624 research outputs found

    An Online Auction Mechanism for Dynamic Virtual Cluster Provisioning in Geo-Distributed Clouds

    Get PDF
    postprin

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    Optimizing Cloud-Service Performance: Efficient Resource Provisioning Via Optimal Workload Allocation

    Get PDF
    Cloud computing is being widely accepted and utilized in the business world. From the perspective of businesses utilizing the cloud, it is critical to meet their customers\u27 requirements by achieving service-level-objectives. Hence, the ability to accurately characterize and optimize cloud-service performance is of great importance. In this dissertation, a stochastic multi-tenant framework is proposed to model the service of customer requests in a cloud infrastructure composed of heterogeneous virtual machines (VMs). The proposed framework addresses the critical concepts and characteristics in the cloud, including virtualization, multi-tenancy, heterogeneity of VMs, VM isolation for the purpose of security and/or performance guarantee and the stochastic response time of a customer request. Two cloud-service performance metrics are mathematically characterized, namely the percentile of the stochastic response time and the mean of the stochastic response time of a customer request. Based upon the proposed multi-tenant framework, a workload-allocation algorithm, termed max-min-cloud algorithm, is then devised to optimize the performance of the cloud service. A rigorous optimality proof of the max-min-cloud algorithm is given when the stochastic response time of a customer request assumed exponentially distributed. Furthermore, extensive Monte-Carlo simulations are conducted to validate the optimality of the max-min-cloud algorithm by comparing with other two workload-allocation algorithms under various scenarios. Next, the resource provisioning problem in the cloud is studied in light of the max-min-cloud algorithm. In particular, an efficient resource-provisioning strategy, termed the MPC strategy, is proposed for serving dynamically arriving customer requests. The efficacy of the MPC strategy is verified through two practical cases when the arrival of the customer requests is predictable and unpredictable, respectively. As an extension of the max-min-cloud algorithm, we further devise the max-load-first algorithm to deal with the VM placement problem in the cloud. MC simulation results show that the max-load-first VM-placement algorithm outperforms the other two heuristic algorithms in terms of reducing the mean of stochastic completion time of a group of arbitrary customers\u27 requests. Simulation results also provide insight on how the initial loads of servers affect the performance of the cloud system. In summary, the findings in this dissertation work can be of great benefit to both service providers (namely business owners) and cloud providers. For business owners, the max-min-cloud workload-allocation algorithm and the MPC resource-provisioning strategy together can be used help them build a better understanding of how much virtual resources in the cloud they may need to meet customers\u27 expectations subject to cost constraints. For cloud providers, the max-load-first VM-placement algorithm can be used to optimize the computational performance of the service by appropriately utilizing the physical machines and efficiently placing the VMs in their cloud infrastructures
    • …
    corecore