design

does not support prime field operations in ECC. The processor is optimized for modular

exponentiation in GF (p) and arithmetic in GF (2m). Therefore, in order to support GF (p)

in ECC, it would require support for addition, subtraction, inversion, in addition to multi-

plication that it currently implements. By doing so, the critical path of the processor would

increase, considerably due to the carry propagation of the addition and subtraction.

In [34], Chen et al. propose a 160-bit and 256-bit unified ECC processor implemented on

ASIC that can support both fields. It uses a radix-4 division unit to increase the speed of

the calculations. However, the processor is not a scalable design.

Lee et al. [35] present a dual-field heterogeneous processing element architecture, where

one processing unit performs multiplication-addition/subtraction and the other evaluates all

5



of the above plus division.

There are also architectures in the current literature, which are not unified but are scal-

able. These designs either implement the ECC processor (ECP) in binary or in prime fields.

The binary field ECPs are discussed first. In 2006, Benaissa and Lim [36] proposed a scalable

ECC processor that uses a digit-serial multiplier and squaring unit. Thus, the design is scal-

able and can support multiple fields. In 2009, Hassan and Benaissa [37] proposed a scalable

ECC processor that uses the PicoBlaze soft-core microcontroller in Xilinx FPGAs to imple-

ment the design using the hardware/software co-design (HSC) approach. The motivation is

to design a processor that can handle the elliptic curves up to the 193-bit key size suggested

in SECG [19] without the need to reconfigure the hardware. The design goal is to reduce area

consumption for area constrained platforms, such as RFID, mobile handsets, smart cards,

and wireless sensor networks [37]. Since then, Hassan and Benaissa have also proposed scal-

able designs that support curves up to 571 bits recommended by the National Institute of

Standards and Technology (NIST) [38, 17, 39] also for area-constrained environments.

The design proposed in [40] is also a HSC scalable ECC processor, where the authors use

the on-chip PowerPC in Virtex-4 FX series to build the system. However, the reconfiguration

of the portion that computes the elliptic curve point multiplication (ECPM) is dynamically

reloaded at run time using partial reconfiguration technology on Virtex FPGAs.

The following ECP designs present scalable ECPs in prime fields. In 2006, McIvor et

al. [41] presented an ECP that can compute the ECPM over prime fields with less than 256

bits based on a new unified modular inversion algorithm. It is one of the fastest prime field

ECPs at the time and it can perform a 256-bit ECPM in 3.86 ms on a Virtex-2 Pro FPGA.

One of the strengths of [41] is that it can evaluate ECPM for any curve. However, it cannot

evaluate all NIST recommended prime field curves because it can only support up to 256-

bits. If the design is extended to 521 bits, hardware utilization will increase immensely and

the maximum clock frequency might also suffer due to more difficult routing in the FPGA.

Thus, in [42], Ananyi et al. proposed a scalable ECP that can support curves up to 521

bits, but only for NIST recommended prime fields, as opposed to any curve up to 521 bits.

The advantage of only supporting NIST recommended curves is the ability to take advantage

of the prime moduli selected by NIST, which can be reduced very easily, requiring fewer

6



hardware resources compared to using Montgomery multiplications and inversions as in [41].

Similar to [41], the authors in [42] chose a very wide datapath, using 265 bits for the

modular adder, subtractor and multiplier and using 521 bits for the modular inverter. As a

result, the implemented design on a Xilinx Virtex-4 FPGA uses 20,793 slices and 32 DSP48

blocks and only runs at 60 MHz. It can compute ECPM for 192-, 244-, 256-, 384-, and

521-bit curves in 4.8 ms, 5.8 ms, 6.9 ms, 19.9 ms, and 45.6 ms, respectively. In 2011, the

authors in [43] developed MicroECC, which only has 16- or 32-bit datapaths to make the

implementation much smaller and faster.

There are also designs that are neither scalable nor unified. These target a specific curve

and can have very optimized designs. In [14], the authors present a highly efficient ECP

for the 163-bit pseudo-random curve recommended by NIST. The design uses parallel cores

to perform arithmetic. The ECPs in [44] are specifically designed for 163, 233 and 283-bit

Koblitz curves recommended by NIST. The design uses 4 parallel multipliers to improve

the performance of the ECPM operation. In 2008, Güneysu and Paar [45] optimized the

architecture of the ECP using high performance Digial Signal Processing (DSP) slices on

FPGAs. In [46], the authors developed a side channel attack resistant ECP using the double-

and-add-always algorithm. The authors of [47] and [48] use the residue number system (RNS)

to parallelize the operations in the ECP.

A summary of the works reviewed in this section is provided in Table 1.2. The table

describes the technology used and the level of abstraction implemented on hardware. It

indicates whether or not the designs are scalable and the finite field that is supported. Finally,

some brief remarks are provided about each work.

1.2 Motivation

In the works described in Section 1.1, there are no designs that are scalable and unified for all

15 elliptic curves recommended by NIST [18] on the same hardware. Many ECC implemen-

tations in literature are highly optimized designs. Many of the architectures presented are

flexible, where a different field or key length can be implemented by scaling the proposed ar-

chitecture accordingly. However, this results in larger designs when implementing the larger

7



Table 1.2: Summary of ECPs in the Current Literature

Work Tech. Abst. Scalable Field Remarks

[22] ASIC Multiplier Yes Unified • Montgomery multiplication.
[23] ASIC Multiplier Yes Unified • 2 multipliers: precomputation; duual-radix
[24] FPGA AU Yes Binary • HSC: Control in software, arithmetic in hardware
[25] ASIC Multiplier Yes Unified • 4 parallel radix-216. multipliers in prime

• Radix-264 multiplier in binary.
[26] N/A Multiplier Yes Unified • prime number has the form 2m − 1.

• Irreducible polynomial is an all one polynomial.
[27] ASIC ECPM Yes Unified • Microcode-based design.

• Energy efficient.
[28] ASIC Protocol Yes Unified • Arbitrary prime number and irreducible polynomial.

• Uses 64-bit multipliers.
[29] ASIC &

FPGA
ECPM No Unified • Supports RSA and ECC.

• Uses signed-digit number representation.
[30] ASIC &

FPGA
ECPM No Unified • Arbitrary elliptic curve and finite field.

• 4 32-bit multipliers and 4 64-bit adders.
[31] ASIC ECPM No Unified • AHB interface to easily integrate into existing systems.

• Improvement from [30]
[32] ASIC ECPM No Unified • Energy-adaptive design.

• Improves inversion. Improvement from [31]
[33] ASIC ECPM Yes Unified • Microcode-based design.

• Only binary ECC and prime RSA.
[34] ASIC ECPM No Unified • Fast radix-4 unified division
[35] ASIC &

FPGA
ECPM Yes Unified • Power-Analysis Resistant.

• Heterogeneous dual-processing-element
[36] FPGA ECPM Yes Binary • Word-level algorithm for multiplication and squaring.
[37] FPGA ECPM Yes Binary • HSC using PicoBlaze.

• Low area design. SEGC curves.
[38] FPGA ECPM Yes Binary • HSC using PicoBlaze.

• Low area design.
• SEGC curves.
• Word-level modular reduction

[17] FPGA ECPM Yes Binary • HSC using PicoBlaze.
• NIST pseudo-random curves

[39] FPGA ECPM Yes Binary • HSC using PicoBlaze.
• NIST Koblitz curves

[40] FPGA ECPM Yes Binary • Dynamic partial reconfiguration.
• Up to 283 bits.

[41] FPGA ECPM Yes Prime • Up to 256 bits.
• Improved modular inversion.

[42] FPGA ECPM Yes Prime • NIST prime curves up to 521 bits.
• Large inversion module.

[43] FPGA ECPM Yes Prime • HSC approach.
• Fast reduction algorithm.

[14] FPGA ECPM No Binary • 163-bit pseudo-random curves.
• Parallel cores

[44] FPGA ECPM No Binary • 163, 233 and 283-bit Koblitz curves.
• Parallelization of instructions.

[45] FPGA ECPM No Prime • Uses DSP blocks.
• Shows 224 and 256-bit implementations.

[46] ASIC &
FPGA

ECPM No Prime • Parallelization techniques for affine coordinate ECPM.

[47] FPGA ECPM No Prime • RNS to speed up ECPM.
[48] FPGA ECPM No Prime • RNS-based design.
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key sizes, such as 571 bits. Even though these designs have high speeds, it is not practical to

deploy a hardware accelerator that supports different types of curves on the same hardware

using these architectures.

This thesis improves on the state-of-the-art implementations of the ECC processors de-

scribed in Section 1.1 in order to achieve faster computational times, which in turn enhances

the users’ experience by reducing the wait times for a secure connection. In addition, this

thesis will also look to integrate scalable and unified architectures into the design of ECC

processors to enhance their capabilities. In this thesis, the point multiplication level and all

the levels below it in Figure 1.1 are implemented in hardware.

In server-side applications, scalability, high-throughput and low latency are some of the

factors that determine the performance of a cryptosystem processor. As previously men-

tioned, during the handshaking step in the SSL protocol, ECC scalar multiplications occurs

frequently between the client and the server. Every time during the handshaking step, the

client and the server must agree on the key length and thus the elliptic curve to be used for

the ECDSA and ECDH. As a result, the server must have the ability to support a range

of curves, in order to be able to accept requests from different clients requiring different

security levels, and it must be able to respond to requests promptly. Due to the long com-

putation times of the scalar multiplication in the software environment, many servers look

to offload this computationally intensive operation into a separate hardware environment,

called hardware accelerators. Thus, it is important that these servers are complemented by

ECC processors that are scalable and have high throughput and low latency.

In the current literature, some authors also present ECC architectures that can support

any field size. However, this thesis only investigates curves recommended by NIST [18]. The

advantage of selecting only a particular set of curves is that the processor architecture can

be more optimized to yield lower latencies and smaller hardware resource utilization, while

maintaining its practicality since NIST curves are widely used.
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1.3 Description of the Research and Major Contribu-

tions

In this thesis, the ECC processor designs are scalable, where the key length can be changed

on-the-fly during run-time. In other words, the same hardware design has the ability to

support multiple curves. The advantage of these scalable ECC processors is the ability to

share the hardware resources for computing the underlying finite field arithmetic operations

among different key lengths. In server-side applications, where the support of a wide range of

key lengths is important, scalable ECC processors can support various key lengths with the

same hardware, whereas the high-speed and optimized implementations in literature require

different hardware for different key lengths.

Furthermore, due to the resource sharing, the total hardware utilized to implement all

NIST curves in the same hardware is much smaller than implementing a ECC processor for

each curve independently. For example, the architecture presented by Sutter et al. [49] uses

6,150, 8,134, 7,069, 10,236, 11,640 slices for 163, 233, 283, 409, 571-bit ECC, respectively, on

a Virtex-5 FPGA. If the server-side application is to support all 5 key lengths, the resultant

hardware would require 43,229 slices. Furthermore, if the design in [49] were to implement

all 5 processors on the same FPGA, the routing delay would increase dramatically as the

FPGA would start to fill up, causing the clock frequencies to not be as high as reported.

Thus, it is important to investigate the on-the-fly scalability of the ECC processor im-

plementations in order to be able to support a wider range of key lengths on the same

hardware for server-side applications, where both high-speed and scalability, are important

performance factors.

The main objectives of this thesis are:

• Research different architectures of finite field arithmetic to be used for implementing

scalable ECC processors;

• Research different architectures of ECC processors in both prime and binary fields;

• Implement hardware scalable ECC processors in both prime and binary fields;

• Implement a scalable and unified ECC processor for all curves recommended by NIST.
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The foundation of the ECPs is the finite field arithmetic, as shown in Figure 1.1. Thus,

the efficiency of the ECC processor is highly dependent on the architecture of the finite field

arithmetic units. In this thesis, much of the focus is on improving the efficiency of the ECC

processing by modifying the architecture of the finite field arithmetic units.

The major contributions of this thesis are:

• Design of scalable finite field arithmetic blocks for scalable ECPs;

• Efficient parallelization of multiplication and ECPM operations;

• Efficient use of DSP48E slices for the scalable prime field ECP;

• Efficient use of DSP48E slices for the scalable and unified ECP.

In this thesis, the objective of implementing a scalable ECP is accomplished by the design

of scalable finite field arithmetic blocks. These blocks implement digit-wise operations in fi-

nite fields in order to allow for hardware resource sharing among the different bit lengths. The

reduction operations for each finite field is also optimized, when possible, to be implemented

in the same hardware. Subsequently, the parallelization of these finite field arithmetic blocks

is explored. There are 2 levels of parallelization deployed. Firstly, the algorithm used for

multiplication is parallelized to reduce the latency of the operation. Secondly, the operations

required for the ECPM (i.e. point addition and point doubling operations) are parallelized

by separating the multiplication from the addition, subtraction and reduction. By doing so,

the multiplication operation, which requires a high number of clock cycles can be evaluated

in parallel with multiple execution of the other instructions to reduce the overall latency.

The implementation of the ECP for prime fields explores the use of DSP48E slices that

exist in Xilinx Virtex-5 FPGAs. These DSP48E slices have built-in hardware multipliers

and arithmetic logic units (ALU) that can be used to improve the performance of the ECP.

The DSP48E slices also have the ability to perform logical operations, such as exclusive-OR

(XOR), which is used efficiently in the implementation of the scalable and unified ECP that

requires both prime and binary field additions.

In this thesis, a series of ECC processors have been designed and implemented targeting

FPGA platform. Some of the designs described in this thesis have been published in [50, 51,

52, 53, 54]. As previously mentioned, main objective of the thesis is to implement a scalable
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and unified ECC processor with a high throughput that is suitable for server-side security

applications.

1.4 Organization of Thesis

The subsequent chapters are organized as follows: Chapter 2 discusses background informa-

tion about finite field arithmetic, elliptic curve cryptography and provides an overview of the

Xilinx Virtex-5 FPGA used in the thesis; Chapter 3 presents the design and architecture of

scalable ECPs for binary fields; Chapter 4 presents the design and architecture of a scalable

ECP for prime fields; Chapter 5 presents the design and architecture of a scalable and uni-

fied ECP for both binary and prime fields; Chapter 6 provides a conclusion to the thesis.

Chapter 7 proposes potential future work for this thesis.
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Chapter 2

Background

This chapter describes some of the background theory and information related to cryp-

tography and Elliptic Curve Cryptography (ECC). Much of the information presented in

this chapter is described in [55]. Following the levels of abstraction shown in Figure 1.1,

Section 2.1 presents an introduction to cryptography and some protocols used in ECC, Sec-

tion 2.2 presents information specific to ECC and Section 2.3 reviews some of the finite

field arithmetic operations that will be used in the designs of this thesis. In Section 2.4, an

overview of Xilinx Virtex-5 FPGAs is provided and the architecture of the Xilinx XtremeDSP

slices is described.

2.1 Introduction to Cryptography

Consider the simple communication model presented in Figure 2.1, where Alice and Bob

send messages to each other through a channel. In the case of an unsecured channel, an

eavesdropper, Eve, can very easily monitor the communication channel and have access to

all the interaction between Alice and Bob. Consider the case of an online banking system,

where Alice is a bank client logging into her computer and Bob is the bank’s server. If the

information is transferred through the unsecured channel, a malicious party, Eve, can very

Alice Bob

Eve

Channel

Figure 2.1: Simple communication model of an unsecured channel.
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Alice Bob

Eve

ChannelEncrypt Decrypt

m = 1001

k = 1100 k = 1100

c = m + k

c = 0101

m = c + k

m = 1001

Figure 2.2: Communication model with symmetric-key cryptography.

Alice Bob

p, g
p, g

A

B
A = ga mod p

B = gb mod p

k = Ba mod p k = Ab mod p

Figure 2.3: Diffie-Hellman key exchange.

easily obtain Alice’s online banking information.

One way to secure the information is by using symmetric-key cryptography. Figure 2.2

shows an example of symmetric-key cryptography, where Alice sends the binary message,

m = 1001, to Bob. First, she encrypts the message by performing an exclusive OR (XOR)

operation with the binary secret shared key, k = 1100, to generate the binary cipher, c = 0101.

The encrypted cipher is sent to Bob through the channel and Bob decrypts the message by

once again performing an XOR on the cipher with the secret shared key to retrieve the

original message. By doing so, no one can retrieve the original message unless he/she is in

possession of the key, k. However, in the situation described above, the problem still remains

in how Alice and Bob can share the secret key securely, without anyone else knowing.

Public-key cryptography provides a solution for solving the problem of exchanging keys

securely. In 1976, Diffie and Hellman [56] proposed a scheme to share keys between two

parties, called the Diffie-Hellman key exchange, shown in Figure 2.3. To begin the exchange,

Alice selects a large prime number, p, and a large base integer, g. She sends these values

to Bob through an unsecured channel. Alice also selects another large integer, a, evaluates

A = ga mod p and transmits the value of A to Bob. Simultaneously, after Bob receives the

values of p and g, he selects a large integer, b, evaluates B = gb mod p and transmits B to

14



Alice. Finally, Alice computes k = Ba mod p and Bob computes k = Ab mod p to obtain

the secret shared key. The final k value is common for both Alice and Bob because k = Ba

mod p = (gb)a mod p = (ga)b mod p = Ab mod p. Thus, k can be used as the shared

secret key to establish a secured communication channel using symmetric-key cryptography

between Alice and Bob.

In the Diffie-Hellman key exchange, only the values p, g, A and B are transmitted on the

unsecured channel, Eve cannot compute the value of k, without knowing a or b. Furthermore,

computing the value of a from A, p, and g is extremely difficult and is usually referred to as

the discrete logarithm problem. In the above described scheme, a and b are referred to as

the private keys, which are never shared to the public, and A and B are referred to as public

keys.

2.2 Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) is a type of public-key cryptography that is based on a

set of operations on elliptic curves. The description of the background in ECC in this section

is based on the information in [55].

As previously mentioned, ECC operations recommended by NIST can be subdivided

into prime fields, GF (p), or binary fields, GF (2m). It changes the underlying finite field

operations, but it also changes the elliptic curves that the operations are defined over.

The equation of the elliptic curve can be given by the Weierstrass equation. The simplified

version of the Weierstrass equation for binary fields is:

E : y2 + xy = x3 + ax2 + b (2.1)

where a and b are elements of the binary field, GF (2m). For prime fields, the Weierstrass

equation becomes:

Ep : y2 = x3 + ax+ b (2.2)

where a and b are elements of the prime field, GF (p). In NIST, these equations are further

simplified by setting one of the coefficients as a constant. Thus, for binary pseudo-random
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Figure 2.4: Example of an elliptic curve (y2 = x3 − 3x+ 2).

curves, the equation is:

E : y2 + xy = x3 + x2 + b (2.3)

where b is a constant depending on the curve. For binary Koblitz curves, the equation is:

Ea : y2 + xy = x3 + ax2 + 1 (2.4)

where a = 0 or 1. For prime curves, the equation is:

Ep : y2 = x3 − 3x+ b (2.5)

where b is also a constant depending on the curve. This thesis focuses only on the curves that

are recommended by NIST [18]. Thus, the remainder of this thesis describes only operations

related to the above mentioned NIST curves.

ECC operations can be understood by using geometry on the plot of the curve. Consider

the elliptic curve in Figure 2.4, with equation y2 = x3−3x+2. Two operations can be defined
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P = (x1, y1)

Q = (x2, y2) -R

R = (x3, y3)
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(a) Example of point addition on an ellip-
tic curve (y2 = x3 − 3x + 2).

P = (x1, y1)

-R

R = (x3, y3)
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(b) Example of point doubling on an el-
liptic curve (y2 = x3 − 3x + 2).

Figure 2.5: Example of point operations on an elliptic curve.

on the curve, namely point addition (PADD) and point doubling (PDBL). The graphical

interpretation of the point addition is shown in Figure 2.5(a). Given two points, P = (x1, y1)

and Q = (x2, y2), where P 6= ±Q, the addition of the two points, R = (x3, y3) = P + Q, is

given by drawing a straight line between P and Q and extending the line until it intersects

the curve on a third point, −R, and then negating the point. The negative of a point, (x, y),

in binary fields is (x, x+ y) and (x,−y) in prime fields.

Figure 2.5(b) shows the point doubling operation. Given a point, P , where P 6= −P ,

the double of the point, R = 2P , is given by drawing a line tangent to the elliptic curve at

point, P , extending the line until it intersects with the curve at a second point, −R, and

then negating the point.

Point addition and point doubling can also be represented mathematically, but the ex-

pressions differ for binary fields and prime fields. In binary fields, point addition is defined

as:

x3 = λ2 + λ+ x1 + x2 + a and y3 = λ(x1 + x3) + x3 + y1 (2.6)

where λ = y1+y2
x1+x2

, and point doubling is defined as:

x3 = x21 + b
x21

and y3 = x21 + λx3 + x3 (2.7)
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where λ = x1 + y1
x1

. In prime fields, point addition is defined as:

x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3)− y1 (2.8)

where λ = y2−y1
x2−x1 and point doubling is defined as:

x3 = λ2 − 2x1 and y3 = λ(x1 − x3)− y1 (2.9)

where λ =
3x21+a

2y1
.

Using the point addition and doubling operations, the scalar multiplication, or point

multiplication, (ECPM) operation is given by:

Q = kP = P + P + · · ·+ P︸ ︷︷ ︸
k times

(2.10)

where P is a point on the elliptic curve, and k is a scalar integer value. The resultant point,

Q, will also be on the elliptic curve.

The trivial way of computing the scalar multiplication is the double-and-add operation,

where a sequence of point doubling and point addition operations are evaluated based on the

binary representation of k. Algorithm 2.1, which is modified from Algorithm 3.27 in [55],

shows the left-to-right version of the double-and-add algorithm. Q← 2Q is the point doubling

operation and Q← Q+ P is the point addition operation.

Algorithm 2.1 Left-to-right point multiplication

Input: k = (kt−1, . . . , k1, k0), P – a point on Ea
Output: Q = kP
Q←∞
for i from t− 1 down to 0 do
Q← 2Q
if ki = 1 then
Q← Q+ P

end if
end for
return Q

As shown in Algorithm 2.1, the point doubling operation is performed in every iteration of

the for loop and point addition is performed for every non-zero bit of k. Thus, the efficiency

of the ECPM operation depends highly on the implementation of Equations (2.6),(2.7),(2.8),
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and (2.9). Given that finite field division or inversion are the most complex operations

among finite field arithmetic operations, the implementation of PADD and PDBL operations

in affine coordinates, where a point is represented by (x, y), is not very efficient and results in

hardware implementations that either have long latencies or require a large area. Thus, the

use of projective coordinates are proposed to simplify the PADD and PDBL operations. In

this thesis, the latency of the processor is defined by the time of the completion of an ECPM

operation.

In binary fields, the 2 most commonly used projective coordinates are the Lopez-Dahab

(LD) projective coordinates and the standard projective coordinates. The Lopez-Dahab

projective coordinates represent a point using 3 coordinates, (X, Y, Z). The conversion from

LD coordinates back to affine coordinates is given by (x, y) = (X/Z, Y/Z2). Generally,

when using LD coordinates, PADD uses a mixed coordinate addition, where a point in LD

coordinates, (X1, Y1, Z1) is added to a point in affine coordinates, (X2, Y2), to result in a

point in LD coordinates, (X3, Y3, Z3), and PADD becomes as follows:

Z3 = (Z1(X2Z1 +X1))
2

X3 = (Y2Z
2
1 + Y1)

2 + (X2Z1 +X1)
2(Z1(X2Z1 +X1) + aZ1)

2

+(Y2Z
2
1 + Y1)(Z1(X2Z1 +X1))

Y3 = ((Y2Z
2
1 + Y1)(Z1(X2Z1 +X1)) + Z3)(X3 +X2Z3) + (X2 + Y2)Z

2
3

(2.11)

and the PDBL of a point in LD coordinates, (X1, Y1, Z1), to result in a point in LD coordi-

nates, (X3, Y3, Z3), is given by:

Z3 = X2
1 · Z2

1

X3 = X4
1 + b · Z4

1

Y3 = bZ4
1 · Z3 +X3 · (aZ3 + Y 2

1 + bZ4
1)

(2.12)

Notice that in Equations (2.11) and (2.12), there are no longer any finite field divisions, at

the expense of more multiplications. As long as the complexity of the division outweighs that

of the several multiplication, performing ECPM in projective coordinates is more efficient

than in affine coordinates.

The standard projective coordinates also represent a point with 3 coordinates, (X, Y, Z),

where the conversion back to affine coordinate is given by (x, y) = (X/Z, Y/Z). Most com-

monly, these coordinates are used in combination with the Lopez-Dahab (LD) algorithm [57]
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given in Algorithm 2.2. The advantage of using the LD algorithm is that only the X and Z

coordinates are needed in the main loop. The x and y affine coordinates are recovered in the

conversion step.

Algorithm 2.2 Lopez-Dahab algorithm

Input: k = (kt−1, . . . , k1, k0) with kt−1 = 1, P (x, y), b – curve specific coefficient
Output: Q(x0, y0) = kP

// Initialization - Affine to Projective Conversion
// and processing kt−1 = 1
(X1, Z1)← (x, 1), (X2, Z2)← (x4 + b, x2)
// Main Loop
for i from t− 2 down to 0 do

if ki = 1 then
(X1, Z1)← Madd(X1, X2, Z1, Z2, x)
(X2, Z2)← Mdouble(X2, Z2, b)

else
(X2, Z2)← Madd(X1, X2, Z1, Z2, x)
(X1, Z1)← Mdouble(X1, Z1, b)

end if
end for
// Mxy - Projective to Affine Conversion
x0 ← X1

Z1

y0 ← 1
x
(x+ X1

Z1
)[(x+ X1

Z1
)(x+ X2

Z2
) + x2 + y] + y

return Q(x0, y0)

In Algorithm 2.2, Madd is defined as:

(X,Z)← Madd(X1, X2, Z1, Z2, x)

{

X ← X1X2Z1Z2 + x(X1Z2 +X2Z1)
2

Z ← (X1Z2 +X2Z1)
2

}

(2.13)

and Mdouble is defined as:

(X,Z)← Mdouble(X1, Z1, b)

{

X ← X4
1 + bZ4

1

Z ← X2
1Z

2
1

}

(2.14)
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Once again, Equations (2.13) and (2.14) show that no finite field division is required when

using the LD algorithm at the expense of more multiplications.

When Koblitz curves recommended by NIST [18] are used, the ECPM algorithm can be

further optimized by using the τ -adic non-adjacent form (τNAF), which rewrites k into the

form k =
l−1∑
i=0

uiτ
i, where ui ∈ {0,±1} and ul−1 6= 0, τ = µ+

√
−7

2
, µ = (−1)1−a, a = 0 or 1, and

l is the bit length of k in τ -adic form. Using LD coordinates and τNAF representation of k,

Algorithm 2.1 is modified and shown in Algorithm 2.3, which is modified from Algorithm 3.66

in [55]. The major differences between Algorithm 2.1 and Algorithm 2.3 are that the latter

performs Q ← τQ for PDBL, which is simply a finite field squaring on each coordinate,

and the need to add or subtract a point in PADD, which can be done efficiently because

the negative of a point with affine coordinates (x, y) is given by −(x, y) = (x, x + y). The

operation Q ← τQ is called Frobenius endomorphism (PFRB). The conversion of k from

binary to τNAF is out of the scope of this thesis. More information can be found in [58] and

in Section 7.1 where future work is discussed.

In prime fields, one of the most efficient projective coordinates used is the Jacobian

projective coordinates. It also uses 3 coordinates, (X, Y, Z) and the conversion to affine

coordinates is given by (x, y) = (X/Z2, Y/Z3). Using Jacobian coordinates, mixed Jacobian-

affine coordinates PADD becomes:

X3 = (Y2Z
3
1 − Y1)2 − (X2Z

2
1 −X1)

2(X1 +X2Z
2
1)

Y3 = (Y2Z
3
1 − Y1)(X1(X2Z

2
1 −X1)

2 −X3)− Y1(X2Z
2
1 −X1)

3

Z3 = (X2Z
2
1 −X1)Z1

(2.15)

and PDBL becomes:

X3 = (3X2
1 + aZ4

1)2 − 8X1Y
2
1

Y3 = (3X2
1 + aZ4

1)(4X1Y
2
1 −X3)− 8Y 4

1

Z3 = 2Y1Z1

(2.16)

In this thesis, the ECPM in elliptic curves is performed by using the double-and-add

algorithm and the Equations (2.15) and (2.16), where a = −3 as recommended by NIST [18].

Using the ECPM operation, the Diffie-Hellman key exchange scheme can be modified

to use ECC. The scheme is usually referred to as Elliptic Curve Diffie-Hellman (ECDH)
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Algorithm 2.3 τNAF point multiplication on Koblitz Curves

Input: k – a binary integer, P (x, y) – a point on Ea
Output: Q = kP

Compute τNAF(k) =
l−1∑
i=0

uiτ
i

// Perform the first point addition of Q←∞± P
if ul−1 = 1 then
Q(X3, Y3, Z3)← P (x, y)

else
Q(X3, Y3, Z3)← P (x, x+ y)

end if
for i from l − 2 down to 0 do // Main loop

// Perform PFRB (Q← τQ)
Q(X3, Y3, Z3)← Q(X2

3 , Y
2
3 , Z

2
3)

// Perform PADD
if ui = 1 then
Q(X3, Y3, Z3)← Q(X3, Y3, Z3) + P (x, y)

end if
if ui = −1 then
Q(X3, Y3, Z3)← Q(X3, Y3, Z3) + P (x, x+ y)

end if
end for
return Q(x3, y3)← Q(X3/Z3, Y3/Z

2
3)

Alice Bob

P
P

A

B
A = aP

B = bP

S = aB S = bA

Figure 2.6: Communication model with Elliptic Curve Diffie-Hellman (ECDH).

and is shown in Figure 2.6. In ECDH, Alice initiates communication with Bob by selecting

a base point, P , and transmits the coordinates of A to Bob. Alice also selects a large

integer, a, and evaluates ECPM for A = aP . Simultaneously, Bob selects a large integer,

b, evaluates B = bP and transmits the coordinates of B to Alice. Finally, Alice and Bob

compute S = aB and S = bA to arrive at the shared secret, S, which is equivalent because

S = aB = a(bP ) = b(aP ) = bA.

In Transport Layer Security (TLS) or Secure Socket Layer (SSL) protocol, ECDH and
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Elliptic Curve Digital Signature Algorithm (ECDSA) can be used during the handshaking

step for key exchange. Thus, the ECPM operation is crucial in the efficiency of the operation

in secure communication over the network.

2.3 Finite Field Arithmetic

Galois fields (GF ), or finite fields, are a number set with a finite number of elements. Oper-

ations on one or more elements, result in another element in the field. In this thesis, binary

fields refer to GF (2m) and prime fields refer to GF (p).

Finite field arithmetics are the operations that can be performed on the finite field

elements. Generally, the operations that need to be implemented are finite field addi-

tion/subtraction, finite field squaring, finite field multiplication and finite field division or

finite field inversion.

This section is divided into 2 subsections to discuss finite field arithmetic in binary fields

and in prime fields separately.

2.3.1 Finite Field Arithmetic in Binary Fields

In binary fields, an element can be represented in polynomial basis or normal basis. In

polynomial basis representation, an element in the finite field is represented by a bit string,

(am−1, · · · , a2, a1, a0), which correspond to the polynomial [18]:

am−1t
m−1 + · · ·+ a2t

2 + a1t
1 + a0 (2.17)

The field arithmetic is evaluated as polynomial arithmetic modulo P (t), where P (t) is an

irreducible polynomial of order m, called the field polynomial. In normal basis representation,

the finite field element is represented by a bit string, (a0, a1, a2 · · · , am−1), which is defined

as follows [18], given an element θ:

a0θ + a1θ
2 + a2θ

22 + · · ·+ am−1θ
2m−1

(2.18)

The advantage of normal basis representation is the simplicity of the square operation,

which is simply a cyclic right shift. However, the multiplication operation becomes much
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more complex compared to the polynomial basis representation. This thesis focuses mainly

on the polynomial representation of binary finite field elements.

The remainder of this section describes some algorithms to evaluate finite field arithmetic

in binary polynomial representation. Among the finite field operations, addition is the most

trivial because it can be evaluated by simply using an XOR operation between the operands.

Finite field squaring without the reduction step can also be very easily implemented by using

the following property:

A(t)2 = am−1t
2m−2 + · · ·+ a1t

2 + a0 mod P (t) (2.19)

which is simply interleaving 0 bits and operand bits. The reduction step refers to the

mod P (t) operation in Equation (2.19).

The next most complex finite field operation is multiplication. In general, hardware multi-

plication implementations can be divided into 3 categories: bit-serial, bit-parallel, digit-serial.

Bit-serial implementations consume the least amount of hardware resources, but requires m

clock cycles per multiplication [59], where m is the bit length. An example of a bit-serial

implementation is the shift-and-add algorithm, where the multiplicand bits are shifted every

clock cycle and accumulated if the multiplier bit is non-zero. Bit-parallel implementations re-

quire only 1 clock cycle but generally require more hardware resources and are more difficult

to make them support multiple fields simultaneously [60]. The Karatsuba-Ofman multiplier

is an example of bit-parallel multiplier. Digit-serial implementations are a compromise be-

tween the bit-serial and bit-parallel implementations [61]. Digit-serial implementations allow

for the multiplier to support fields of different bit lengths by simply processing different

number of digits, so it is very suitable for a scalable design.

In this thesis, the Comba and the Karatsuba-Ofman algorithms for multiplication will be

described with some details as these algorithms are used in the following chapters.
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Digit-serial finite field multiplication can be defined as follows:

Z(t) = [A(t)×B(t)] mod P (t)

=

[
s−1∑
i=0

ait
iw ×

s−1∑
j=0

bjt
jw

]
mod P (t)

=

[
s−1∑
i=0

s−1∑
j=0

aibjt
(i+j)w

]
mod P (t)

= C(t) mod P (t)

(2.20)

where s = dm/we and w is the number of bits in a digit.

The Comba algorithm, as shown in Algorithm 2.4 (Modified from Algorithm 2 in [62]), is

a digit-wise multiplication algorithm and it processes the operands digit-per-digit. As shown

in Algorithm 2.4, the Comba algorithm is divided into 2 for loops: the least-significant digits

(LSDs) loops and the most-significant digits (MSDs) loops. In each inner loop, the digits are

multiplied together and accumulated. The main features of the Comba algorithm are that

the result is produced LSD-first, and once each iteration of the outer loop is completed, the

computation of the ith digit is complete and can be outputted.

Algorithm 2.4 Comba Multiplication

Input: A = (As−1, . . . , A1, A0) and
B = (Bs−1, . . . , B1, B0)

Output: Z = A ·B = (Z2s−1, . . . , Z1, Z0)
(U, V )← (0, 0)
for i from 0 to s− 1 do // LSDs outer loop

for j from 0 to s− 1 do // LSDs inner loop
(U, V )← (U, V ) + Aj ·Bi−j

end for
Zi ← V
V ← U , U ← 0

end for
for i from s to 2s− 2 do // MSDs outer loop

for j from i− s+ 1 to s− 1 do // MSDs inner loop
(U, V )← (U, V ) + Aj ·Bi−j

end for
Zi ← V
V ← U , U ← 0

end for
Z2s−1 ← V
return Z = (Z2s−1, . . . , Z1, Z0)
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The Karatsuba-Ofman multiplication algorithm is a bit-parallel algorithm and it uses the

divide-and-conquer method to reduce the operand sizes of the multiplication. The Karatsuba-

Ofman algorithm can be defined as follows [55]:

A(t) ·B(t) = (A1t
l + A0) · (B1t

l +B0)

= αt2l + [β + α + γ]tl + γ
(2.21)

where

α = A1 ·B1, β = (A1 + A0) · (B1 +B0), γ = A0 ·B0,

A(t) = A1t
l + A0, B(t) = B1t

l + B0, l = dn/2e, n is the degree of A(t) and B(t), and

A1, A0, B1, B0 are binary polynomials in t of degree less than l. As a result, a multiplication

of 2 n-bit operands is reduced to 3 multiplications of dn/2e-bit operands. The Karatsuba-

Ofman algorithm can also be modified to split the operands into 3 operands instead of 2. By

doing so, the algorithm is defined as follows [55]:

A(t) ·B(t) = (A2t
2r + A1t

r + A0)·

(B2t
2r +B1t

r +B0)

= α2t
4r + [β2 + α2 + α1]t

3r

+[β1 + α2 + α1 + α0]t
2r

+[β0 + α1 + α0]t
r + α0

(2.22)

where

α2 = A2 ·B2, β2 = (A2 + A1) · (B2 +B1),

α1 = A1 ·B1, β1 = (A2 + A0) · (B2 +B0),

α0 = A0 ·B0, β0 = (A1 + A0) · (B1 +B0),

A(t) = A2t
2r+A1t

r+A0, B(t) = B2t
2r+B1t

r+B0, r = dn/3e, n is the degree of A(t) and B(t),

and A2, A1, A0, A2, B1, B0 are binary polynomials in t of degree less than r. By separating

the operands into 3 parts, a multiplication of 2 n-bit operands is reduced to 6 multiplications

of dn/3e-bit operands. These two methods of the Karatsuba-Ofman multiplication can be

applied recursively to reduce the complexity of the multiplication.

The modulo P (t) operation, required by both finite field multiplication and squaring,

is called reduction. P (t) is an irreducible polynomial chosen for each specific curve and it

is shown in [18]. The five irreducible polynomials recommended by NIST [18] are shown
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Table 2.1: NIST Recommended Irreducible Polynomials

m Irreducible Polynomial, P (t)

163 t163 + t7 + t6 + t3 + 1

233 t233 + t74 + 1

283 t283 + t12 + t7 + t5 + 1

409 t409 + t87 + 1

571 t571 + t10 + t5 + t2 + 1

in Table 2.1. The same polynomial is used for both pseudo-random and Koblitz curves.

When performing a m-bit polynomial multiplication or squaring as described above, the

result is 2m − 1 bits wide, which falls outside of the finite range of elements in the finite

field. Thus, the reduction operation is performed to reduce the result back to the finite

range. One of the methods to evaluate the reduction step is shown in Algorithm 2.41 –

2.45 in [55]. Algorithm A.1 to Algorithm A.5 in Appendix A show these algorithms for the

5 irreducible polynomials recommended by NIST [18]. The algorithms in [55] modify the

reduction operation into a series of binary field additions, where the operands are shifted

digits of the product.

Consider the example of 163-bit NIST recommended binary field, where P (t) = t163 +

t7 + t6 + t3 + 1. Given that a(t) and b(t) are polynomials of degree 162, their product yields

a polynomial of up to degree 324 (i.e. c(t) = a(t)× b(t) = c324t
324 + c323t

323 + · · ·+ c1t
1 + c0).

Given that t163 + t7 + t6 + t3 + 1 (mod P (t)) = 0 ⇒ t163 = t7 + t6 + t3 + 1 (mod P (t)), so

the following equalities can be derived:

c324t
324 = c324t

168 + c324t
167 + c324t

164 + c324t
161 (mod P (t))

c323t
323 = c323t

167 + c323t
166 + c323t

163 + c323t
160 (mod P (t))

...

c165t
165 = c165t

9 + c165t
8 + c165t

5 + c165t
2 (mod P (t))

c164t
164 = c164t

8 + c164t
7 + c164t

4 + c164t (mod P (t))

c163t
163 = c163t

7 + c163t
6 + c163t

3 + c163 (mod P (t))

(2.23)

Considering each column in Equation (2.23) as a polynomial, one can see that each column

is a shifted version of c324t
161 +c323t

160 + · · ·+c164t+c163. Figure 2.7 shows the same example
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C 163324

C 163322 3

C 163319 6
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7
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3

6

7

3

⊕ 
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⊕ 

C1

C2

C1

C2

C3

= C[324:323]

= C[324:320]

= C[324:319]

Figure 2.7: Example of a polynomial of degree 324 reduced by P (t) = t163 + t7 + t6 +
t3 + 1

in a diagram. When shifting c324t
161 + c323t

160 + · · · + c164t + c163 by 3, it yields the terms

c323t
163 and c324t

164, which has a degree greater than 162, so it must be reduced again, as

shown by block ‘C1’ in Figure 2.7. Similarly, blocks ‘C2’ and ‘C3’ are further reduced when

c324t
161 + c323t

160 + · · ·+ c164t+ c163 is shifted by 6 and 7, respectively.

Another method of performing the reduction operation is by using a reduction matrix for

each finite field, such that the reduction operation is defined as follows:

D(t) = R× C(t) (2.24)

where C(t) is a binary column matrix of the coefficients of the polynomial to be reduced,

(c2m−2, . . . , c1, c0), R is the m × 2m − 1 reduction matrix and D(t) is the reduced column

matrix, (dm−1, . . . , d1, d0). The multiplication and addition operations in the matrix multipli-

cation are performed in GF (2). The reduction matrices are generated by taking an identity

matrix of size 2m−1, and repeatedly eliminating any non-zero elements on the upper half of

the matrix, using the irreducible polynomial, P (t). The resultant reduction matrix indicates

the coefficients in the polynomial to be reduced, C(t), that needs to be added together in

GF (2), to produce each coefficient of D(t).

As an example, consider the irreducible polynomial, P (t) = t5 + t3 + t2 + t + 1, where

m = 5. To generate the R matrix, begin with an identity matrix of size 2m − 1 = 9 and
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perform the following steps:



100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001


→



100000000
010000000
001000000
000000000
000010000
000101000
000100100
000100010
000100001


→



100000000
010000000
000000000
000000000
001010000
001101000
001100100
001100010
000100001


→



100000000
000000000
000000000
010000000
011010000
011101000
011100100
001100010
000100001


→



100000000
000000000
000000000
000000000
011010000
001101000
001100100
011100010
010100001


↓

R =
011010000
101101000
001100100
011100010
110100001

←



000000000
000000000
000000000
000000000
011010000
101101000
001100100
011100010
110100001


←



000000000
000000000
100000000
000000000
111010000
001101000
101100100
111100010
110100001


←



000000000
000000000
100000000
100000000
111010000
101101000
001100100
011100010
010100001


(2.25)

In each step, a non-zero element above the horizontal line is replaced by the modulo 2

addition of the column below the horizontal line and a shifted version of the column matrix

[ 0 1 1 1 1 ]T . The process is repeated until there are no more non-zero elements above

the horizontal line and the R matrix is the m×2m−1 matrix below the horizontal line. Using

the reduction matrix, the polynomial D(t) can be represented by a linear combination of the

coefficients of C(t). Thus, reduction can be evaluated by a series of binary field additions

(i.e. XOR operations).

Finally, the most complex finite field arithmetic operation discussed in this thesis is the

finite field division. Alternatively, finite field inversion can also be used instead of division.

Inversion is defined as an element b = a−1 mod P (t), where aḃ = 1 mod P (t). One method

of evaluating finite field inversion is by using the Itoh-Tsujii algorithm [63]. The Itoh-Tsujii

algorithm is based on the property that a−1 = a2
m−2 (mod P (t)) in binary fields. Defining
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Table 2.2: Decomposition of m− 1 for Itoh-Tsujii Algorithm

m Decomposition

163 162, 81, 80, 40, 20, 10, 5, 4, 2, 1

233 232, 116, 58, 29, 15, 14, 7, 6, 3, 2, 1

283 282, 141, 140, 70, 35, 17, 16, 8, 4, 2, 1

409 408, 204, 102, 51, 50, 25, 24, 12, 6, 3, 2, 1

571 570, 285, 284, 142, 71, 70, 35, 34, 17, 16, 8, 4, 2, 1

βk(a) = a2
k−1, the following property can be derived:

βk+j(a) = a2
k+j−1

= (a2
k
)2

j

a

= (a
2k

a
)2

j · a2
j

a

= (a2
k−1)2

j · a2j−1

= βk(a)2
j · βj(a)

(2.26)

Thus, the inverse of an element a−1 can be computed by a−1 = a2
m−2 = (a2

m−1−1)2 =

(βm−1(a))2 and repeatedly decompose the value m − 1 by using Equation (2.26). Table 2.2

shows the decomposition for each m recommended by NIST [18].

To apply Table 2.2, consider the example of using m = 163. The finite field inversion of

an element, a−1 is given by (β162(a))2, and β162(a) can be evaluated as follows:

β162(a) = (β81(a))2
81 · β81(a)

β81(a) = (β80(a))2
1 · β1(a)

β80(a) = (β40(a))2
40 · β40(a)

β40(a) = (β20(a))2
20 · β20(a)

β20(a) = (β10(a))2
10 · β10(a)

β10(a) = (β5(a))2
5 · β5(a)

β5(a) = (β4(a))2
1 · β1(a)

β4(a) = (β2(a))2
2 · β2(a)

β2(a) = (β1(a))2
1 · β1(a)

β1(a) = a2
1−1 = a

(2.27)
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By doing so, finite field inversion can be evaluated by a series of multiplications and

repeated squarings. Furthermore, notice that by decomposing the values as given in Table 2.2,

in order to compute the next βk+j(a) value, only the current βk(a) and β1(a) = a values need

to be stored. All other temporary values can be overwritten. Using the method shown in [64],

the Itoh-Tsujii can be further optimized for the 409 and 571 key sizes.

Another method of evaluating finite field inversion is by using the binary inversion algo-

rithm shown in Algorithm 2.49 in [55] and reproduced in Algorithm 2.5. The binary inversion

algorithm is derived from the inversion based on the extended Euclidean algorithm, which

is beyond the scope of this thesis. It is important to note in Algorithm 2.5 that the only

operations required are additions and right-shift operations (division by t), which can be very

easily accomplished in hardware. Furthermore, upon careful analysis of the algorithm, one

can see that at the completion of the if statement at the end of the while loop, only one

of u and v is divisible by t, but not both. Thus, only one of the two inner while loops is

entered in each iteration of the outer while loop. Since each inner while loop divides u or

v by t, it reduces them by 1 bit during each iteration. Thus, the outer while loop executes

a maximum of 2m times, where m is the bit length of a.

Algorithm 2.5 Binary inversion algorithm in binary fields

Input: Irreducible polynomial, f , and binary field element, a = am−1t
m−1 + · · ·+ a1t

1 + a0
Output: a−1 mod f
u← a, v ← p, g1 ← 1, g2 ← 0
while u 6= 1 and v 6= 1 do

while t divides u do
u← u/t
if t divides g1 then x1 ← g1/t else g1 ← (g1 + f)/t end if

end while
while t divides v do
v ← v/t
if t divides x2 then g2 ← g2/t else g2 ← (g2 + f)/t end if

end while
if deg(u) ≥ deg(v) then u← u+ v, g1 ← g1 + g2 else v ← v + u, g2 ← g2 + g1 end if

end while
if u = 1 then return (g1) else return (g2) end if
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2.3.2 Finite Field Arithmetic in Prime Fields

Prime field arithmetics are operations performed on a closed set of integers. The operation

that keeps all values within range is the modulo operation. Thus, prime field operations are

exactly the same as integer operations, followed by a modulo p, where p is a prime number.

Therefore, values in prime fields can be represented as binary integers of length m.

Addition and subtraction in prime fields are performed as integer addition or subtraction.

Thus, the difference between prime field and binary field additions is that in prime fields there

needs to be a carry chain to propagate the carry, whereas in binary fields, a simple bit-wise

XOR operation would suffice. Multiplication can use similar algorithms as in binary fields

by using Comba algorithm or Karatsuba-Ofman algorithm.

Since all operations are followed by a modulo p operation, the algorithm to perform the

modulo operation has an impact on the performance of all prime field operations. Fortu-

nately, the 5 prime numbers recommended by NIST have been carefully selected to make the

reduction step more efficient. The following are the 5 NIST primes:

p192 = 2192 − 264 − 1

p224 = 2224 − 296 − 1

p256 = 2256 − 2224 + 2192 + 296 − 1

p384 = 2384 − 2128 − 296 + 232 − 1

p521 = 2521 − 1

(2.28)

In order to see the efficiency of taking the modulo of the above prime numbers, consider

the example shown in [55]. For p192 = 2192 − 264 − 1, the following equations can be written:

2192 = 264 + 1 (mod p192)

2256 = 2128 + 264 (mod p192)

2320 = 2256 + 2128 = 2128 + 264 + 1 (mod p192)

(2.29)

Consider an integer c, where 0 ≤ c < p2192. It can be written in base-264 as:

c = c52
320 + c42

256 + c32
192 + c22

128 + c12
64 + c0 (2.30)

where ci is a 64-bit integer, so using Equation (2.29) to reduce Equation (2.30), results in
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the following:

c = c52
128 + c52

64 + c5

+ c42
128 + c42

64

+ c32
64 + c3

+ c22
128 + c12

64 + c0 (mod p192)

(2.31)

Thus, the reduction of c becomes a sum of 4 192-bit integers. Using a similar method, the

reduction algorithm for the other NIST primes can also be derived. The reduction algorithms

for all 5 NIST primes can be found in Appendix B.

Similar to binary finite fields, inversion or division is also the most complex operation in

prime fields. In prime fields, the inverse of an element a is defined as, b = a−1 mod p, if

a · b = 1 mod p. One method of evaluating the inverse of an element is the binary inversion

algorithm shown in Algorithm 2.22 in [55] and shown in Algorithm 2.6.

Algorithm 2.6 Binary inversion algorithm in prime fields

Input: Prime number, p, and prime field element, a
Output: a−1 mod p
u← a, v ← p, x1 ← 1, x2 ← 0
while u 6= 1 and v 6= 1 do

while u is even do
u← u/2
if x1 is even then x1 ← x1/2 else x1 ← (x1 + p)/2 end if

end while
while v is even do
v ← v/2
if x2 is even then x2 ← x2/2 else x2 ← (x2 + p)/2 end if

end while
if u ≥ v then u← u− v, x1 ← x1 − x2 else v ← v − u, x2 ← x2 − x1 end if

end while
if u = 1 then return (x1 mod p) else return (x2 mod p) end if

As in the binary fields case, the binary inversion algorithm evaluates inversion with only

a series of addition, subtraction and division by 2, which is simply a right-shift operation.

Using the same analysis as in the binary fields case, one can see that the algorithm also

requires 2m iterations, where m is the bit length of p.

Another method of evaluating inversion in prime fields is by using Fermat’s Little Theo-
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Figure 2.8: Simplified block diagram of the DSP48E slice.

rem. The theorem shows that ap (mod p) = a (mod p), so the following can be derived:

ap (mod p) = a (mod p)

ap−1 (mod p) = 1 (mod p)

a× ap−2 (mod p) = 1 (mod p)

(2.32)

Since a×a−1 (mod p) = 1 (mod p), then it follows that a−1 (mod p) = ap−2 (mod p). Using

this property, the inverse of an element in prime field can be evaluated using exponentiation

by p− 2, which can be evaluated by a series of multiplications and squaring operations.

2.4 Xilinx Virtex-5 FPGA and XtremeDSP Slices

In this thesis, the target platform selected for implementing the ECC processors is the Xilinx

Virtex-5 family FPGA [65]. The Virtex-5 FPGA family features 6-input look-up tables

(LUT), which are improved over the 4-input LUTs formerly used by older FPGAs. It also

contains 36-Kbit block RAM (BRAM) and XtremeDSP slices, among other features. In this

section, the XtremeDSP slices are discussed in particular, as they are used by the ECPs

described in Chapter 4 and Chapter 5. The information in this section can be found in [66].
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The XtremeDSP, or DSP48E, slice is a hardware arithmetic block resource that is available

in Xilinx Virtex-5 FPGAs. The components of the DSP48E slice are fixed, but the slice can

be configured to perform different operations. A simplified block diagram of the DSP48E

slice is shown in Figure 2.8. The main components of the DSP48E slice are the 25 × 18-

bit multiplier and a 48-bit arithmetic logic unit (ALU). The multiplier can be bypassed, in

which case the inputs ‘A’ and ‘B’ are concatenated (‘A:B’ in Figure 2.8) to form one of the

48-bit operands of the ALU and port ‘C’ provides the other 48-bit operand. The ‘PCIN’

and ‘PCOUT’ ports are used to cascade DSP48E slices and can only be connected to the

‘PCOUT’ and ‘PCIN’ ports of an adjacent DSP48E slice.

The registers at the input ports ‘A’ and ‘B’ can be selected to have 0, 1 or 2 registers to

facilitate pipeline balancing when using multiple cascaded DSP48E slices. The ‘A’ and ‘B’

ports may also use pipelining registers when cascading the DSP48E slices. The attributes

AREG, BREG, ACASCREG, and BCASCREG select the number of register. Input port ‘C’

can be selected to have 0 or 1 registers using the CREG attribute. Since these are attribute

settings, they can only be configured pre-synthesis and cannot be modified at runtime.

The ALU can be configured to perform addition, subtraction or other logic operations.

The ALU may use 3 inputs that are selected by multiplexers. These are called X, Y and Z

multiplexers in [66]. The OPMODE input to the DSP48E slice is 7 bits wide and can be

changed at runtime to select different inputs for the ALU. As shown in Table 2.3, Table 2.4

and Table 2.5, OPMODE[1:0] controls the X multiplexer, OPMODE[3:2] controls the Y

multiplexer and OPMODE[6:4] controls the Z multiplexer. In the tables, the selection of P

feeds the output register back into the ALU without going outside of the DSP48E slice. In

addition, in the Z multiplexer, the P or PCIN values can be right-shifted by 17 bits before

inputting into the ALU. This is a built-in feature that does not require additional hardware

resources and is used in the ECP design in Chapter 4.

In addition to the inputs, the operation of the ALU may also be selected during runtime

through the 4-bit ALUMODE input. There are 2 types of operations that the ALU can

perform: 3-operand addition/subtraction or 2-input logical operations. The operations for

each input are shown in Table 2.6 and Table 2.7. When used for 3-input operations, the ALU

uses the output of the X, Y and Z multiplexers as its inputs and performs different combi-
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Table 2.3: OPMODE control signals for X Multiplexer

X

OPMODE[1:0]

X

Multiplexer

Output

Notes

00 0 Default

01 M OPMODE[3:2] must be 01

10 P internal feedback from output register P

11 A:B 48-bit concatenation of ports ‘A’ and ‘B’

Table 2.4: OPMODE control signals for Y Multiplexer

Y

OPMODE[3:2]

Y

Multiplexer

Output

Notes

00 0 Default

01 M OPMODE[1:0] must be 01

10 48’ffffffffffff used for bitwise operation

11 C

Table 2.5: OPMODE control signals for Z Multiplexer

Z

OPMODE[6:4]

Z

Multiplexer

Output

Notes

000 0 Default

001 PCIN

010 P

011 C

100 P use for MACC extend only

101 17-bit shift PCIN

110 17-bit shift P

111 xx Invalid
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Table 2.6: Three-input ALU operations

ALUMODE[3:0] Operation

0000 Z + X + Y + CARRYIN

0011 Z - (X + Y + CARRYIN)

0001
-Z + (X + Y + CARRYIN) - 1 =

not(Z) + X + Y + CARRYIN

0010
not(Z + X + Y + CARRYIN) =

-Z - X - Y - CARRYIN - 1

Table 2.7: Two-input ALU operations

OPMODE[3:2] ALUMODE[3:0] Operation

00 0100 X XOR Z

00 0101 X XNOR Z

00 0110 X XNOR Z

00 0111 X XOR Z

00 1100 X AND Z

00 1101 X AND (NOT Z)

00 1110 X NAND Z

00 1111 (NOT X) OR Z

10 0100 X XNOR Z

10 0101 X XOR Z

10 0110 X XOR Z

10 0111 X XNOR Z

10 1100 X OR Z

10 1101 X OR (NOT Z)

10 1110 X NOR Z

10 1111 (NOT X) AND Z

nations of integer additions and subtractions. When performing 2-input logical operations,

only the X and Z multiplexer outputs are used and the Y multiplexer is set to either output

0 (OPMODE[3:2] = 00) or 48’ffffffffffff (OPMODE[3:2] = 10). The value of OPMODE[3:2]

modifies the logical operation performed as shown in Table 2.7.
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There is also a pattern detection feature built into the DSP48E block that is not shown

in Figure 2.8. It compares the output ‘P’ to a pattern and outputs whether or not they

match. The DSP48E slices can operate at up to 550 MHz by using all the pipeline stages,

which is more efficient than implementing hardware multipliers using other FPGA logic (i.e.

configurable logic blocks (CLB)). In addition, the ability of the ALU to switch between

computing 48-bit addition and 48-bit XOR operation makes the DSP48E slice an optimal

choice for implementing a unified ECP, since it is able to switch between prime and binary

field operations on-the-fly.
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Chapter 3

Scalable ECC Processors for Binary Curves

3.1 163-bit ECC Processor1

In this section, an ECC processor (ECP) that is specific to the 163-bit pseudo-random curve

recommended by NIST [18] is discussed. This work is published in [50] and will be referred

to as ‘163-bit ECP’ in the remainder of this thesis. The architecture of the processor is based

on the design presented by Zhang et al. [14]. The design goal of the ECP in [14] is to reduce

the computation latency of ECPM by using 3 finite field arithmetic logic units (ALUs) in

parallel. Furthermore, the design is optimized for GF (2163), so it is not a scalable design.

Nevertheless, this processor demonstrates some of the characteristics of an ECP.

Figure 3.1 shows the block diagram of the ECC processor presented by [14]. Figure 3.1

shows 3 finite field ALU cores that operate in parallel and the main controller that controls the

operations of each core. Each ALU core, shown in Figure 3.2 [14], is made up of a finite field

multiplier, an adder, a squarer (A2) and a double squarer (A4). The 163-bit multiplication

is performed by taking 4 41× 163-bit multiplications, shifting and adding, and reducing the

result. The squarer is a hard-wired 163-bit finite field squarer, where the interleaving of bits

in Equation (2.19) and the finite field reduction are combined into a single combinational

logic block. Similarly, the double squarer is also a combinational logic block that interleaves

more zero bits and integrates reduction. Overall, each core can simultaneously compute the

results of A · B, (A + B) or (A + B)2, and A4. By doing so, the processor is able to take

advantage of instruction level parallelism without sacrificing the clock frequency because the

critical path of the processor lies on the multiplier.

1The work in this section is published in ISED 2012 [50].
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Figure 3.1: ECC processor from Zhang et al. [14]

Figure 3.2: ALU of the ECC processor from Zhang et al. [14]
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Table 3.1: Implementation Results and Comparison of the 163-bit ECP

Work FPGA Slices
Max.
Freq.

(MHz)

Latency
(µs)

163-Bit
ECP

Virtex-4
XC4VLX80

23,547 163 6.72

Zhang et al.
[14]

Virtex-4
XC4VLX80

20,807 185 7.7

In the 163-bit ECP, the design of the multiplier has been improved. Instead of using

two 41 × 163-bit multipliers as in [14], 2 levels of Karatsuba-Ofman multiplication are im-

plemented. Figure 3.3 shows the architecture of the two-stage Karatsuba-Ofman multiplier,

where 9 41× 41-bit multipliers are used. By doing so, the number of clock cycles to compute

each multiplication reduces from 3 to 2, which reduces the latency of the ECPM calculation.

In addition, the 163-bit ECP also proposes a minor modification to use the 3 cores more

efficiently when computing the finite field inversion for all 3 projective coordinates. As a

result, the ECPM calculation reduces from 1428 clock cycles in [14] to 1088 clock cycles.

The design is implemented for a Virtex-4 FPGA and the results are shown in Table 3.1.

Compared to the implementation results in [14], the number of slices utilized increases from

20,807 to 23,547 but the latency decreases from 7.7 µs to 6.72 µs. In the proposed imple-

mentation, the design goal is to increase the speed of the ECPM calculation for server-side

applications. Thus, the increase in hardware resource utilization is an acceptable trade-off

to decrease the latency.

In the above mentioned processor, one can notice that performance of the ECP depends

highly on the implementation of the finite field arithmetic unit. By using the Itoh-Tsujii

inversion algorithm, the most complex operation in the arithmetic unit is the multiplication,

so the implementation of the finite field multiplier is crucial to the performance of the ECC

processor. Thus, the implementation of scalable ECPs described in the subsequent sections

focuses on managing the critical path of the multiplier while integrating the support for

multiple curves into a single module.
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Figure 3.3: Architecture of 2-stage Karatsuba-Ofman multiplier

3.2 Scalable ECC Processor for Binary Curves

This section discusses architectures of scalable ECP implementation for curves over binary

fields recommended by NIST [18]. The architectures discussed in this section can be found

in [51, 52]. The work in [51] supports all 5 Koblitz curves, and is referred to as ‘Koblitz ECP’

in this thesis. The work in [52] supports all 5 pseudo-random curves recommended by NIST,

and is referred to as ‘Random ECP’ in this thesis.
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3.2.1 Scalable ECP over Koblitz Curves2

Recall from Algorithm 2.3 that using τNAF point multiplication, the point doubling (PDBL)

operation is simplified to squaring of each coordinate using the Frobenius endomorphism

(PFRB) operation. Thus, the point addition (PADD) operations requires more attention.

In the Koblitz ECP, the finite field arithmetic unit (FFAU) is designed to either compute

multiplication or squaring along with an addition at the input and at the output. Figure 3.4

shows the block diagram of the FFAU and the MULT/SQ unit. As shown in Figure 3.4(a),

the FFAU computes two formats of operations, namely Z = (C +A) ·B +D (MULT mode)

and Z = B2 +D (SQ mode). In order to utilize the proposed FFAU architecture, the PADD

operations in Equation (2.11) are rearranged as follows:

T1 ← (0 +X2) · Z3 +X3

X3 ← (0 + Z3) · T1 + 0

T3 ← Z2
3 + 0

Y3 ← (0 + Y2) · T3 + Y3

Z3 ← X2
3 + 0

T2 ← (0 + Y3) ·X3 + 0

T1 ← T 2
1 + 0

X3 ← (aT3 +X3) · T1 + T2

X3 ← Y 2
3 +X3

T1 ← (0 +X2) · Z3 +X3

Y3 ← Z2
3 + 0

Y3 ← (X2 + Y2) · Y3 + 0

Y3 ← (T2 + Z3) · T1 + Y3

(3.1)

Figure 3.4(b) shows a more detailed architecture of the MULT/SQ unit. The unit inputs

the operands digit-wise, where the digit is selected to be 32-bits. The input values are stored

in the 18× 32-bit RAMs. For multiplication, the values in the RAMs are read out according

to the indexes in the inner loops of the Comba algorithm in Algorithm 2.4 and passed to

the multiplier block (‘×’). For squaring, the values in RAM A are read out sequentially and

2The work in this section is published in Microprocessors and Microsystems [51].

43



M
U
LT
/S
Q

A
B

C

+

+

A
B

C
D

Z

FF
A
U

(a
)

B
lo

ck
d

ia
gr

am
of

th
e

F
F
A

U
.

1
8

x3
2

R
A

M A

1
8

x3
2

R
A

M B

SQ

+

U
V

 r
eg

is
te

r

1
8

x3
2

R
A

M C

Sh
if

t 
R

eg
 1

Sh
if

t 
R

eg
 2

+ +

M
SD

Sh
if

t 
U

n
it

X

3
2

3
2

6
3

6
3 6

3

3
2

3
2

3
2

1
6

0
1

6
0

1
6

0
1

6
0

1
6

0

1
6

0

3
2

3
2

A
B

C

[31:0]

[31:0]

[3
1

:0
]

[31:0]

(b
)

B
lo

ck
d

ia
g
ra

m
o
f

th
e

M
U

L
T

/
S

Q
u

n
it

.

F
ig

u
re

3
.4

:
B

lo
ck

d
ia

gr
am

of
th

e
F

in
it

e
F

ie
ld

A
ri

th
m

et
ic

U
n
it

.

44



x y xy X3 Y3 Z3 T1 T2 T3

FFAU

A B C D

Z

... ... ... ...

288

32 32 32 32 32 32 32 32 32

32 32 32 32

32
Final
Shift
Unit

Shifted X Reg

Shifted Y Reg

+
+

+

x1 y1

x3

y3

18x288
RAM

128

C
o

n
tr

o
lle

r

k ks

k ks

18x32
RAM

18x32
RAM

Figure 3.5: Block diagram of the Koblitz ECP.

passed to the ‘SQ’ block. The 32-bit multiplier (‘×’) is a combinational Karatsuba-Ofman

multiplier and the ‘SQ’ block interleaves zero bits with operand bits to evaluate Equation

(2.19). The UV register accumulates the result of (U, V ) ← (U, V ) + Aj · Bi−j given in

Algorithm 2.4. The right side of Figure 3.4(b) performs the reduction operation as shown in

Algorithm A.1 – Algorithm A.5 with the exception of the final reduction step. In the Koblitz

ECP, the output of the FFMULT and FFSQ is never completely reduced to improve efficiency.

Since FFMULT and FFSQ are performed digit-wise, the reduction is only completed to the

border of the digit. For example, in 233-bit mode, s = d233/32e = 8, so the reduction

operation, reduces the digits (Z15, . . . , Z9, Z8), but does not reduce the 23 most-significant

bits (MSB) in Z7, making all the intermediate results 8× 32 = 256 bits instead of 233 bits.

The final reduction step, which reduces the 23 MSBs of Z7 occurs after all the calculations

are performed and just before the result is output.

Figure 3.5 shows the top level block diagram of the Koblitz ECP. The affine coordinates
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of the point, (x1, y1), enter the module as 32-bit digits, along with the τNAF converted value

of k, with the magnitude entering in k and the sign bits in ks. The controller contains the

finite state machine (FSM) that dictates the control flow of the processor. The temporary

values are stored in the RAM and the ‘Final Shift Unit’ performs the final reduction step in

Algorithm A.1 – Algorithm A.5. Finally, the resultant affine coordinates are output through

x3 and y3.

During the projective to affine coordinate conversion, a finite field inversion is required.

The ECP is able to implement inversion using the same FFAU described above by using the

Itoh-Tsujii algorithm described in Section 2.3.1. As previously mentioned, the Itoh-Tsujii

algorithm converts inversion into a series of multiplication and squaring operations. Thus,

the FFAU is able to support inversion without any modifications and a separate inversion

unit is not required.

In order for the architecture to be scalable, the RAM must be able to support d571/32e =

18 digits. Furthermore, since the FFAU inputs operands digit-by-digit, the architecture sup-

ports multiple field sizes without the need to reconfigure the hardware making the proposed

ECP scalable.

The main contribution of the architecture of the Koblitz ECP is the compactness of the

design, while providing the ability of evaluating the ECPM of all 5 NIST recommended

Koblitz curves without the need to reconfigure the hardware. Furthermore, the finite field

addition operations are integrated with the multiplication and squaring without affecting the

critical path, which lies inside the MULT/SQ unit.

Table 3.2 shows the implementation results of the above mentioned Koblitz ECP on

FPGA platforms. The register, look-up table (LUT), slice, BRAM and maximum frequency

values are obtained post-place and route from the Xilinx ISE Software. The latency value

is the time to compute the ECPM operation obtained by multiplying the number of clock

cycles needed to evaluate the ECPM by the minimum clock period of the design (minimum

period = 1 / maximum frequency):

Latency = (Number of clock cycles per ECPM)× (Minimum clock period)

=
Number of clock cycles per ECPM

Maximum clock frequency

(3.2)
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Table 3.2: Implementation Results and Comparison of the Koblitz ECP

Work FPGA Registers LUT Slices BRAM

Max.

Freq.

(MHz)

m
Latency

(ms)

Efficiency(
ECPM
s·slice

)

Koblitz

ECP

Spartan-3

XC3S400
1,232 3,850 2,220 8 93.08

163 0.456 0.988

233 1.008 0.447

283 1.227 0.367

409 3.215 0.140

571 7.236 0.062

Hassan and

Benaissa

[39]

Spartan-3

XC3S200
913 2,028 1,278 4 90

163 15.5 0.050

283 45.1 0.017

571 121.4 0.006

To more easily compare the performance between different hardware implementation, the

efficiency metric is used throughout this thesis and is defined as:

Efficiency =
Number of ECPM per second

Number of slices

=
1

(Latency)× (Number of slices)

(3.3)

The efficiency metric is computed as throughput divided by the number of slices, such that

a higher efficiency represents better performance. The Koblitz ECP is implemented on a

Spartan-3 FPGA to compare its performance with the work in [39], where the authors propose

a scalable ECP for Koblitz curves, but only supports 163, 283 and 571 bit lengths. The

Koblitz ECP has a 73.7% increase in number of slices used, but decreases the latency by a

factor of 16.7 to 34 times. As a result, the efficiency metric shows that the Koblitz ECP

outperforms the work in [39]. It is important to note that the same hardware is used to

evaluate the ECPM for the 5 Koblitz curves and the selection of the curve can be performed

on-the-fly with a change of the input value to the ECP. As previously mentioned, this feature

is referred to as scalability in this thesis.
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Figure 3.6: Block diagram of the FFAU of the Random ECP.

3.2.2 Scalable ECP over Pseudo-Random Curves3

The architecture of the Random ECP is very similar to the one of the Koblitz ECP, except

the processor is designed for pseudo-random curves recommended by NIST instead of Koblitz

curves. Since the pseudo-random curves use the same field sizes and irreducible polynomials

as the Koblitz curve equivalent, the Random ECP uses similar finite field arithmetic blocks

as the Koblitz ECP. The block diagram of the FFAU used in the Random ECP is shown in

Figure 3.6.

The main difference in the FFAU is that in the Random ECP, it has the ability to perform

Z = (C+A)2+D instead of Z = B2+D in SQ mode. The extra addition allows for the ECPM

operations to be more optimized. In the Random ECP, the Lopez-Dahab (LD) algorithm as

3The work in this section is published in ISCAS 2013 [52].
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shown in Algorithm 2.2 is used in the evaluation of the ECPM. In order for the operations

to work with the proposed finite field arithmetic blocks, the operations in the main loop in

Algorithm 2.2 are modified to the following:

T1 ← (0 +X1) ∗ Z2 + 0

T2 ← (0 +X2) ∗ Z1 + 0

Z2|Z1 ← (T1 + T2)
2 + 0

T3 ← (0 + x) ∗ Z2|Z1 + 0

X2|X1 ← (0 + T1) ∗ T2 + T3

T1 ← (0 +X1|X2)
2 + 0

T2 ← (0 + T1)
2 + 0

T3 ← (0 + Z1|Z2)
2 + 0

R ← (0 + T3)
2 + 0

X1|X2 ← (0 +R) ∗ b+ T2

Z1|Z2 ← (0 + T1) ∗ T3 + 0

(3.4)

Furthermore, the operations in the projective to affine coordinate conversion, Mxy in

Algorithm 2.2, also need to be modified to the following to take advantage of the finite field

arithmetic blocks:

T1 ← (0 + x) ∗ Z1 +X1

T2 ← (0 + x) ∗ Z2 +X2

T2 ← (0 + T1) ∗ T2 + 0

T3 ← (0 + x)2 + y

T3 ← (0 + T3) ∗ Z2 + 0

T3 ← (0 + T3) ∗ Z1 + T2

T3 ← (0 + T1) ∗ T3 + 0

T2 ← (0 + Z1)
2 + 0

T2 ← (0 + x) ∗ T2 + 0

T2 ← (0 + Z2) ∗ T2 + 0

T1 ← (0 + T2) ∗ y + T3

(3.5)

The above sequence of operations are followed by a finite field inversion on T2, which stores

xZ2
1Z2 and a multiplication with T1, which stores the numerator portion of y0. Subsequently,
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Table 3.3: Implementation Results and Comparison of the Random ECP

Work FPGA Registers LUT Slices BRAM
Max.
Freq.

(MHz)
m

Latency
(ms)

Efficiency(
ECPM
s·slice

)

Random
ECP

Spartan-3
XC3S400

1,337 4,261 2,418 8 79.64

163 0.864 0.479
233 1.957 0.211
283 2.514 0.164
409 6.911 0.060
571 16.48 0.025

Random
ECP

Virtex-4
XC4VFX12

1,241 4,231 2,648 8 142.53

163 0.483 0.782
233 1.093 0.346
283 1.404 0.269
409 3.861 0.098
571 9.208 0.041

Hassan and
Benaissa

[17]

Spartan-3
XC3S200

650 2,205 1,127 4 68.26

163 38 0.023
233 73.4 0.012
283 104 0.008
409 251 0.004
571 287.4 0.003

the inversion of Z1 is evaluated and its result is multiplied by X1 to produce x0.

Table 3.3 shows the Spartan-3 and Virtex-4 implementation results of the Random ECP.

The values in the table are obtained in a similar fashion as the values in Table 3.2. However,

the implementation results in Table 3.3 cannot be used to compare to the values in Table 3.2

because they evaluate the ECPM for a different set of curves and use different algorithms.

Nevertheless, one observation can be made in comparison to the ECP described in Section 3.1.

The Virtex-4 implementation of the 163-bit ECP requires 23,547 slices and the latency of

the ECPM is 6.72 µs. These results yield an efficiency value of 6.320, which is higher than

0.782 shown in Table 3.3. However, one must remember that the Random ECP is a scalable

ECP, which supports all 5 NIST recommended pseudo-random curves without the need

to reconfigure the hardware. If the architecture of the 163-bit ECP was to be expanded

to support larger key sizes, the hardware resource utilization of the ECP would increase

dramatically. The trade-off of efficiency for scalability is expected and is also observed in

other architectures described in this thesis. Since the goal of the ECPs in this thesis is

to allow for server-side applications to support a wide variety of security requirements, the

performance degradation is tolerable.
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A comparable design is shown in [17] and its implementation result is also shown in

Table 3.3. The design in [17] is very similar to the design in [39], except it handles pseudo-

random curves instead of Koblitz curves. The Spartan-3 implementation result of the Ran-

dom ECP shows that it outperforms the design in [17]. The improved performance is mainly

due to the reduced number of clock cycles of the ECPM operation as a result of the use of

the FFAU.

3.3 Parallelization of Scalable ECC Processor for Bi-

nary Curves4

One of the disadvantages of the architecture of the Koblitz ECP and Random ECP described

in Section 3.2 is the long latency of each multiplication and squaring operation. Furthermore,

since only 1 FFAU is used, the aforementioned ECPs do not take advantage of the potential

for parallelism of the ECPM operations. The ECPs implementation described in this section

improves on the architecture of the Koblitz ECP and Random ECP by resolving some of the

shortcomings. The work presented in this section has been submitted to a journal for peer

review in [67].

3.3.1 Parallelization of Scalable ECP over Koblitz Curves

Figure 3.7 shows the revised finite field arithmetic blocks to improve the performance of

the previous ECPs. Notice that in the revised design, multiplication and squaring are now

separated into 2 blocks and can operate simultaneously. The architecture of the MULT

block, as shown in Figure 3.7(a), is very similar to the multiplication operation in the FFAU

in Figure 3.4(b), except that 2 32-bit multiplier blocks are used, squaring has been removed,

and reduction is not performed in the MULT block. Alternatively, reduction is performed in

the SA block shown in Figure 3.7(b). The SA block can also perform addition and repeated

squaring operations. Each reduction module in the SA block (i.e. ‘R163’, ‘R233’, ‘R283’,

‘R409’, ‘R571’) is based on the reduction matrix according to Equation (2.24). The operands

4The work in this section has been submitted to IEEE Transactions on Computers for peer review [67].
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in both the MULT and SA blocks are 32-bit digits.

To demonstrate the operation of the dual ‘×’ block in the MULT block, consider the case

of the 163-bit operating mode. The addresses read from the RAMs are shown in Figure 3.8.

The contents in RAMs A and B are (A5, A4, · · · , A0) and (B5, B4, · · · , B0), where Ai and

Bi are 32-bit digits. The numbers shown represent the index, i, of the 32-bit value to

be read from the RAM. Each column shows the index read from each RAM port during

a specific clock cycle. The vertical bar represents the completion of an inner loop in the

Comba algorihtm (Algorithm 2.4). Thus, as shown in Figure 3.8, during the first clock cycle,

A0 and B0 are read and multiplied in multiplier 1 (‘×’ block on the left in Figure 3.7(a)),

which completes the first inner loop. In the next clock cycle, A0 and B1 are multiplied in

multiplier 1, and simultaneously, A1 and B0 are multiplied in multiplier 2 (‘×’ block on the

right in Figure 3.7(a)), which completes the second inner loop. Notice in Figure 3.8 that the

last column of every other section, the RAM access for multiplier 2 is not needed. Thus,

Figure 3.7(a) shows a multiplexer to input ‘0’ into the adder when necessary.

The output of the ‘×’ blocks are accumulated in the 63-bit ‘UV register’. The addition

operation is performed using XOR operations. Once the inner loop is completed, which

corresponds to the vertical bars in Figure 3.8, the least-significant 32 bits of ‘UV register’

are sent to the ‘FIFO C’ or ‘SIPO C’ for storage and the register is right-shifted by 32 bits

to prepare for the next inner loop calculation.

The ‘FIFO C’ and ‘SIPO C’ blocks are both connected to the output port. The ‘FIFO

C’ block is a first-in first-out register that collects the least significant s 32-bit digits of the

product, where s = dm/32e. The ‘SIPO C’ block is a serial-in parallel-out shift register that

collects the most significant s 32-bit digits of the product. When multiplication is complete,

the product of 2s 32-bit digits, are output from the MULT block through ports ‘C’ and

‘C msd’. Port ‘C’ outputs the least significant s digits on a 32-bit bus and ‘C msd’ outputs

the most significant digits of the product in a bus of up to 565 bits wide. The ‘C msd’ port is

connected directly to the SA block, where it is concatenated with the least significant digits

after the addition operation. By doing so, the SA block requires only s clock cycles to load

input values, even when the input is a 2s-digit product from the MULT block.

One special characteristic of the SA block is its ability to perform repeated squaring with
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Figure 3.8: The RAM addresses read in the MULT block for 163-bit operation.
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Figure 3.9: Block diagram of the 1-MULT Koblitz ECP.

only 1 addition clock cycle per squaring. The value to be squared is input in the SA block

through port ‘A’ as 32-bit digits and collected in ‘SREG C’. The complete operand is then

squared through the ‘SQ’ block and reduced through the reduction blocks in 1 clock cycle.

This feature is useful in reducing the latency of the Itoh-Tsujii algorithm for inversion, where

multiple successive squaring operations are required.

Figure 3.9 shows the top level block diagram of the parallelized scalable ECP for Koblitz

curves, also referred to as ‘1-MULT Koblitz ECP’ in this thesis. Notice in Figure 3.9 that

the result of the MULT block does not get stored back into the RAM. Instead, the product
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Figure 3.10: FSM of the 1-MULT Koblitz ECP.

enters the SA block through the ‘B full’ input and through the multiplexer into the ‘B’

input. Furthermore, the reduction step of the multiplication is not computed until the next

multiplication has started and it is computed in the SA block. By doing so, there is no need

to store the result of the multiplication before reduction and the latency is reduced since the

reduction steps are masked by the latency of the next multiplication, which is computed in

parallel.

Due to the ability of the SA block to perform repeated squaring efficiently, the τNAF

point multiplication algorithm in Algorithm 2.3 has been modified such that the PFRB and

PADD operations are combined forming the PDQA state in the finite state machine (FSM)

of the ECP, which is shown in Figure 3.10. The PQUAD state performs a series of PFRB

operations to either square or double-square each coordinate. Furthermore, Table 3.4 shows

that the latency in number of clock cycles of the MULT block is higher than the latency of

the SA blocks. The lowest ratio of tMULT:tSA occurs in the 163-bit case, where the ratio is

4.29. Thus, up to 4 SA block operations may be executed during the execution of a single

MULT block operation.

The operations executed in each state of the FSM is shown in Table 3.5. In Table 3.5,
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Table 3.4: Latency in number of clock cycles of the MULT and SA blocks.

m tMULT tSA Ratio (tMULT:tSA)

163 30 7 4.29

233 47 9 5.22

283 57 10 5.70

409 107 14 7.64

571 192 19 10.1

× 

+

^2

x

Z1

X1
× 

Z1

^2

R

× 
y|x + y

+

Y1

^2

^2

× 

+
*

× 

R

+

× 

x

+

+

+

× 

x + y|y

× R

+

Z1

X1

Y1

^2

0

1

2

3

4
5

6

7 8

X1
(2|4) Z1

(2|4)

Y1
(2|4)

0

Figure 3.11: Data dependency graph of PDQA for 1-MULT Koblitz ECP.

MULT PC and SA PC refer to the program counter for the MULT block and the SA block,

respectively. The symbol ‘|’ signifies that the operand or operation is selected based on certain

conditions set by the controller. As previously mentioned, every MULT block operation must

be followed by a reduction in the SA block. Thus, when SA PC is 0, the operand M is used

to input the product of the MULT block.

In order to take advantage of the ECP architecture shown in Figure 3.9, the data de-

pendency of the Koblitz curve operations in the PDQA state are analyzed to optimize the

usage of the MULT and SA blocks and shown in Figure 3.11. The numbers shown inside the

dashed-line loops in Figure 3.11 correspond to the MULT PC values in Table 3.5. Notice

that 0 appears at the left and at the right because the final operation to obtain Y1 is not

executed until the beginning of the next iteration. By doing so, its latency is masked by the
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Table 3.5: Instructions executed by the 1-MULT Koblitz ECP

MULT PC MULT SA PC SA
PDQA State

0 x× (Z1|R) 0 Y1 = T1 + (Y1|M)
1 T2 = Z2

1

2 X1 = X
(2|4)
1

1 T2 × (y|xy) 0 T1 = X1 + M

1 Y1 = Y
(2|4)
1

2 T1 × Z1 0 X1 = Y1 + M
1 T1 = T 2

1

3 0 Z1 = 0 + M
4 X1 ×R 0 Y1 = Z1 + a · T2

1 Z1 = Z2
1

5 T1 × Y1 0 T2 = 0 + M
1 X1 = X2

1

6 x× Z1 0 Y1 = T2 + M
1 T3 = Z2

1

2 X1 = X1 + Y1

7 T3 × (xy|y) 0 T3 = X1 + M
1 T2 = Z1 + T2

8 T2 × T3 0 T1 = 0 + M

1 Z1 = Z
(2|4)
1

PQUAD State
0 0 Y1 = T1 + (Y1|M)

1 Y1 = R
(4|2)
1

2 X1 = X
(4|2)
1

3 Z1 = Z
(4|2)
1

BX State
0 0 Y1 = T1 + Y1|R

ISQ State
0 0 R = (Z1|R)2

r

IMULT State
0 (Z1|T3)×R 0

IRED State
0 0 T3 = 0 + M

FMULT State
0 X1 ×R 0 T3 = R2

1 Y1 × T3 0 T1(x3) = 0 + M
FINAL State

0 0 T2(y3) = 0 + M

MULT block operation. The X
(2|4)
1 , Y

(2|4)
1 , and Z

(2|4)
1 operations shown in loops indexed 0, 1

and 8 in Figure 3.11 are PFBR operations for each coordinate that is executed in the PDQA

state. The ‘R’ blocks correspond to reduction operations that are performed by adding 0+M

as shown in Table 3.5. The ‘+∗’ block corresponds to Y1 = Z1 + a · T2 when MULT PC is

4 and SA PC is 0. Since a is either 0 or 1, the multiplication is replaced with a conditional

addition of T2.
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Figure 3.12: Block diagram of the revised SA block to support 2 MULT blocks.

To further reduce the latency of the described design, another ECP has been designed,

where a second MULT block is instantiated to further parallelize the point operations. This

ECP is referred to as ‘2-MULT Koblitz ECP’ in this thesis. The design requires the SA

block to replicate the ‘SREG C’ block to accommodate 2 MULT block results to be reduced

simultaneously. The revised design of the SA block, shown in Figure 3.12, also uses an extra

adder to allow for the extra MULT block result to be added to another argument before

it is reduced. The revised SA block also has 2 outputs, ‘C1’ and ‘C2’ to output 2 reduced

products simultaneously.

The block diagram of the 2-MULT Koblitz ECP is shown in Figure 3.13. The 2-MULT

Koblitz ECP replicates the MULT block and uses the revised SA block in Figure 3.12 for

reduction and addition. The ‘C1’ and ‘C2’ output ports of the SA port are connected back

to the RAM and the byte-write feature of the Xilinx BRAM block allows for both reduced
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Table 3.6: Instructions executed by the 2-MULT Koblitz ECP

MULT PC MULT 1 MULT 2 SA PC SA 1 SA 2
PDQA State

0 M1 = x× (Z1|R1) 0 Y1 = (Y1|M1) + (0|T1)
1 T2 = Z2

1

2 X1 = X
(2|4)
1

1 0 R1 = M1 + X1

2 M1 = R1 × Z1 M2 = T2 × (y|xy) 0 T1 = R2
1

1 Y1 = Y
(2|4)
1

3 0 T3 = M1 + 0 X1 = M2 + Y1

1 Y1 = R1 + T2 · a
2 Z1 = T 2

3

4 M1 = T1 × Y1 M2 = X1 × T3 0 X1 = X2
1

1 T3 = Z2
1

5 M1 = x× Z1 M2 = T3 × (xy|y) 0 R1 = M1 + 0 T2 = M2 + 0
1 R1 = R1 + R2

2 X1 = R1 + X1

3 T2 = Z1 + T2

6 0 R1 = M1 + X1 T1 = M2 + 0

7 M1 = T2 ×R1 0 Z1 = Z
(2|4)
1

PQUAD State
0 0 R1 = (Y1|M1) + (0|T1)

1 Y1 = R
(4|2)
1

2 X1 = X
(4|2)
1

3 Z1 = Z
(4|2)
1

BX State
0 0 Y1 = (Y1|M1) + (0|T1)

ISQ State
0 0 R1 = (Z1|R1)2

r

IMULT State
0 M1 = R1 × (Z1|T3) 0

IRED State
0 0 T3 = M1 + 0

FMULT State
0 0 R1 = R2

1

1 M1 = R1 × Y1 M2 = X1 × T3 0
FINAL State

0 0 T2(y3) = M1 + 0 T1(x3) = M2 + 0

values to be written to the RAM simultaneously.

Using the data dependency graph of Figure 3.11, the grouping of the MULT and SA

block operations can be modified to use 2 MULT blocks simultaneously. The sequence of

instructions executed for each state of the 2-MULT Koblitz ECP can be found in Table 3.6.

One can notice that the use of 2 MULT blocks only reduces the number of groups of

operations from 9 to 8. However, in Table 3.5, when MULT PC is 3 the MULT block is not

used, so the latency of the PDQA state is 7tMULT + tSA. In comparison, in Table 3.6, when
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Table 3.7: Implementation Results and Comparison of the Parallelized Scalable ECPs
for Koblitz Curves

Work FPGA Registers LUT Slices BRAM
Max.
Freq.

(MHz)
m

Latency
(ms)

Efficiency(
ECPM
s·slice

)
1-MULT
Koblitz

ECP

Virtex-5
XC5LX110T 1,704 7,073 2,199 5 223.46

163 0.068 6.669
233 0.149 3.053
283 0.215 2.112
409 0.566 0.803
571 1.391 0.327

2-MULT
Koblitz

ECP

Virtex-5
XC5LX110T 3,134 8,609 2,708 5 222.67

163 0.055 6.760
233 0.114 3.228
283 0.163 2.267
409 0.409 0.903
571 0.973 0.380

Koblitz
ECP

Virtex-5
XC5LX110T 1,401 3,003 1,246 8 206.27

163 0.206 3.903
233 0.455 1.764
283 0.554 1.449
409 1.451 0.553
571 3.266 0.246

MULT PC is 1, 3 or 6, neither MULT block is in use, so the latency is 5tMULT + 5tSA, which

is lower than the 1-MULT case.

Table 3.7 shows the implementation results of the above mentioned parallelized Koblitz

curve scalable ECPs on the Virtex-5 FPGA. The table also shows the results of the Koblitz

ECP described in Section 3.2.1 implemented on the same Virtex-5 FPGA. From Table 3.7,

one can see that the 1-MULT Koblitz ECP has a much lower latency than the Koblitz ECP

due to the use of a separate SA block to perform reduction. Even though the hardware

resource utilization of the 1-MULT Koblitz ECP is higher, the efficiency metric shows that

it is more efficient than the Koblitz ECP. Table 3.7 also shows the comparison between the

1-MULT Koblitz ECP and the 2-MULT Koblitz ECP. As expected, the 2-MULT Koblitz

ECP requires more registers (3,134 compared to 1,704) and slices (2,708 compared to 2,199),

but it is able to further reduce the latency of the ECPM. Using the efficiency metric, one can

see that the 2-MULT Koblitz ECP slightly outperforms the 1-MULT counterpart.

3.3.2 Parallelization of Scalable ECP over Pseudo-Random Curves

Similar to the parallelized Koblitz ECP implementations described in Section 3.3.1, the

parallelized pseudo-random ECPs use 1 and 2 MULT blocks, respectively. These are referred
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Figure 3.14: Block diagram of the 1-MULT Random ECP.

to as ‘1-MULT Random ECP’ and ‘2-MULT Random ECP’ in this thesis. The difference

between the Koblitz curve implementation and the pseudo-random curve implementation is

in the design of the finite state machine (FSM) in the controller and the instructions that

are operated.

The block diagram of the 1-MULT Random ECP is shown in Figure 3.14. It highly

resembles the block diagram shown in Figure 3.9, with the exception that the controller does

not require ks, since the value of k is represented in binary and the temporary values in the

RAM are different.

The FSM and the operations executed by the 1-MULT Random ECP are shown in Fig-

ure 3.15 and Table 3.8, respectively. From Figure 3.15, it can be seen that the FSM is very

similar to its Koblitz counterpart shown in Figure 3.10. The differences are in the states

that evaluate the main loop of the ECPM. The IDLE, LOAD, FINAL, WAIT and inversion

states are the same as in the Koblitz ECPs. As in the Koblitz ECP implementations, the

data dependency graph is used to optimize the ECPM operations. The data dependency

graph of the LOOP state is shown in Figure 3.16. The LOOP state executes the Madd and

Mdouble operations shown in Equations (2.13) and (2.14). As in Figure 3.11, the numbers

in the dashed-line loops correspond to the MULT PC values in Table 3.8. Notice that in
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Figure 3.15: FSM of the 1-MULT Random ECP.
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Table 3.8 some of the operations select between different X1 and X2 or Z1 and Z2. These are

conditionally selected based on the bit of k to perform the if statement in the Lopez-Dahab

algorithm in Algorithm 2.2.
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dom ECP.

One of the improvements made on the 1-MULT Random ECP over the Random ECP

discussed in Section 3.2.2 is the projective to affine coordinate conversion. The improvement

modifies the Mxy operation shown in Algorithm 2.2 into the following:

x0 ← xZ2X1

xZ1Z2

y0 ← (Z2(xZ1+X1)
xZ1Z2

)(x(xZ1+X1)(xZ2+X2)
xZ1Z2

+ x2 + y) + y

(3.6)

By doing so, only 1 finite field inversion is needed, for xZ1Z2, to perform the conversion as

opposed to 3 individual inversions for x, Z1 and Z2. Since the latency of the inversion is much

higher than that of multiplication, the conversion algorithm in Equation (3.6) requires fewer

clock cycles than in Algorithm 2.2. Using the data dependency graph shown in Figure 3.17

the operations of the coordinate conversion are optimized for the MULT and SA block.

The states MUL1, MUL1R, MUL2 and MUL2R are used to prepare the value to be

inverted, which is xZ1Z2. The product of x×Z2 is evaluated first and stored in the temporary

variable T2 to be used during the CONV state. The inversion of xZ1Z2 is evaluated during

the inversion states and the operations of the CONV state are grouped by the MULT PC

values shown in Figure 3.17.
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Table 3.8: Instructions executed by the 1-MULT Random ECP

MULT PC MULT SA PC SA

INIT State

0 0 Z2 = x2

1 R = R2

LOOP State

0 (X1|X2)× (Z2|Z1) 0 (X2|X1) = (M |R) + (T2|b)
1 T3 = (Z1|Z2)4

1 (X2|X1)× (Z1|Z2) 0 T2 = M + 0

2 (X1|X2)× (Z1|Z2) 0 T1 = M + 0

3 T2 × T1 0 R = M + 0

1 (Z1|Z2) = R2

2 T1 = T1 + T2

4 b× T3 0 T2 = M + 0

1 (Z2|Z1) = T 2
1

2 T3 = (X1|X2)4

5 x× (Z2|Z1) 0 (X1|X2) = M + T3

MUL1 State

0 x× Z2 0 (X2|X1) = M + T2

MUL1R State

0 0 T2 = M + 0

MUL2 State

0 R× Z1 0

MUL2R State

0 0 T1 = M + 0

ISQ State

0 0 R = R2r

IMULT State

0 R× (T1|T3) 0

IRED State

0 0 T3 = M + 0

CONV State

0 x× Z1 0 T3 = R2

1 T1 = X2 + T2

1 T2 × T3 0 T2 = M + X1

2 T2 × T3 0 Z1 = M + 0

3 x× T1 0 T1 = M + 0

4 T1 × Z2 0 T3 = M + 0

5 T1 × T3 0 T1 = M + 0

1 R = x2

2 T3 = R + y

6 X1 × Z1 0 T2 = M + T3

7 T2 × T1 0 T1(x3) = M + 0

FINAL State

0 0 R(y3) = M + y
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Table 3.9: Instructions executed by the 2-MULT Random ECP

MULT PC MULT 1 MULT 2 SA PC SA 1 SA 2

INIT State

0 0 Z2 = (x + 0)2

1 R1 = (R1 + 0)2

2 X2 = R1 + b

LOOP State

0 M1 = (X1|R1)× Z2 M2 = (X2|R1)× Z1 0 T3 = (Z1|Z2 + 0)4

1 M1 = (X1|X2)× (Z1|Z2) M2 = T3 × b 0 T1 = M1 + 0 T2 = M2 + 0

1 (Z2|Z1) = (R1 + R2)2

2 T3 = (0 + (X1|X2))4

2 M1 = x× (Z2|Z1) M2 = T2 × T1 0 R1 = M1 + 0 (X1|X2) = M2 + T3

1 (Z1|Z2) = (R1 + 0)2

MUL1 State

0 M1 = x× Z2 0 R1 = M1 + 0 R2 = M2 + 0

1 (X2|X1) = R1 + R2

MUL1R State

0 M1 = x× Z1 0 T2 = M1 + 0

MUL2 State

0 M1 = T2 × Z1 0 Z1 = M1 + X1

1 X2 = T2 + X2

MUL2R State

0 0 T1 = M1 + 0

ISQ State

0 0 (R1|T3) = (R1 + 0)2
r

IMULT State

0 M1 = R1 × (T1|T3) 0

IRED State

0 0 T3 = M1 + 0

CONV State

0 M1 = x×X2 M2 = R1 × Z1 0

1 M1 = T2 × T3 0 T3 = M1 + 0 T2 = M2 + 0

1 T1 = (x + 0)2

2 M1 = T2 × Z2 M2 = T2 × T3 0 T2 = M1 + 0

1 T3 = T1 + y

3 0 R1 = M1 + 0 R2 = M2 + T3

4 M1 = R1 ×R2 M2 = T2 ×X1 0

FINAL State

0 0 T1(y3) = M1 + y T2(x3) = M2 + 0

The 2-MULT Random ECP is also designed in a similar fashion as its Koblitz curve

counterpart. The block diagram of the 2-MULT Random ECP is shown in Figure 3.18.

Similar to the 2-MULT Koblitz ECP, the 2-MULT Random ECP also uses the revised SA

block shown in Figure 3.12 for reduction and addition. Due to the data dependency in the

Lopez-Dahab algorithm used in pseudo-random curves, the 6 MULT block operations in the

67



Table 3.10: Implementation Results and Comparison of the Parallelized Scalable
ECPs for Pseudo-Random Curves

Work FPGA Registers LUT Slices BRAM
Max.
Freq.

(MHz)
m

Latency
(ms)

Efficiency(
ECPM
s·slice

)
1-MULT
Random

ECP

Virtex-5
XC5LX110T

1,650 7,128 2,290 5 224.84

163 0.135 3.246
233 0.299 1.460
283 0.440 0.993
409 1.186 0.368
571 2.965 0.147

2-MULT
Random

ECP

Virtex-5
XC5LX110T

3,118 8,784 2,708 5 223.26

163 0.080 4.626
233 0.172 2.148
283 0.250 1.479
409 0.652 0.567
571 1.593 0.232

Random
ECP

Virtex-5
XC5LX110T

1,225 3,191 1,150 5 181.19

163 0.380 2.290
233 0.860 1.011
283 1.105 0.787
409 3.037 0.286
571 7.243 0.120

LOOP state can all be parallelized, so in the 2-MULT Random ECP, the LOOP state only

requires 3tMULT instead of 6tMULT. This modification reduces the LOOP state latency by 50%

with only a slight increase in hardware utilization. The operations executed in the 2-MULT

Random ECP are shown in Table 3.9.

The implementation results of the above mentioned ECPs are shown in Table 3.10. The

Virtex-5 implementation result of the Random ECP described in Section 3.2.2 is also included

for comparison purposes. As expected, Table 3.10 shows that the 1-MULT Random ECP

is more efficient than the Random ECP, as it parallelizes the multiplication and reduction

operations. Table 3.10 also shows the improvement of the 2-MULT Random ECP over the

1-MULT counterpart. Comparing the results in Table 3.7 and in Table 3.10, one can see

that the parallelization to 2 MULT blocks is more efficient for pseudo-random curves than

for Koblitz curves. From Table 3.10, it can be seen that the efficiency improvement of the

2-MULT Random ECP is between 43% and 57%, whereas the improvement of the 2-MULT

Koblitz ECP is only between 1.4% to 16%.
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3.4 Low Latency Scalable ECC Processor for Binary

Curves5

Despite the lower latency of the ECPs described in Section 3.3 compared to the ones in Sec-

tion 3.2, the former ECPs have one drawback. The implementation of the Comba algorithm

for multiplication in the MULT block results in a latency in the order of O(s2), where s is

the number of 32-bit digits. Thus, for large key sizes, the latency increases quadratically

with respect to the number of 32-bit digits. The ECPs presented in this section redesigns the

MULT and SA blocks to improve the latency of the ECPM operation on high bit lengths.

The work described in this section is published in [53] and are referred to as ‘Low-Latency

Koblitz ECP’ and ‘Low-Latency Random ECP’ in this thesis. Collectively, the 2 ECPs are

referred to as ‘Low-Latency ECPs’.

The MULT block of the Low-Latency ECPs is shown in Figure 3.19(a). It uses the

Karatsuba-Ofman multiplication algorithm described in Equation (2.22). However, instead of

implementing a 571-bit parallel multiplier, the MULT block of the Low-Latency ECPs divides

the 571-bit operand into 3 191-bit parts and evaluates each 191-bit multiplication on every

clock cycle. The 191-bit multiplier is in turn a combinational Karatsuba-Ofman multiplier

applied recursively, with 2 levels of pipelining built into it. Thus, each 571-bit multiplication

requires only 9 clock cycles. Since operands with fewer bits can be evaluated with the same

hardware by setting the MSBs to 0, the multiplier can support all multiplications up to 571

bits. The result of each partial multiplication is accumulated in the ‘C register’ and output

as a single wide bus from the MULT block through port ‘C’.

The SA block, as shown in Figure 3.19(b), has been modified from the version in Fig-

ure 3.7(b) to use a full length 1141-bit port ‘A’ for the result of the MULT block and a

571-bit ‘B’ port for other operands. The reduction blocks in Figure 3.19(b) are the same

as the ones used in Figure 3.7(b). Since the complete operand is available at the input of

the SA block, the latency of the SA block is 2 clock cycles regardless of the key size. Since

the tMULT:tSA ratio is 9:2 = 4.5, up to 4 SA block operations may execute in parallel with a

5The work in this section has been publihsed in ISCAS 2014 [53].
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Figure 3.20: Block diagram of the Low-Latency Random ECP.

MULT block operation. Thus, the algorithms shown in Table 3.5 and Table 3.8 can be used

without further modifications.

The block diagram of the Low-Latency Random ECP is shown in Figure 3.20. The

biggest difference between Figure 3.20 and the ECPs discussed in Section 3.3 is that 571-bit

registers are used in Figure 3.20 instead of a RAM. This is due to output of the SA block

being a 571-bit port instead of 32-bit digits. The block diagram of the Low-Latency Koblitz

ECP is similar with the exception that it has an additional input for the sign bit of the

scalar multiplier k of the ECPM. This input, ‘ks’, is connected to the Controller shown in

Figure 3.20. In addition, the ROM for the constant b is not necessary in the Low-Latency

Koblitz ECP.

The implementation results of the Low-Latency ECPs are shown in Table 3.11. The

implementation of these ECPs requires a much higher number of hardware resources since it

implements much wider multipliers. However, it reduces the latency of the ECPM due to the

reduced latency of the MULT block using the Karatsuba-Ofman algorithm for multiplication.

Using the efficiency metric and comparing the results in Table 3.7 and Table 3.10 with

Table 3.11, one can see that the Low Latency ECPs are less efficient than the 2-MULT ECPs
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Table 3.11: Implementation Results of the Low-Latency ECPs

Work FPGA Registers LUT Slices BRAM
Max.
Freq.

(MHz)
m

Latency
(ms)

Efficiency(
ECPM
s·slice

)
Low-Latency

Koblitz
ECP

Virtex-5
XC5LX110T

13,076 26,111 7,427 0 162.07

163 0.029 4.599
233 0.042 3.213
283 0.050 2.667
409 0.073 1.855
571 0.101 1.331

Low-Latency
Random

ECP

Virtex-5
XC5LX110T

12,983 24,974 7,978 0 154.35

163 0.059 2.119
233 0.084 1.489
283 0.102 1.228
409 0.147 0.852
571 0.205 0.611

for lower bit lengths (i.e. 163 and 233 in Koblitz; 163, 233 and 283 in pseudo-random). For

higher bit lengths, the Low-Latency ECPs have a higher efficiency. This result is expected

since the latency of the implemented Karatsuba-Ofman multiplier is constant instead of

increasing quadratically with the number of 32-bit digits. The lower efficiency at lower bit

lengths is a results of a slower maximum clock frequency due to the increased complexity

of the 191-bit multiplier. Thus, the advantage of the reduced latency is more apparent in

higher bit lengths than in lower bit lengths.

Unlike the ECPs described in Section 3.3, the parallelization of the MULT block in the

Low-Latency ECPs would not be feasible because the hardware resource utilization of the

MULT block is relatively high compared to the 32-bit MULT block shown in Figure 3.7(a).

Thus, the implementation of a 2-MULT ECP using Figure 3.19(a) would reduce the latency,

but increase the number of slices such that the efficiency of the overall ECP would decrease.
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Chapter 4

Scalable ECC Processor for Prime Curves1

In the previous chapter, only the binary field curves recommended by NIST have been

discussed. In this chapter, the design and implementation of a scalable ECP for the 5 NIST

recommended prime curves are discussed. The work described in this chapter is available

in [54] and is referred to as ‘Prime ECP’ in this thesis. As mentioned in Section 2.3, the

main difference between prime field and binary field arithmetic is the carry propagation of

addition, which influences all other arithmetic operations. This chapter is divided into 2

sections: Section 4.1 presents the design and architecture of the Prime ECP; Section 4.2

shows the implementation results and the comparison with another scalable prime ECP in

the current literature.

4.1 Design and Architecture

From the lessons learned from the binary ECPs, the Prime ECP also parallelizes the mul-

tiplication and the reduction steps. Since the squaring operation cannot be simplified to

interleaving zeros as in the binary case, squaring is performed as a multiplication of identical

operands. Thus, the finite field arithmetic blocks of the Prime ECP consist of the MULT

and the addition/subtraction/reduction (AR) block.

The block diagram of the MULT and AR blocks are shown in Figure 4.1. Notice that the

architecture of both the MUTL and AR blocks are built with the DSP48E slices described

in Section 2.4 because they have built-in 25 × 18-bit hardware multipliers that can be used

instead of designing multipliers using FPGA fabric that generally have lower performance.

1The work in this chapter has been accepted to IEEE Transactions on Very Large Scale Integration (VLSI)
Systems [54].
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The MULT block implements the Comba algorithm (Algorithm 2.4) using 17-bit digits.

The reason for choosing 17-bit digits instead of 32-bit digits is to take advantage of the 17-bit

shifted feedback input available in the DSP48E slices. As can be seen in Figure 4.1(a), the

MULT block inputs the operands ‘A’ and ‘B’ as 17-bit digits and stores the values in 31×17-

bit RAMs. The RAM values are read into the multiplier of the DSP48E slice according to the

indexes in the Comba algorithm. Since the multiplier in the DSP48E slices is a 25× 18 bits,

the 17-bit operands are zero padded. Inside the DSP48E slice, the product of the multiplier

is accumulated in the internal ‘P’ register. The 17-bit shifted value is chosen when an inner

loop of the Comba algorithm is completed. Simultaneously, the lower 17 bits of the product

are shifted into the FIFO or the shift register. The FIFO and the shift register operate in a

similar fashion as the ones in Figure 3.7(a).

As discussed in Section 2.3.2, due to the choice of the prime numbers, the reduction

operation can be simplified to a series of modular additions and subtractions. Thus, the

addition and subtraction operations are built into the architecture of the reduction operation

forming the AR block shown in Figure 4.1(b). Since the reduction algorithms for the NIST

recommended prime numbers access the operand in 32-bit digits, the AR block collects the

input values as 17-bit operands and stores them in registers. ‘A Reg’ is a 1042-bit register to

accommodate the product of 2 521-bit values, and ‘A add Reg’ and ‘A sub Reg’ are 527-bit

(d521/17e × 17 = 527) registers that store the operands to be added and subtracted. Thus,

the AR block performs the operation ‘A Reg’ + ‘A add Reg’ − ‘A sub Reg’ (mod p).

The AR block uses 3 DSP48E slices to perform the first stage of addition, subtraction

and reduction. These DSP48E slices are cascaded such that they compute the operation:

[A0:B0] + C0 + C2 − ([A1:B1] + C1), where the operands correspond to the input ports of

the DSP48E slice. Each operand is a 32-bit digit extracted from the input registers and zero-

padded to 48 bits. Notice that the multiplier of the DSP48E slice is bypassed, so the DSP48E

slice is used as a 48-bit arithmetic block. The multiplexers on the left of Figure 4.1(b) are

used to select these 32-bit digits according to the reduction algorithm of the specific prime

number. For example, consider the case of the 192-bit prime number. The sequence of digits

selected for each input is shown in Table 4.1.

The operation of the AR block is separated into digits and passes in Table 4.1. The digit
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Table 4.1: Operation sequence for the addition/subtraction/reduction (AR) block for
p192

Digit 0 1 2 3 4 5

Pass 0 1 0 1 0 1 0 1 0 1 0 1

C0 add0 0 add0 0 add0 a6 add0 a6 add0 a4 add0 a4

A1:B1 sub0 0 sub0 0 sub0 0 sub0 0 sub0 0 sub0 0

C1 0 0 0 0 0 0 0 0 0 0 0 0

A2:B2 a0 a10 a0 a10 a0 a8 a0 a8 a0 a6 a0 a6

C2 a6 0 a6 0 a4 0 a4 0 0 0 0 0

column indicates the index of the output digit that is being computed. The pass column

indicates the sequence of values input to the 3 DSP48E slices. In Table 4.1, during the 0th

pass of the 0th digit, the 0th digit of ‘A add Reg’ (add0) is selected for C0, the 0th digit of

‘A sub Reg’ (sub0) is selected for [A1:B1], 0 is input into C1, the 0th digit of ‘A Reg’ (a0) for

[A2:B2] and the 6th digit (a6) for C2. Once the 0th and 1st passes are complete for digit 0,

the input registers are shifted by 32 bits, such that add1 becomes add0, sub1 becomes sub0,

a1 becomes a0, etc. By doing so, when evaluating the result of digit 1, the multiplexer selects

add0 and sub0 again for C0 and [A1:B1], respectively. Using this method, the size of the

multiplexers is reduced.

The resultant digits of the reduction are accumulated in ‘Z Reg’ to be used by the second

stage of the AR block, which performs the final (mod p) of the reduction algorithm and

converts the result back to 17-bit digits. ‘Z Reg’ is a 544-bit (d521/32e × 32 = 544) register.

At the completion of the series of additions and subtractions at the first half of the AR block,

at most 1 extra 17-bit digit can be produced (stored in ‘Z Carry’). Thus, the second stage of

the AR block performs the reduction of the 1 extra digit. Since ‘Z Reg’ outputs 17-bit digits,

the ‘shift’ input is a 1-hot value (i.e. only 1 bit is asserted in the number) that is multiplied

to ‘Z Carry’ to shift the extra digit accordingly for reduction. The top-right DSP48E unit in

Figure 4.1(b) is used to handle carryout bits from each digit to be carried to the next digit.

The result of the AR block is output through port ‘C’ as 17-bit digits.

The block digram of the Prime ECP is shown in Figure 4.2. The architecture of the ECP
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Figure 4.2: Block diagram of the Prime ECP.

Table 4.2: Latency in number of clock cycles of the MULT and AR blocks in the
Prime ECP.

m tMULT tSA Ratio (tMULT:tSA)

163 145 32 4.53

233 197 36 5.47

283 257 48 5.35

409 530 67 7.91

571 962 56 17.2

is very similar to the ones presented in Section 3.3, except the RAM handles 17-bit digits

instead of 32-bit digits. The RAM is 8 × 18 = 144 bits wide instead of 8 × 17 = 136 bits

because of the use of the byte-writing capability on the Xilinx Block RAMs (BRAMs).

The latency in clock cycles of the MULT and AR blocks is shown in Table 4.2. As in the

binary case, the ratio of tMULT:tSA shows that up to 4 AR operations may be executed simul-

taneously for each MULT operation. The double-and-add ECPM algorithm (Algorithm 2.1)

and Jacobian projective coordinates are used in the implementation of the prime ECP. Thus,

the data dependency graph is drawn for the PDBL and PADD operations shown in Equation

(2.16) and (2.15), respectively, to optimize the usage of the MULT and AR blocks. The data
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dependency graph of the PDBL and PADD states are shown in Figure 4.3 and Figure 4.4,

respectively.

In the data dependency graphs, ‘� c’ signifies the modular left shift by c, or ×2c (mod p).

This operation can be very easily integrated into the AR block by using the ‘A msd’ input

for the shifted MSBs. Using the data dependency graph, the FSM and the instructions for

each state are shown in Figure 4.5 and Table 4.3.

Notice in Table 4.3 that the evaluation of the Y1 in each iteration is performed in the

beginning of the next iteration. This is the same technique used in the 1-MULT Koblitz

ECP described in Section 3.3.1. Furthermore, in the PDBL state when MULT PC is 6 and

AR PC is 2, the operation T3 = P1 � 1 + 0 − 1 is evaluated but does not appear in the

data dependency graph in Figure 4.3. The same expression appears in the PADD state when
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Figure 4.5: FSM of the Prime ECP.

MULT PC is 12 and AR PC is 2. This operation is used to set up for the inversion used in

the projective to affine coordinate conversion.

The instructions executed for inversion are shown in Table 4.4. In the Prime ECP,

inversion is performed using the binary inversion algorithm (Algorithm 2.6). In Table 4.4,

the INVS state completes the evaluation of Y1 for the final iteration. There are 3 states

used for inversion. The Z1EVEN state corresponds to the while loop where u is even in

Algorithm 2.6. The T3EVEN state corresponds to the while loop where v is even, and the

SUBT state corresponds to the if statement for u ≥ v. The naming of the states is based on

the names of the registers used in the ECP. In other words, the value of u in Algorithm 2.6

is stored in Z1 during inversion and v is stored in T3.

In Table 4.4, ‘� 1’ signifies a right-shift by 1 bit or a modular division by 2. The right-

shift operation can be very easily handled by the AR block because the division by 2 of an

even number does not require the reduction step. During the Z1EVEN and T3EVEN states,

the operation is slightly modified from the expressions shown in Algorithm 2.6. Consider

the Z1EVEN state, the if statement in the while loop evaluates x1 ← x1/2 if x1 is even,

and x1 ← (x1 + p)/2, otherwise. In Table 4.4, T1 corresponds to x1 in Algorithm 2.6.

In the inversion implemented in the prime ECP, the expression (x1 + p)/2 is modified to
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Table 4.3: Instructions executed during PDBL and PADD states by the Prime ECP

MULT PC MULT AR PC AR
PDBL State

0 Z1 × Z1 0 Y1 = M |0 + Y1 − 0
1 T3 = R� 1 + 0− 0

1 T3 × Z1 0 T1 = M + 0− 0
1 T2 = 0 +X1 −R
2 T1 = T1 +X1 − 0

2 Y1 × Y1 0 Z1 = M + 0− 0
3 T1 × T2 0 T1 = M + 0− 0

1 T3 = R� 2 + 0− 0
4 T3 ×X1 0 R = M + 0− 0

1 T2 = R� 1 +R− 0
5 T2 × T2 0 T3 = M + 0− 0

1 X1 = R� 1 + 0− 0
6 T1 × T1 0 X1 = M + 0−X1

1 T1 = 0 + T3 −R
2 T3 = P1 � 1 + 0− 1

7 T1 × T2 0 R = M + 0− 0
1 R = R� 3 + 0− 0
2 T1 = 0 + 0−R

PADD State
0 Z1 × Z1 0 Y1 = M + Y1 − 0
1 1 T1 = M + 0− 0
2 Z1 ×R 0
3 T1 × x 0 T2 = M + 0− 0
4 T2 × y 0 T1 = M + 0−X1
5 T1 × Z1 0 T2 = M + 0− Y1
6 T1 × T1 0 Z1 = M + 0− 0
7 0 T3 = M + 0− 0
8 X1 ×R 0
9 T3 × T1 0 T3 = M + 0− 0

1 T1 = R� 1 + 0− 0
10 T2 × T2 0 X1 = M + 0− 0
11 X1 × Y1 0 R = M + 0− T1

1 X1 = 0 +R−X1

2 T3 = 0 + T3 −R
12 T3 × T2 0 R = M + 0− 0

1 Y1 = 0 + 0−R
2 T3 = P1 � 1 + 0− 1

x1/2 + (p+ 1)/2, which is possible because both p and x1 are odd. Thus, instead of storing

p in the ECP and evaluating (p + 1)/2 at every iteration of the binary inversion algorithm,

(p+1)/2 is stored in P1 and added to x1/2 when AR PC is 2 in Z1EVEN. Recall the operation

T3 = P1 � 1 + 0− 1 in PDBL and PADD states discussed earlier. This operation evaluates
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Table 4.4: Instructions executed during inversion and FINAL states by the Prime
ECP

MULT PC MULT AR PC AR
INVS State

0 0 Y1 = M + Y1 − 0
Z1EVEN State

0 0 Z1 = 0 + Z1 − 0� 1
1 R = 0 + T1 − 0� 1
2 T1 = P1|0 +R− 0

T3EVEN State
0 0 T3 = 0 + T3 − 0� 1

1 R = 0 + T2 − 0� 1
2 T2 = P1|0 +R− 0

SUBT State
0 0 Z1|T3 = 0 + Z1|T3 − T3|Z1

1 T1|T2 = 0 + T1|T2 − T2|T1
FINAL State

0 T1|T2 × T1|T2 0
1 0 T2|T1 = M + 0− 0
2 X1 ×R 0
3 T1 × T2 0 T1 = M + 0− 0
4 0 R = M + 0− 0
5 Y1 ×R 0
6 0 T2 = M + 0− 0

T3 = P1 × 2− 1 = (p + 1)/2× 2− 1 = p, which initializes T3 to p (v ← p in Algorithm 2.6)

as required by the binary inversion algorithm.

4.2 Implementation Results

The implementation results on the Virtex-5 FPGA of the Prime ECP is shown in Table 4.5.

Notice that the latency values are higher compared to the binary counterpart (e.g. 2-MULT

Koblitz ECP or 2-MULT pseudo-random ECP), and hence the efficiencies are much lower.

One of the reasons for the lower performance is the more complex addition in prime fields

compared to binary fields. Another reason is the long latency due to the use of 17-bit digits

in the MULT block instead of 32-bit blocks. As previously mentioned, since the latency of

the Comba algorithm is in the order of O(s2), using fewer bits per digit results in a higher

number of digits, which increases the latency.

Table 4.5 also shows the Prime ECP uses 7 DSP48E slices. Out of these 7, 1 is used in
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Table 4.5: Implementation Results and Comparison of the Prime ECP

Work FPGA Registers LUT Slices BRAM DSP
Max.
Freq.

(MHz)
m

Latency
(ms)

Efficiency(
ECPM
s·slice

)

Prime
ECP

Virtex-4
XC4VFX100

3,545 12,435 7,020 4 8 181.95

192 2.361 0.060
224 3.663 0.039
256 5.457 0.026
384 16.31 0.009
521 38.73 0.004

Prime
ECP

Virtex-5
XC5LX110T

3,567 6,115 1,980 2 7 251.32

192 1.709 0.295
224 2.652 0.190
256 3.951 0.128
384 11.81 0.043
521 28.04 0.018

Ananyi
et al.
[42]

Virtex-4
XC4VFX100

n/a 31,946 20,793 1 32 60

192 4.8 0.010
224 5.8 0.008
256 6.9 0.007
384 19.9 0.002
521 45.6 0.001

the MULT block and 5 are used in the AR block as shown in Figure 4.1. The final DSP48E

slice is used in the controller to compare the Z1 and T3 values during the inversion states to

determine whether or not u ≥ v. Furthermore, it can be observed that with the use of the

DSP48E slices results in the use of fewer FPGA slices.

The Virtex-4 implementation result of the Prime ECP is also shown in Table 4.5. The

Virtex-4 implementation requires an extra DSP48E slices compared to the Virtex-5 because

the Virtex-4 version of the DSP48E slice does not support the Z − (X + Y + CARRYIN)

operation shown in Table 2.6. Thus, an extra DSP48E slice is used to perform the addition

of the ports [A1:B1] and C1.

The Virtex-4 implementation compared to the work in [42], which resembles the Prime

ECP since it also supports all 5 NIST recommended prime curves without the need to recon-

figure the hardware. As can be seen in Table 4.5, the design in [42] requires a higher number

of slices (20,793 compared to 7,020) and DSP48E slices (32 compared to 8). Furthermore, the

latency of the Prime ECP is also between 15% to 50% lower compared to [42]. The higher

performance of the Prime ECP is due to the lower datapath with of the finite field arithmetic

blocks. In [42], the authors implement a 265-bit adder/subtractor, an integer multiplier with
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a 521-bit reductor and a separate module to perform inversion. These result in a much higher

hardware resource utilization and lower maximum clock frequency.
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Chapter 5

Scalable and Unified ECC Processor

Based on the design of the scalable ECPs discussed in the previous chapters, an ECP

that supports all 15 NIST recommended elliptic curves [18] is implemented and described in

this chapter. In Section 5.1, the design and architecture of the ‘Scalable and Unified ECP’

is described with the details of its operation. This work has been submitted to a journal for

peer review in [68]. In Section 5.2, the interaction of the ECP described in Section 5.1 with

the Microblaze soft-core processor is discussed.

5.1 Design and Architecture1

Recall that this thesis defines a unified ECP as one that supports both binary and prime

fields on-the-fly. Throughout the development of the previously described ECPs for Koblitz,

pseudo-random and prime curves, the architectures of the ECPs have been kept as consistent

as possible in order to facilitate the integration into a scalable and unified ECP. Thus, one

can notice many similarities among the aforementioned ECP architectures. This section

describes an ECP that is able to support all 15 curves recommended by NIST [18] without

the need to reconfigure the hardware.

Recall from Section 2.4 that the DSP48E slices have the capability to perform both integer

addition and binary field addition, through the built-in configurable ALU. Thus, DSP48E

slices are used as building blocks for the finite field arithmetic units, similar to the prime

ECP described in Chapter 4.

The Scalable and Unified ECP uses the same structure as the previous ECPs by adopting

1The work in this section has been submitted to IEEE Transactions on Industrial Electronics [68] for peer
review.
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Figure 5.1: Block diagram of the MULT block for the Scalable and Unified ECP.

the use of parallel MULT and AR blocks. The block diagram of the MULT block is shown

in Figure 5.1. Since the DSP48E slices do not support binary field multiplication, separate

multiplier blocks are used for prime and binary field multiplication. The MULT block adopts

the dual multiplier block architecture used in Figure 3.7(a).

The ‘×’ block performs integer multiplication for prime fields and the ‘⊗’ block performs

polynomial multiplication for binary fields. The ‘⊗’ block is the same as the multiplier block

in Figure 3.7(a), which is a pipelined 32× 32-bit Karatsuba-Ofman multiplier.

Since the DSP48E slices only have 25×18-bit multipliers, in order to implement a 32×32-

bit integer multiplier, multiple DSP48E slices are needed. The DSP48E user guide [66]

describes the architecture of a 42×35-bit multiplier, which is used to implement the multiplier

shown in Figure 5.2(a). The ‘×’ block uses 4 DSP48E blocks in cascade and takes 6 clock

cycles to complete the first multiplication, but requires only 1 additional clock cycle for every

subsequent execution.

The 64-bit product from the multipliers is passed to the ‘add/accum/shift’ block that

performs addition, accumulation and shifting as per the Comba algorithm. Since the MULT
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block uses 32-bit digits, it cannot take advantage of the 17-bit shift built into the DSP48E

slices. Thus, the architecture shown in Figure 5.2(b) is used. Its architecture is based on

the 96-bit adder/subtractor and 96-bit accumulator shown in [66]. The blocks labeled ‘aas0’

and ‘aas1’ perform a 64-bit addition and the blocks labeled ‘aas2’ and ‘aas3’ perform a 64-

bit accumulation. The feedback of the accumulator is placed outside the DSP48E slice in

order for a multiplexer to be added to perform 32-bit right-shifting of the Comba algorithm.

For binary field operation, the ‘add/accum/shift’ block is configured to use the XOR gates

instead of integer addition. The carry signals (i.e. connection from ‘aas0’ to ‘aas1’ and from

‘aas2’ to ‘aas3’) are ignored by the DSP48E slice. The output of the ‘add/accum/shift’ block

is connected to a FIFO and a shift register. These blocks perform the same function as the

ones in Figure 3.7(a).

The block diagram of the AR block is shown in Figure 5.3. It performs the operation

‘A Reg’ + ‘B Reg’ − ‘C Reg’ (mod p) in prime fields and ‘A Reg’ + ‘B Reg’ + ‘C Reg’

(mod P (t)) in binary fields. Its architecture is similar to the AR block of the Prime ECP

shown in Figure 4.1(b). However, the AR block in Figure 5.3 implements a tree architecture

to eliminate the need for multiple passes for digit used in the AR block for the prime ECP.

For prime fields, upon examining Algorithm B.1 to Algorithm B.5 in Appendix B, one can

notice that at most 8 digits are added and at most 4 digits are subtracted in the reduction

algorithms. Thus, the DSP48E slices in Figure 5.3 labeled ‘a0’, ‘a1’, ‘a2’ and ‘a3’ are used

for addition and ‘s0’ and ‘s1’ are used for subtraction. The ‘as0’ block is used to input the

digits of ‘B Reg’ and ‘C Reg’. Since the DSP48E slices have the ability to input a 3rd operand

through the cascaded input ‘PCIN’, the adder tree is built to take advantage of this feature

to reduce the number of DSP48E slices required. At the top of the adder tree, the digits

are collected at the ‘Z FIFO’ block similar to ‘Z Reg’ in Figure 4.1(b). The second stage of

the AR block shown at the bottom-right corner of Figure 5.3 (‘f0’ and ‘f1’ blocks) performs

the final (mod p) operation of the reduction algorithms. Finally, the AR block outputs the

result as 32-bit digits.

For binary fields, the same architecture is used for reduction. The digits selected by the

DSP48E slices are based on the reduction matrix developed for Equation (2.24). However,

when using the DSP48E slices for logical operations (i.e. XOR), they do not support the 3rd
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Figure 5.3: Block diagram of the AR block for the Scalable and Unified ECP.

operand as in the integer addition and subtraction case. Thus, the slices ‘a1’ and ‘s1’ are

disabled and the remainder of the DSP48E slices are configured to perform XOR operations.

Since binary field operations do not generate carry bits, the ‘f0’ and ‘f1’ blocks do not modify

the value in the ‘Z FIFO’, yet they are still used to preserve the latency between the prime
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Table 5.1: Latencies in clock cycles of the MULT and AR blocks in the Scalable and
Unified ECP.

m tMULT tAR Ratio (tMULT:tAR)

Binary

163 34 23 1.48

233 51 27 1.89

283 61 29 2.10

409 111 37 3.00

571 196 47 4.17

Prime

192 34 23 1.48

224 42 25 1.68

256 51 27 1.89

384 97 35 2.77

521 177 45 3.93

field and binary field operations.

Other than addition, subtraction and reduction, the AR block also performs squaring in

binary fields because squaring is simply interleaving zero bits with operand bits. When the

AR block is used for squaring, the operand to be squared is stored in ‘A Reg’ with zero bits

interleaved and the reduction operation is performed. Thus, the latency of squaring using

the AR block is the same as addition and reduction. This feature cannot be applied to prime

fields, so squaring in prime field is performed by the MULT block.

Table 5.1 shows the latencies of the MULT and AR blocks for binary and prime fields.

As shown by the tMULT:tAR ratio column, unlike in previous ECPs, in some cases only 1 AR

block operation can completely finish its execution during the execution of a MULT block

operation. Thus, the execution of the MULT and AR blocks are modified slightly from the

previous ECPs. In previous ECPs, the MULT block operation initiates at the same time as

the AR block operations. Once all the AR operations complete, the AR block becomes idle

and waits for the MULT block to complete its operation. In the Scalable and Unified ECP,

the MULT and AR blocks begin their operations, depending on the sequence of instructions,

the block that completes its operations first becomes idle and waits for the other to complete.

By doing so, the ECP can still take advantage of parallel executions of the MULT and AR
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Figure 5.4: Block diagram of the Scalable and Unified ECP.

blocks.

The block digram of the Scalable and Unified ECP is shown in Figure 5.4. This architec-

ture is similar to the one used in the ECPs described in the previous chapters. The ‘k’ and ‘ks’

ports input the value of k for the ECPM. When the ECP is set to operate on pseudo-random

or prime curves, the ‘ks’ port is not used. The RAM is 18 × 288 bits to store the x and y

coordinates of the point to be multiplied and 7 other temporary variables (9× 32 = 288).

The top level FSM of the Scalable and Unified ECP is shown in Figure 5.5. The circular

shapes are individual states and the cloud shapes are collections of states. This FSM combines

the FSMs of the 1-MULT Koblitz ECP, 1-MULT Random ECP and the Prime ECP. The

IDLE and LOAD states are common to all FSMs. From the LOAD state, depending on the

curve selected, the FSM moves into one of the 3 collections of states (one for each type of

curve) to perform the main loop of the ECPM and the inversion setup state. Subsequently, the

FSM performs finite field inversion. The choice of the inversion algorithm will be discussed

later in this section. From the inversion states, the FSM moves to the FINAL states to

complete the coordinate conversion and move to the common WAIT state to complete the

ECPM operation.
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Figure 5.5: FSM of the Scalable and Unified ECP.

The sub-FSMs of the PRIME, KOBLITZ and RANDOM clouds in Figure 5.5 are shown

in Figure 5.6 and the instructions executed are shown in Table 5.2, Table 5.3 and Table 5.4,

respectively. Notice that the instructions of the scalable and unified ECP presented in this

section are slightly different from the instructions shown in previous sections. The modifica-

tions minimize the number of AR block operations that are executed for each MULT block

operation. By doing so, the latency is reduced when the tMULT:tAR ratio is low for lower bit

lengths.

In order to select the algorithm to use for inversion in the Scalable and Unified ECP, the

inversion algorithms described in Section 2.3 are analyzed using the architecture of the finite

field arithmetic blocks described above. The algorithms that are taken into consideration are

the binary inversion algorithm for both binary and prime fields, the Itoh-Tsujii algorithm for

binary fields, and using Fermat’s Little Theorem for prime fields.

The binary inversion algorithm has been previously used for the prime ECP in Chapter 4.

By carefully analyzing Algorithm 2.6, one can notice that after both inner while loops exit,

both u and v are odd numbers. Thus, after the subtraction of u← u− v or v ← v − u, only

one of u or v is an even number. Therefore, only one of the inner while loops is entered at

each iteration of the outer while loop. Furthermore, during each iteration of the inner while

loop, u or v is divided by 2, reducing its bit length by 1. Since the outer while loop exits
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Table 5.2: Instructions executed in the PRIME states of the Scalable and Unified
ECP

MULT PC MULT AR PC AR
PDBLP State

0 Z1 × Z1 0 Y1 = M |0 + Y1|0− Y1|R
1 T3 = R� 1 + 0− 0

1 T3|R× Z1 0 T1 = M + 0− 0
1 T2 = 0 +X1 −R

2 Y1 × Y1 0 Z1 = M + 0− 0
1 T1 = T1 +X1 − 0

3 T1|R× T2 0 T1 = M + 0− 0
1 T3 = R� 2 + 0− 0

4 T3|R×X1 0 R = M + 0− 0
1 T2 = R� 1 +R− 0

5 T2|R× T2|R 0 T3 = M + 0− 0
1 X1 = R� 1 + 0− 0

6 T1 × T1 0 X1 = M + 0−X1|R
1 T1 = 0 + T3 −R

7 T1|R× T2 0 R = M + 0− 0
1 Y1 = R� 3 + 0− 0

PADDP State
0 Z1 × Z1 0 Y1 = M + 0− Y1|R
1 0 T1 = M + 0− 0
2 Z1 ×R 0
3 T1 × x 0 T2 = M + 0− 0
4 T2 × y 0 T1 = M + 0−X1
5 T1 × Z1 0 T2 = M + 0− Y1
6 T1 × T1 0 Z1 = M + 0− 0
7 0 T3 = M + 0− 0
8 X1 ×R 0
9 T3 × T1 0 T3 = M + 0− 0

1 T1 = R� 1 + 0− 0
10 T2 × T2 0 X1 = M + 0− 0

1 T1 = T1 +R− 0
11 X1 × Y1 0 X1 = M + 0− T1|R

1 T3 = 0 + T3 −R
12 T3|R× T2 0 Y1 = M + 0− 0

INVSP State
0 0 Y1 = M + 0− Y1|R

when u = 1 or v = 1, the outer while loop executes at most 2m iterations, where m is the bit

length. Using the instructions provided in Table 4.4, the binary inversion algorithm requires

tBININV = 2m(2tSHIFT + tAR + 2tAR), where tSHIFT = s+ 1 is the latency of the right-shift by

1 operation and s is the number of 32-bit digits. Using the binary inversion algorithm for

binary fields, the same analysis can be performed and yields the same expression for latency.

The Itoh-Tsujii algorithm for inversion in binary fields has been previously discussed in

Section 2.3.1 and it is used by the binary ECPs described in Section 3.2 and Section 3.3.
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Table 5.3: Instructions executed in the KOBLITZ states of the Scalable and Unified
ECP

MULT PC MULT AR PC AR
PDAK State

0 x× Z1|R 0 Y1 = M |0 + Y1 + 0
1 T2 = Z2

1 + 0 + 0
2 X1 = X2

1 + 0 + 0
1 T2 × y|xy 0 T1 = M +X1|R + 0

1 Y1 = Y 2
1 + 0 + 0

2 T1 × Z1 0 X1 = M + Y1|R + 0
1 T1 = T 2

1 + 0 + 0
3 0 Z1 = M + 0 + 0
4 X1 ×R 0 Y1 = 0 +R + T2|0

1 Z1 = Z2
1 + 0 + 0

5 Y1 × T1 0 T2 = M + 0 + 0
1 X1 = X2

1 + 0 + 0
6 x× Z1 0 X1 = M +X1|R + T2

1 T1 = Z2
1 + 0 + 0

7 T1|R× xy|y 0 T3 = M +X1 + 0
1 T2 = 0 + T2 + Z1

8 T3 × T2|R 0 Y1 = M + 0 + 0
1 Z1 = Z2

1 + 0 + 0
PDBLK State

0 0 Y1 = M |0 + Y1 + 0
1 X1 = X2

1 + 0 + 0
2 Y1 = Y 2

1 + 0 + 0
3 Z1 = Z2

1 + 0 + 0
INVSK State

0 0 Y1 = M |0 + Y1 + 0

Analyzing the example shown in Equation (2.27), one can see that the latency of the Itoh-

Tsujii algorithm requires (m − 1) squaring operations and blog2 (m− 1)c + H(m − 1) − 1

multiplications, where H(x) is the Hamming weight of the value x. Using the MULT and

AR blocks described in this section, the squaring operation is performed by the AR block

and each multiplication requires a MULT block operation for integer multiplication and

an AR block operation for reduction. Thus, the latency of the Itoh-Tsujii algorithm is

tITAINV = (m− 1)tAR + (blog2 (m− 1)c+H(m− 1)− 1)(tMULT + tAR).

Using Fermat’s Little Theorem for prime field inversion transforms the inversion operation

into a−1 (mod p) = ap−2 (mod p). One method of evaluating exponentiation is by using the

square-and-multiply algorithm, similar to the double-and-add algorithm for multiplication.

By doing so, the number of squaring and multiplications required depends on the binary

representation of the value p − 2, and can be evaluated with (m − 1) squarings and H(p −
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Table 5.4: Instructions executed in the RANDOM states of the Scalable and Unified
ECP

MULT PC MULT AR PC AR
INITR State

0 0 Z2 = x2 + 0 + 0
1 X2 = R2 + 0 + b

LOOPR State
0 X1|X2 × Z2|Z1 0 X2|X1 = M |R + T2|0 + 0

1 R = (Z1|Z2)
2 + 0 + 0

2 T3 = R2 + 0 + 0
1 X2|X1 × Z1|Z2 0 T2 = M + 0 + 0
2 X1|X2 × Z1|Z2 0 T1 = M + 0 + 0

1 Z2|Z1 = 0 +R + T2
3 T2 × T1 0 R = M + 0 + 0

1 Z1|Z2 = R2 + 0 + 0
2 Z2|Z1 = (Z2|Z1)

2 + 0 + 0
4 b× T3 0 T2 = M + 0 + 0

1 R = (X1|X2)
2 + 0 + 0

2 T3 = R2 + 0 + 0
5 x× Z2|Z1 0 X1|X2 = M + T3|R + 0

INVSR State
0 x× Z1 0 X2|X1 = M + T2 + 0
1 x× Z2 0 Z1 = M + 0 + 0

1 T1 = 0 +R +X1
2 Z1 × Z2 0 T2 = M + 0 + 0

1 X2 = 0 +R +X2
3 X1 × T2 0 Z1 = M + 0 + 0
4 X2 × T1 0 X2 = M + 0 + 0
5 T1 × Z2 0 X1 = M + 0 + 0
6 x×X1 0 Z2 = M + 0 + 0
7 0 X1 = M + 0 + 0

2) − 1 multiplications. Using the MULT and AR blocks in prime field, both squaring and

multiplication are evaluated using the MULT block followed by an AR block operation for

reduction. Thus, the latency of inversion using Fermat’s Little Theorem is tFERMAT = (m−

1)(tMULT + tAR) + (H(p− 2)− 1)(tMULT + tAR).

Table 5.5 shows the latencies in number of clock cycles of the inversion algorithms dis-

cussed. The ratio column provides the ratio of the binary inversion algorithm to the Itoh-

Tsujii algorithm in binary fields and Fermat’s Little Theorem in prime fields. From Table 5.5,

one can obverse that the binary inversion algorithm is worse than its counterpart for every

value of m except for 521-bit prime field. Furthermore, the latency of the Itoh-Tsujii algo-

rithm is over a factor of 6 less than the binary inversion algorithm. The main reason that

the difference is not as significant in prime fields is because squaring is performed using the
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Table 5.5: Latency comparison of the inversion algorithms

m tITAINV tFERMAT tBININV Ratio

Prime Fields

192 n/a 21660 31872 1.47

224 n/a 29815 40768 1.37

256 n/a 29796 50688 1.70

384 n/a 92400 100608 1.09

521 n/a 230658 178182 0.77

Binary Fields

163 4239 n/a 27058 6.38

233 7044 n/a 46134 6.55

283 9168 n/a 60562 6.61

409 16724 n/a 113702 6.80

571 29949 n/a 204418 6.83

MULT block in prime fields and requires a reduction step.

From these observations, the Scalable and Unified ECP chooses to use the Itoh-Tsujii

algorithm for inversion in binary fields and Fermat’s Little Theorem for inversion in prime

fields. The sub-FSM of the inversion states are shown in Figure 5.7 and the instructions exe-

cuted are shown in Table 5.6 and Table 5.7. The sub-FSM of the Itoh-Tsujii algorithm shown

in Figure 5.7(a) resembles the inversion states in the ECPs described in Section 3.3. The

ISQB state executes squaring and the IMULTB and IMULTRB states execute the multiplica-

tion. The sub-FSM for inversion based on Fermat’s Little Theorem shown in Figure 5.7(b) is

very similar to the one for Itoh-Tsujii, except it requires an extra state to perform reduction

for squaring. Finally, the instructions executed for the FINAL states for each of the 3 types

of curves are shown in Table 5.8. These states complete the coordinate conversion.

The FPGA implementation result of the Scalable and Unified ECP is shown in Table 5.9.

It can be seen that 25 DSP48E slices are used, which includes 4 in each ‘×’ block of the

MULT block, 4 in the add/accum/shift block and 13 in the AR block. The maximum clock

frequency of the Scalable and Unified ECP is 155.35 MHz, which is lower than in the 1-

MULT Koblitz ECP, 1-MULT Random ECP and Prime ECP. The lower clock frequency is

expected since the hardware is more complex with the combination of binary and prime field
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Table 5.6: Instructions executed in the BINARY INVERSION states of the Scalable
and Unified ECP

MULT PC MULT AR PC AR

ISQB State

0 0 T1|R = (Z1|R)2 + 0 + 0

IMULTB State

0 R× Z1|T1 0

IMULTRB State

0 0 T1 = M + 0 + 0

Table 5.7: Instructions executed in the PRIME INVERSION states of the Scalable
and Unified ECP

MULT PC MULT AR PC AR

ISQP State

0 Z1|R× Z1|R 0

ISQRP State

0 0 R = M + 0 + 0

IMULTP State

0 R× Z1 0

IMULTRP State

0 0 T1 = M + 0 + 0

operations.

In general, it is expected that the Scalable and Unified ECP has lower performance than

the previously described scalable ECPs that only support 1 of the 3 types of curves, since the

underlying finite field arithmetic units must support both binary and prime fields, whereas

the scalable ECPs only support one of the fields. Comparing the efficiency values of the

Scalable and Unified ECP in Koblitz and pseudo-random mode with the results in Table 3.7

and Table 3.10 confirms this expectation. However, in prime curves mode, the efficiency of

the Scalable and Unified ECP outperforms the Prime ECP described in Chapter 4. The

reason for the improved performance of the Scalable and Unified ECP is due to the use of
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Table 5.8: Instructions executed in FINAL states of the Scalable and Unified ECP

MULT PC MULT AR PC AR

FINALP State

0 R×R 0

1 0 T2 = M + 0− 0

2 X1 ×R 0

3 T1 × T2 0 T1 = M + 0− 0

4 0 R = M + 0− 0

5 Y1 ×R 0

6 0 T2 = M + 0− 0

FINALK State

0 X1 ×R 0 T3 = R2 + 0 + 0

1 T3 × Y1 0 T1 = M + 0 + 0

2 0 T2 = M + 0 + 0

FINALR State

0 R×X1 0 T3 = x2 + y + 0

1 T1 × Z2 0 T3 = M + T3 + 0

2 X2 × T1 0 T1 = M + 0 + 0

3 T1 × T3 0 T1 = M + 0 + 0

4 0 T2 = M + y + 0

the dual 32-bit multiplier in the MULT block instead of a 17-bit multiplier, which reduces

the latency of the MULT block operation considerably.

Table 5.9 also shows the implementation results of some designs in the current literature.

As previously mentioned, there is no work in the current literature that implements all 15

NIST recommended curves in a single hardware device. Thus, the comparison with other

designs is not entirely fair, but are included in for reference purposes. The designs in [30]

and [29] show ECPs that are unified but not scalable.

In [30], the authors propose a unified ECP architecture using multiple word-based arith-

metic units (AU) that consist of a unified multiplier and a unified adder. Since [30] uses an

older FPGA (Virtex-II Pro vs Virtex-5), the comparison is not completely fair. However,

Table 5.9 shows that the latency and the number of slices used in the Scalable and Unified

ECP is lower than in [30]. The higher number of slices in [30] is due to the use of 4 AUs each

with a multiplier and an adder, whereas the Scalable and Unifeid ECP only has 1 MULT
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Table 5.9: Implementation Results and Comparison of the Scalable and Unified ECP

Work FPGA Reg. LUT Slices BRAM DSP

Max.

Freq.

(MHz)

Curve m
Latency

(ms)

Efficiency(
ECPM
s·slice

)

Scalable

and

Unified

ECP

Virtex-5 4,244 8,316 2,291 5 25 155.35

Prime

192 0.857 0.510

224 1.127 0.387

256 1.378 0.317

384 3.922 0.111

521 9.662 0.045

Koblitz

163 0.239 1.825

233 0.399 1.094

283 0.533 0.818

409 1.185 0.368

571 2.643 0.165

Pseudo-

Random

163 0.365 1.195

233 0.646 0.676

283 0.870 0.502

409 1.866 0.234

571 4.523 0.097

Lai and

Huang

[30]

Virtex-II

Pro
n/a n/a

39,531

n/a n/a 94.7
Prime

160 0.782 0.032

40,219 192 1.25 0.020

41,595 256 2.66 0.009

39,531 Binary 160 0.574 0.044

Wang

et al.

[29]
Virtex-4 n/a n/a

5,227

CLBs
n/a n/a 150.5

Prime 192 0.542 0.353a

Pseudo-

Random
163 0.347 0.551a

Ananyi

et al.

[42]
Virtex-4 n/a 31,946 20,793 1 32 60 Prime

192 4.8 0.010

224 5.8 0.008

256 6.9 0.007

384 19.9 0.002

521 45.6 0.001

Hassan &

Benaissa

[39]
Spartan-3 913 2028 1278 4 0 90 Koblitz

163 15.5 0.050

283 45.1 0.017

571 121.4 0.006

Hassan &

Benaissa

[17]
Spartan-3 650 2025 1127 4 0 68

Pseudo-

Random

163 38 0.023

233 73.4 0.012

283 104 0.009

409 251 0.004

571 287.4 0.003
a Assumes only 1 slice is used per CLB.
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and 1 AR block.

The design in [29] is a unified ECP that can perform both RSA and ECC operations. The

reported ECP is able to compute ECPM for a 192-bit prime curve, 163-bit pseudo-random

curve and 1024-bit RSA. It implements a separate modular inversion unit to evaluate the

binary inversion algorithm. Since only the configurable logic block (CLB) information is

given in [29], the efficiency metric assumes that each CLB only uses 1 of the 4 slices, which

is underestimated. Even though the ECP in [29] has a lower latency for P-192 and B-163,

the results in Table 5.9 show that [29] has a lower efficiency compared to the scalable and

unified ECP, and it does not support the other NIST recommended curves with larger bit

lengths.

Other researchers presented works on scalable ECPs that are not unified. These works

have been previously shown in Table 3.2, Table 3.3 and Table 4.5, but are shown again in

Table 3.2 for comparison with the Scalable and Unified ECP. In [42], the authors present

an ECC processor that supports all 5 NIST recommended prime curves. The design uses

a wide datapath, which results in a slow maximum clock frequency of only 60 MHz and a

large number of slices. Even though the Scalable and Unified ECP supports binary curves in

addition to prime curves, it still outperforms the design in [42] in both timing performance

and area. Furthermore, the Scalable and Unifeid ECP supports all 15 NIST recommended

curves with 25 DSP slices, whereas the design in [42] uses 32 DSP slices to support only the

5 prime curves.

In [39] and [17], the authors have designed ECPs for Koblitz and pseudo-random curves

for area-constrained environments. The Spartan-3 is an older FPGA, so the comparison is not

completely fair. However, the low maximum frequency and the high number of clock cycles

due to the use of Hardware/Software Co-design (HSC) result in very long latencies compared

to the Scalable and Unified ECP. These comparisons demonstrate high performance of the

Scalable and Unified ECP.
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MicroBlaze Scalable and Unified ECP

FSL0

FSL1

FPGA

Master

Master

Slave

Slave

Figure 5.8: Block diagram of the interface between the Microblaze and the ECP.

5.2 Hardware/Software Co-design

This section describes the interfacing of the Scalable and Unified ECP described in Section 5.1

with software. In particular, this section describes the implementation of the ECP with the

soft-core Microblaze microprocessor available in Xilinx FPGAs.

A soft-core processor is one that is implemented using FPGA fabric, so it is extremely

flexible and can be configured to suit the user’s needs. Xilinx provides software packages to

very easily integrate the Microblaze into the FPGA and interface it with custom hardware

designs. The goal of the design in this section is to set up a platform for future extensions

in developing a protocol accelerator using the Scalable and Unified ECP developed in the

previous section.

The top level block diagram of the interface between the Miroblaze soft-core processor

and the Scalable and Unified ECP is shown in Figure 5.8. The connection between the two

blocks is a Fast Simple Link described in [69]. The FSL is a one-directional communication

link available in the Xilinx IP catalog to provide fast communication between modules. The

architecture of the FSL is a FIFO with various control signals associated. The block digram

of the FSL is shown in Figure 5.9 [69].

The FSL has a master and a slave side and data always flows from the master to the slave.

The ‘FSL M Clk’ and ‘FSL S Clk’ ports are independent clock signals for the master and

slave sides. In the current design, the same clock is used to operate the Microblaze and the

ECP to simplify the design. The ‘FSL M Data’ and ‘FSL S Data’ ports are set to 32 bits by
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Figure 5.9: Block diagram of Xilinx Fast Simplex Link (FSL) [69].

the Microblaze by default. These are used to pass data through the FSL. Data is input from

the master by asserting the ‘FSL M Write’ flag and stored in the FIFO. The slave side reads

the data by asserting the ‘FSL S Read’ flag. The ‘FSL M Control’ and ‘FSL S Control’ ports

are used to transmit a 1-bit signal from the master to the slave to indicate that the contents

in the ‘FSL S Data’ port are used for control purposes. This feature allows the master to

send 2 types of information to the slave (i.e. raw data or control signals) using the same

‘FSL M Data’ port.

Using 2 FSLs to connect the Microblaze to the ECP allows the ECP to act as a co-

processor to the Microblaze. When an ECPM operation is required, the Microblaze calls a

function to pass arguments to FSL0 to the ECP, where the Microblaze is the master and

the ECP is the slave. This function must first send a control signal to configure the ECP to

the appropriate mode (i.e. the type of curve and the bit length). Subsequently, the function

transmits values required for ECPM operation (i.e. the x- and y-coordinates of the point,

P , and the scalar multiplier, k) to the FSL as 32-bit digits. If Koblitz curves are selected,

the value of k is expected to be τNAF converted and the input is separated into magnitude

and sign. The ECP evalutes the ECPM and writes the resultant affine coordinates to FSL1,

where the ECP is the master and the Microblaze is the slave. These values are also passed

as 32-bit digits. When the Microblaze is ready, it may read the result from the FSL. During

the time that the ECPM is evaluated by the ECP, the Microblaze is free to perform other

functions.

Since the Scalable and Unified ECP shown in Figure 5.4 expects the inputs ‘x’, ‘y’, ‘k’ and

‘ks’ simultaneously, a wrapper module is used to collect the values from the FSL and input
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into the ECP. Similarly, the outputs ‘x2’ and ‘y2’ also require a wrapper module to package

the values accordingly. Since both the ECP and the FSL operate in 32-bit digits, the wrapper

module is simply a collection of FIFOs to collect the input and output values. Having the

Scalable and Unified ECP connected to the MicroBlaze processor, the development of other

protocol level algorithms, such as the ECDH or ECDSA, may be implemented in software

while taking advantage of the high performance ECP.
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Chapter 6

Conclusion

In today’s society, network security is becoming growingly important with the increased

reliance on the computers to exchange secret information. The increased amount of encrypted

data transmitted across networks also demands more efficient implementations of security

protocols to handle the higher network traffic while maintaining security. Elliptic Curve

Cryptography (ECC) is regarded as an excellent successor to the Rivest-Shamir-Adleman

(RSA) algorithm for public-key cryptography due to the level of security it can provide with

much smaller key sizes. Reduced key sizes mean implementations of ECC can be much faster

and use fewer resources than the respective RSA implementation to provide the same level of

security. Hardware accelerators are commonly used to improve the performance of servers by

offloading computationally intensive ECC operations to hardware. By doing so, the server’s

capabilities to respond to a high volume of requests increase and the server’s processors

can handle other operations more efficiently. The operations that are offloaded can range

from simply moving the finite field operations to hardware or implementing a complete ECC

scheme, such as ECDSA, in hardware.

This thesis focuses mainly on the elliptic curves recommended by NIST [18] as these

are the most commonly used curves in other standards and protocols, such as SECG [19],

and FIPS 186-3 [20]. NIST recommends a total of 15 curves and they are divided into 3

categories: binary pseudo-random curves, binary Koblitz curves and prime curves. Each of

these categories can take advantage of different algorithms to compute the elliptic curve point

multiplication (ECPM) operation, which is the most important computation in ECC.

In this thesis, the hardware implementation of various scalable elliptic curve processors

(ECP) have been explored. Scalability refers to the design of an ECP that can compute

the elliptic curve point multiplication (ECPM) in hardware and support multiple curves on-
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the-fly without the need to reconfigure the hardware. On server-side applications, highly

scalable and high throughput implementations of ECPs are desired since servers must be

able to handle a variety of security levels and must be able to respond to requests quickly.

Thus, the designs in this thesis are more suitable for high-end server-side applications. This

thesis also implements a scalable and unified ECP, where unified is defined as the ability to

support both binary and prime fields using the same hardware.

As shown throughout this thesis, the efficiency and performance of a scalable ECP is

highly dependent on the implementation of the underlying finite field arithmetic units. Thus,

in this thesis, much of the attention is focused on designing efficient finite field arithmetic

blocks. Chapter 3, Chapter 4 and Chapter 5 describe the architecture of these ECPs.

• The ECPs in Chapter 3 target the binary curves recommended by NIST [18].

• The design in Section 3.1 shows a ECP specific to the 163 pseudo-random curve rec-

ommended by NIST. The design has extremely low latency, but uses a large amount of

hardware resources for only 1 type of curve. This work is published in [50]. This section

shows that the ECP implementation of extremely low latencies is possible with a high

usage of hardware resources. However, if the same architecture is used to implement

scalable ECPs, the hardware resource utilization would be extremely high and would

not fit in a single FPGA. The use of multiple FPGAs would increase the cost of the

implementation.

• The designs in Section 3.2 are scalable ECPs for Koblitz and pseudo-random curves.

The latencies are higher than the 163-bit ECP, but the hardware utilization is controlled

by resource sharing among different bit lengths. Namely, the finite field arithmetic unit

(FFAU) is designed to support all 5 binary fields recommended by NIST. These ECPs

are published in [51] and [52]. The main drawback of these ECPs is that the reduction

step of both multiplication and squaring is performed in every operation. In addition,

only a single FFAU is used in the ECP. Thus, the latencies can be further reduced by

exploring the parallelization of the multiplication and the ECPM operations.

• Section 3.3 presents binary field ECPs that parallelize the instructions of the ECPM

by deploying a MULT and an AR block, and parallelize the multiplication by using two

multipliers in the MULT block. These improvements result in binary ECPs with much
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better efficiencies. The work related to these ECPs has been submitted for peer review

in [67]. Despite the reduced latencies, longer latencies are observed for larger key sizes

due to the use of the Comba algorithm, which has a latency in the order of O(s2), where

s is the number of digits in the multiplication. Thus, the Karatsuba-Ofman algorithm

is used in the Low Latency ECPs to improve the performance when using large key

sizes.

• The architecture in Section 3.4 reduces the latencies of the ECP for higher bit lengths by

using a wider datapath and the Karatsuba-Ofman algorithm. The ECPs in this section

are published in [53]. These ECPs have lower latencies compared to the Parallelized

ECPs, but require more slices. Nevertheless, they show to be more efficient than the

Parallelized ECPs for larger key sizes.

• Using the experience from the binary ECPs, Chapter 4 describes the Prime ECP that

uses a similar processor architecture as the binary ECPs but support the 5 prime curves

recommended by NIST. This work is published in [54]. Taking advantage of the high

performance Xilinx DSP48E slices, the Prime ECP increases the efficiency of the ECP

compared to a reference design in the current literature. The improved performance can

be attributed to the smaller datapath, which decreases the number of slices required

and increases the maximum frequency of the design. Furthermore, despite the usage

of Xilinx DSP48E slices in the implemented ECP, the architecture is portable and

may be modified to utilize DSP slices in newer Xilinx FPGAs or FPGAs from other

manufacturers, such as Altera.

• The Scalable and Unified ECP described in Section 5.1 combines the ECPs previously

developed and has the ability to support all 15 curves recommended by NIST without

the need to reconfigure the hardware. This work has been submitted for peer review

in [68]. The implementation results of the Scalable and Unified ECP show an improve-

ment over the Prime ECP due to the use of 32-bit datapath instead of 17-bit datapath

in the MULT block. However, the Scalable and Unified ECP is not as efficient as the

Parallelized ECPs in Section 3.3. This result is expected since the hardware implemen-

tation of binary field arithmetic is more efficient than prime fields in hardware. Thus,

the Parallelized ECPs that only implement binary field arithmetic should be more effi-
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cient than the Scalable and Unified ECP, since it must accommodate both prime and

binary field arithmetic.

• Finally, the ECP is interfaced with the Microblaze soft-core processor as described

in Section 5.2. The integration with software demonstrates the concept of offloading

the computationally intensive ECPM operation to a hardware accelerator. The resul-

tant designs also provide a platform for future development of implementing various

protocols that can take advantage of the Scalable and Unified ECP.

The main contributions of this thesis are the implementations of the scalable and unified

finite field arithmetic blocks that are carefully designed to support various prime and binary

field operations. The architecture of the arithmetic blocks and the realization of the ECPM

algorithms have been studied and various methods have been investigated to improve the

performance of the ECPs. These methods include: the parallelization of the arithmetic and

the ECPM algorithm; the use of different algorithms for multiplication, squaring, reduction

and inversion; and the use of DSP slices on FPGAs. The improvement in the finite field

arithmetic blocks contribute to the improved efficiency of the overall ECPs.

The implementations described in this thesis can be easily integrated into servers or act as

a stand-alone system-on-chip in the development of secure network systems. It can support

all 15 curves recommended by NIST without the need to reconfigure the hardware and the

operations can be done at high speeds. Since the entire implementation of ECC operations

and schemes is enclosed in a single FPGA, the design is highly portable and can be migrated

to newer and more advanced FPGAs in the future. The techniques used to design the finite

field arithmetic blocks can also be used in other application where finite field arithmetic is

required, such as error correction codes.
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Chapter 7

Future Work

This chapter describes some potential future work that extends from the current work

described in this thesis. Section 7.1 discusses the τNAF conversion algorithms in more detail

and the possible integration with the scalable and unified ECP. Section 7.2 discusses the

topic of post-quantum cryptography. Section 7.3 discusses identity-based encryption (IBE).

7.1 Koblitz τNAF Conversion

In the Koblitz ECPs in Chapter 3 and Scalable and Unified ECP in Koblitz mode described

in Section 5.1, the input for the value of k is assumed to have been converted from binary

to τ -adic non-adjacent-form (τNAF). The reason for the exclusion of the evaluation of the

conversion in the ECP is because the main goal of this thesis is in the design and imple-

mentation of the ECP to evaluate the ECPM operation. Furthermore, as explained in [70],

for some cryptosystems, a random τNAF number can be generated for use in the ECPM.

Nevertheless, as a potential future work to this thesis, the inclusion of the τNAF converter

in either software or hardware can extend the capabilities of the ECP.

Solinas [58] describes an algorithm for τNAF conversion and is shown in Algorithm 7.1.

In the algorithm, µ = (−1)1−a, where a is defined in Equation (2.4). Solinas [58] shows that

if Algorithm 7.1 is used by setting r0 = k and r1 = 0, the Hamming weight of the resultant

τNAF converted k is 2m/3, where m is the bit length of k. Using a simple double-and-

add ECPM algorithm would require m/2 PADD. Thus, by using the τNAF converted k,

the PDBL operations are replaced by PFRB operations, which are simply squarings, at the

expense of the increase in PADD operations. This trade-off is undesirable, so [58] shows a

method of modifying the value of k prior to applying Algorithm 7.1.
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Algorithm 7.1 τNAF conversion algorithm

Input: integers r0 and r1
Output: τNAF(r0 + r1τ)
c0 ← r0, c1 ← r1, S ← 〈〉
while c0 6= 0 or c1 6= 0 do

if c0 is odd then
u← 2− (c0 − 2c1 mod 4)
c0 ← c0 − u

else
u← 0

end if
Prepend u to S
(c0, c1)← (c1 + µc0/2,−c0/2)

end while
return S

Solinas [58] shows that given δ = (τm − 1)/(τ − 1), if γ = ρ (mod δ), then γP = ρP .

Therefore, in terms of the ECPM operation, γ and ρ are equivalent. Thus, the reduced τNAF

conversion algorithm evaluates ρ = k mod δ followed by S = τNAF(ρ). By doing so, Solinas

shows that the Hamming weight of S is approximately m/3.

As pointed out in [70], one of the drawbacks of the reduced τNAF algorithm proposed by

Solinas [58] is the complex multiplications and divisions required for the (mod δ) operation.

In [58], it also shows that if γ = ρ (mod τm− 1), then γP = ρP . In [70], the authors explain

that by taking (mod τm − 1) instead of (mod δ), the reduction algorithm can be greatly

simplified by the following:

k = (d0 + d1)τ
m + b0 + b1τ

= (d0 + d1τ)(τm − 1) + b0 + d0 + (b1 + d1)τ
(7.1)

Thus, the reduction of k (mod τm−1) = (b0+d0)+(b1+d1)τ can be evaluated by repeatedly

dividing k by τ and rearranging the coefficients of the quotient and remainder. Since the

division by τ only involves additions and divisions by 2, its implementation is much simpler

compared to the reduction proposed in [58]. The authors in [70] explain that using this

reduction algorithm, named lazy reduction, followed by the τNAF conversion algorithm in

Algorithm 7.1, the maximum length of the converted value is m+ 4.

The work in [71] further improves on the performance of the work in [70] by developing

the double lazy reduction and double τNAF algorithm that generates 2 τNAF converted
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digits of k at a time. By doing so, the hardware implementation of [71] can complete the

conversion in almost half of the time as in [70].

The implementations provided in [70] and [71] are made for 1 specific curve at a time.

By adopting these τNAF conversion techniques and the scalable finite field arithmetic de-

scribed in this thesis, a scalable τNAF converter can be implemented to further improve the

capabilities of the ECP.

7.2 Post-Quantum Cryptography

Post-quantum cryptography refers to a branch of cryptography that focuses on the cryp-

tographic algorithms that are still secure with the birth of quantum computers. The first

paragraph in [72] describes post-quantum cryptography very adequately by posing the ques-

tions:

“Imagine that its fifteen years from now and someone announces the successful
construction of a large quantum computer. The New York Times runs a front-
page article reporting that all of the public-key algorithms used to protect the
Internet have been broken. Users panic. What exactly will happen to cryptogra-
phy?”

In [72], the authors explain that using certain quantum algorithms, such as Shor’s al-

gorithm or Grover’s algorithm, many of the most popular public-key cryptography can be

broken with the existence of a quantum computer. However, there are several classes of

algorithms that current research has shown to be unaffected by these quantum algorithms:

• Hash-based cryptography

• Code-based cryptography

• Lattice-based cryptography

• Multivariate-quadratic equations cryptography

• Secret-key cryptography

One of the reasons these algorithms are not currently in use is the efficiency of the al-

gorithm. In [72], the authors explain that in order to provide a similar level of security
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as a few-thousand-bit RSA, the McEliece algorithm (example of a code-based cryptogra-

phy) requires close to a million bits. Thus, research in post-quantum cryptography involves

improving the efficiency of currently known algorithms that are resistant against quantum

algorithms.

In particular, code-based cryptography is based on binary linear codes that are commonly

used in communications for error correction. Recent works in [73, 74, 75] have shown archi-

tectures implemented on FPGAs for the McEliece cryptography. Since binary linear codes

are based on binary field operations, it may be possible to use some of the techniques and

architectures for the finite field arithmetic blocks described in this thesis.

7.3 Identity-Based Encryption

Identity-based encryption (IBE) was originally proposed by Shamir in 1984 [76]. The main

idea of the scheme is the ability to encrypt a message by using an arbitrary string. The

original motivation was to be implemented on e-mail systems, where the intended recipient’s

email address is to be used as the public key. In order for the intended recipient to decrypt

the message, he or she requests a private key from a trusted third party, called the Private

Key Generator (PKG), and uses the private key to decrypt the received message.

IBE involves the use of 4 algorithms:

• Setup: The PKG runs this algorithm to set up the environment and generate the

master key that is used to derive the users’ private keys.

• Extract: This algorithm uses the master key and the arbitrary string used in the

encryption to generate the private key for the user.

• Encrypt: This algorithm generates the ciphertext using the arbitrary string and the

message to be encrypted.

• Decrypt: This algorithm returns the original message using the private key generated

from the Extract algorithm and the ciphertext generated from the Encrypt algorithm.

In [77], the authors propose the use of Weil pairings on elliptic curves in the implemen-

tation of IBE. In [78], the authors also make use of pairings on elliptic curves to realize IBE.
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Similar to the ECPM operation, the algorithms used for IBE are also defined over finite field

arithmetic. These operations involve a similar set of instructions as the ones implemented by

the scalable and unified finite field arithmetic blocks described in this thesis. Furthermore,

IBE using pairing-based cryptography schemes operate on prime [79], binary [80] or ternary

fields [81]. This thesis has shown an efficient implementation of combining prime and binary

fields on the same device. The finite field arithmetic blocks may be further extended to

ternary fields to support efficient implementations of IBE as the design in [82].
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Appendix A

Binary Fields Reduction Algorithms

The following algorithms are modified from [55] and are used for binary finite field re-
duction. The algorithms split the operand, Z, into 32-bit digits and it is modified to output
the result least-significant-digit-first (LSD-first) instead of most-significant-digit-first (MSD-
first). In the algorithms, ⊕ is modulo 2 addition, (A,B,C) represents a concatenation of A,
B, and C, >> and << represents right shift and left shift operations, & is a bit-wise logical
AND operation and ‘0x’ precedes a hexadecimal number.

Algorithm A.1 Reduction by P (t) = t163 + t7 + t6 + t3 + 1

Input: Z = (Z11, . . . , Z1, Z0)
Output: Z mod P (t) = (Z5, . . . , Z1, Z0)

for i from 6 to 11 do
if i ≤ 9 then

(Zi−4, Zi−5, Zi−6) = (Zi−4, Zi−5, Zi−6)⊕(Zi << 29)⊕(Zi << 32)⊕(Zi << 35)⊕(Zi <<
36)

else if i = 10 then
(T0, Z5, Z4) = (0, Z5, Z4)⊕ (Zi << 29)⊕ (Zi << 32)⊕ (Zi << 35)⊕ (Zi << 36)
(Z2, Z1, Z0) = (Z2, Z1, Z0)⊕ (T0 << 29)⊕ (T0 << 32)⊕ (T0 << 35)⊕ (T0 << 36)

else // i = 11
(T1, T0, Z5) = (0, 0, Z5)⊕ (Zi << 29)⊕ (Zi << 32)⊕ (Zi << 35)⊕ (Zi << 36)
(Z2, Z1, Z0) = (Z2, Z1, Z0)⊕ (T0 << 29)⊕ (T0 << 32)⊕ (T0 << 35)⊕ (T0 << 36)
(Z3, Z2, Z1) = (Z3, Z2, Z1)⊕ (T1 << 29)⊕ (T1 << 32)⊕ (T1 << 35)⊕ (T1 << 36)

end if
end for
// Final reduction
T = Z5 >> 3
Z0 = Z0 ⊕ (T << 7)⊕ (T << 6)⊕ (T << 3)⊕ T
Z1 = Z1 ⊕ (T >> 25)⊕ (T >> 26)
Z5 = Z5 & 0x7
return Z = (Z5, . . . , Z1, Z0)
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Algorithm A.2 Reduction by P (t) = t233 + t74 + 1

Input: Z = (Z15, . . . , Z1, Z0)
Output: Z mod P (t) = (Z7, . . . , Z1, Z0)

for i from 8 to 15 do
if i ≤ 11 then

(Zi−4, Zi−5, Zi−6, Zi−7, Zi−8) = (Zi−4, Zi−5, Zi−6, Zi−7, Zi−8)⊕(Zi << 23)⊕(Zi << 97)
else if i = 12 then

(T0, Z7, Z6, Z5, Z4) = (0, Z7, Z6, Z5, Z4)⊕ (Zi << 23)⊕ (Zi << 97)
(Z4, Z3, Z2, Z1, Z0) = (Z4, Z3, 0, Z1, Z0)⊕ (T0 << 23)⊕ (T0 << 97)

else if i = 13 then
(T1, T0, Z7, Z6, Z5) = (0, 0, Z7, Z6, Z5)⊕ (Zi << 23)⊕ (Zi << 97)
(Z4, Z3, Z2, Z1, Z0) = (Z4, Z3, Z2, Z1, Z0)⊕ (T0 << 23)⊕ (T0 << 97)
(Z5, Z4, Z3, Z2, Z1) = (Z5, Z4, Z3, Z2, Z1)⊕ (T1 << 23)⊕ (T1 << 97)

else if i = 14 then
(T2, T1, T0, Z7, Z6) = (0, 0, 0, Z7, Z6)⊕ (Zi << 23)⊕ (Zi << 97)
(Z4, Z3, Z2, Z1, Z0) = (Z4, Z3, Z2, Z1, Z0)⊕ (T0 << 23)⊕ (T0 << 97)
(Z5, Z4, Z3, Z2, Z1) = (Z5, Z4, Z3, Z2, Z1)⊕ (T1 << 23)⊕ (T1 << 97)
(Z6, Z5, Z4, Z3, Z2) = (Z6, Z5, Z4, Z3, Z2)⊕ (T2 << 23)⊕ (T2 << 97)

else // i = 15
(T3, T2, T1, T0, Z7) = (0, 0, 0, 0, Z7)⊕ (Zi << 23)⊕ (Zi << 97)
(Z4, Z3, Z2, Z1, Z0) = (Z4, Z3, Z2, Z1, Z0)⊕ (T0 << 23)⊕ (T0 << 97)
(Z5, Z4, Z3, Z2, Z1) = (Z5, Z4, Z3, Z2, Z1)⊕ (T1 << 23)⊕ (T1 << 97)
(Z6, Z5, Z4, Z3, Z2) = (Z6, Z5, Z4, Z3, Z2)⊕ (T2 << 23)⊕ (T2 << 97)
(Z7, Z6, Z5, Z4, Z3) = (Z7, Z6, Z5, Z4, Z3)⊕ (T3 << 23)⊕ (T3 << 97)

end if
end for
// Final reduction
T = Z7 >> 9
Z0 = Z0 ⊕ T
Z2 = Z2 ⊕ (T << 10)
Z3 = Z3 ⊕ (T >> 22)
Z7 & 0x1FF
return Z = (Z7, . . . , Z1, Z0)

122



Algorithm A.3 Reduction by P (t) = t283 + t12 + t7 + t5 + 1

Input: Z = (Z17, . . . , Z1, Z0)
Output: Z mod P (t) = (Z8, . . . , Z1, Z0)

for i from 9 to 17 do
if i ≤ 16 then

(Zi−8, Zi−9) = (Zi−8, Zi−9)⊕ (Zi << 5)⊕ (Zi << 10)⊕ (Zi << 12)⊕ (Zi << 17)
else // i = 17

(T0, Z8) = (0, Z8)⊕ (Zi << 5)⊕ (Zi << 10)⊕ (Zi << 12)⊕ (Zi << 17)
(Z1, Z0) = (Z1, Z0)⊕ (T0 << 5)⊕ (T0 << 10)⊕ (T0 << 12)⊕ (T0 << 17)

end if
end for
// Final reduction
T = Z8 >> 27
Z0 = Z0 ⊕ T ⊕ (T << 5)⊕ (T << 7)⊕ (T << 12)
Z8 = Z8 & 0x7FFFFFF
return Z = (Z8, . . . , Z1, Z0)

Algorithm A.4 Reduction by P (t) = t409 + t87 + 1

Input: Z = (Z25, . . . , Z1, Z0)
Output: Z mod P (t) = (Z12, . . . , Z1, Z0)

for i from 13 to 25 do
if i ≤ 22 then

(Zi−10, Zi−11, Zi−12, Zi−13) = (Zi−10, Zi−11, Zi−12, Zi−13)⊕ (Zi << 7)⊕ (Zi << 94)
else if i = 23 then

(T0, Z12, Z11, Z10) = (0, Z12, Z11, Z10)⊕ (Zi << 7)⊕ (Zi << 94)
(Z3, Z2, Z1, Z0) = (Z3, Z2, Z1, Z0)⊕ (T0 << 7)⊕ (T0 << 94)

else if i = 24 then
(T1, T0, Z12, Z11) = (0, 0, Z12, Z11)⊕ (Zi << 7)⊕ (Zi << 94)
(Z3, Z2, Z1, Z0) = (Z3, Z2, Z1, Z0)⊕ (T0 << 7)⊕ (T0 << 94)
(Z4, Z3, Z2, Z1) = (Z4, Z3, Z2, Z1)⊕ (T1 << 7)⊕ (T1 << 94)

else // i = 25
(T2, T1, T0, Z12) = (0, 0, 0, Z12)⊕ (Zi << 7)⊕ (Zi << 94)
(Z3, Z2, Z1, Z0) = (Z3, Z2, Z1, Z0)⊕ (T0 << 7)⊕ (T0 << 94)
(Z4, Z3, Z2, Z1) = (Z4, Z3, Z2, Z1)⊕ (T1 << 7)⊕ (T1 << 94)
(Z5, Z4, Z3, Z2) = (Z5, Z4, Z3, Z2)⊕ (T2 << 7)⊕ (T2 << 94)

end if
end for
// Final reduction
T = C12 >> 25
Z0 = Z0 ⊕ T
Z2 = Z2 ⊕ (T << 23)
Z12 = Z12 & 0x1FFFFFF
return Z = (Z12, . . . , Z1, Z0)
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Algorithm A.5 Reduction by P (t) = t571 + t10 + t5 + t2 + 1

Input: Z = (Z35, . . . , Z1, Z0)
Output: Z mod P (t) = (Z17, . . . , Z1, Z0)

for i from 18 to 35 do
if i ≤ 34 then

(Zi−17, Zi−18) = (Zi−17, Zi−18)⊕ (Zi << 5)⊕ (Zi << 7)⊕ (Zi << 10)⊕ (Zi << 15)
else // i = 35

(T0, Z17) = (0, Z17)⊕ (Zi << 5)⊕ (Zi << 7)⊕ (Zi << 10)⊕ (Zi << 15)
(Z1, Z0) = (Z1, Z0)⊕ (T0 << 5)⊕ (T0 << 7)⊕ (T0 << 10)⊕ (T0 << 15)

end if
end for
// Final reduction
T = Z17 >> 27
C0 = C0 ⊕ T ⊕ (T << 2)⊕ (T << 5)⊕ (T << 10)
C17 = C17 & 0x7FFFFFF
return Z = (Z17, . . . , Z1, Z0)
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Appendix B

Prime Fields Reduction Algorithms

The following algorithms are taken from [55] and are used for prime field reduction. The
algorithms are generated by using a similar analysis as the one shown in Section 2.3.2. In the
algorithms, values enclosed in brackets represent that the binary values are concatenated.
Furthermore, the input value c breaks down into different digit sizes. For example, if base
264 is used, the digits, ci, are 64-bit integers.

Algorithm B.1 Reduction modulo p192 = 2192 − 264 − 1

Input: c = (c5, c4, . . . , c0) in base 264 with 0 ≤ c < p2192
Output: c mod p192

Define 192-bit integers:
s1 = (c2, c1, c0), s2 = (0, c3, c3),
s3 = (c4, c4, 0), s4 = (c5, c5, c5)
Return (s1 + s2 + s3 + s4 mod p192)

Algorithm B.2 Reduction modulo p224 = 2224 − 296 + 1

Input: c = (c13, c12, . . . , c0) in base 232 with 0 ≤ c < p2224
Output: c mod p224

Define 224-bit integers:
s1 = (c6, c5, c4, c3, c2, c1, c0), s2 = (c10, c9, c8, c7, 0, 0, 0),
s3 = (0, c13, c12, c11, 0, 0, 0), s4 = (c13, c12, c11, c10, c9, c8, c7),
s5 = (0, 0, 0, 0, c13, c12, c11)
Return (s1 + s2 + s3 − s4 − s5 mod p224)

Algorithm B.3 Reduction modulo p256 = 2256 − 2224 + 2192 + 296 − 1

Input: c = (c15, c14, . . . , c0) in base 232 with 0 ≤ c < p2256
Output: c mod p256

Define 256-bit integers:
s1 = (c7, c6, c5, c4, c3, c2, c1, c0), s2 = (c15, c14, c13, c12, c11, 0, 0, 0),
s3 = (0, c15, c14, c13, c12, 0, 0, 0), s4 = (c15, c14, 0, 0, 0, c10, c9, c8),
s5 = (c8, c13, c15, c14, c13, c11, c10, c9), s6 = (c10, c8, 0, 0, 0, c13, c12, c11),
s7 = (c11, c9, 0, 0, c15, c14, c13, c12), s8 = (c12, 0, c10, c9, c8, c15, c14, c13),
s9 = (c13, 0, c11, c10, c9, 0, c15, c14)
Return (s1 + 2s2 + 2s3 + s4 + s5 − s6 − s7 − s8 − s9 mod p256)

125



Algorithm B.4 Reduction modulo p384 = 2384 − 2128 − 296 + 232 − 1

Input: c = (c23, c22, . . . , c0) in base 232 with 0 ≤ c < p2384
Output: c mod p384

Define 384-bit integers:
s1 = (c11, c10, c9, c8, c7, c6, c5, c4, c3, c2, c1, c0),
s2 = (0, 0, 0, 0, 0, c23, c22, c21, 0, 0, 0, 0),
s3 = (c23, c22, c21, c20, c19, c18, c17, c16, c15, c14, c13, c12),
s4 = (c20, c19, c18, c17, c16, c15, c14, c13, c12, c23, c22, c21),
s5 = (c19, c18, c17, c16, c15, c14, c13, c12, c20, 0, c23, 0),
s6 = (0, 0, 0, 0, c23, c22, c21, c20, 0, 0, 0, 0),
s7 = (0, 0, 0, 0, 0, 0, c23, c22, c21, 0, 0, c20),
s8 = (c22, c21, c20, c19, c18, c17, c16, c15, c14, c13, c12, c23)
s9 = (0, 0, 0, 0, 0, 0, 0, c23, 0, c22, c21, c20, 0),
s10 = (0, 0, 0, 0, 0, 0, 0, c23, c23, 0, 0, 0)
Return (s1 + 2s2 + s3 + s4 + s5 + s6 + s7 − s8 − s9 − s10 mod p384)

Algorithm B.5 Reduction modulo p521 = 2521 − 1

Input: c = (c1041, c1040, . . . , c0) in base 2 with 0 ≤ c < p2521
Output: c mod p521

Define 521-bit integers:
s1 = (c1041, c1040, . . . , c521),
s2 = (c520, c519, . . . , c0)
Return (s1 + s2 mod p521)
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