
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

5-1-2016

Optimizing Cloud-Service Performance: Efficient
Resource Provisioning Via Optimal Workload
Allocation
Zhuoyao Wang

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Wang, Zhuoyao. "Optimizing Cloud-Service Performance: Efficient Resource Provisioning Via Optimal Workload Allocation."
(2016). https://digitalrepository.unm.edu/ece_etds/264

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Mexico

https://core.ac.uk/display/151576772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/264?utm_source=digitalrepository.unm.edu%2Fece_etds%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 , Chairperson

Zhuoyao Wang

Electrical and Computer Engineering

Majeed M. Hayat

Wei Wennie Shu

Balu Santhanam

Patrick Bridges

Maria Cristina Pereyra

Optimizing Cloud-Service Performance:
Efficient Resource Provisioning Via

Optimal Workload Allocation

by

Zhuoyao Wang

Bachelor of Engineering, Electrical Engineering, Jilin University, 2008

Master of Science, Electrical Engineering, University of New Mexico,

2011

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

May, 2016

ii

c©2016, Zhuoyao Wang

iii

Dedication

This work is dedicated to my beloved family, for their love and sacrifices.

iv

Acknowledgments

I would like to take this opportunity to express my heartfelt to all those who helped

me to make my dissertation work a success.

I express my sincere and wholehearted thanks, to my adviser, Prof. Majeed M.

Hayat, for his suggestion, guidance, encouragement and support throughout this

dissertation work. His enthusiasm in research and teaching has been a perennial

source of inspiration to me. Working with him provided me an excellent learning

opportunity.

I thank Prof. Nasir Ghani and Prof. Khaled B. Shaban for their support in

conducting this research project and participation in my dissertation work. I would

also like to thank Prof. Wei Shu, Prof. Patrick Bridges, Prof. Maria Cristina

Pereyra and Prof. Balu Santhanam for agreeing to serve on my committee, reading

my dissertation and providing useful suggestions during and after the defense exam.

I take this opportunity to thank my former colleagues, especially Dr. Jorge

E. Pezoa, Dr. Mahshid Rahnamay-Naeini and Dr. Qi Wang for their help and

contribution to the successful completion of this work.

This work was made possible by the NPRP 5-137-2-045 grant from the Qatar

National Research Fund (a member of the Qatar Foundation).

v

Optimizing Cloud-Service Performance:
Efficient Resource Provisioning Via

Optimal Workload Allocation

by

Zhuoyao Wang

Bachelor of Engineering, Electrical Engineering, Jilin University, 2008

Master of Science, Electrical Engineering, University of New Mexico,

2011

Doctor of Philosophy, Engineering, University of New Mexico, 2016

Abstract

Cloud computing is being widely accepted and utilized in the business world. From

the perspective of businesses utilizing the cloud, it is critical to meet their customers’

requirements by achieving service-level-objectives. Hence, the ability to accurately

characterize and optimize cloud-service performance is of great importance.

In this dissertation, a stochastic multi-tenant framework is proposed to model

the service of customer requests in a cloud infrastructure composed of heterogeneous

virtual machines (VMs). The proposed framework addresses the critical concepts and

characteristics in the cloud, including virtualization, multi-tenancy, heterogeneity of

VMs, VM isolation for the purpose of security and/or performance guarantee and

the stochastic response time of a customer request. Two cloud-service performance

metrics are mathematically characterized, namely the percentile of the stochastic

response time and the mean of the stochastic response time of a customer request.

vi

Based upon the proposed multi-tenant framework, a workload-allocation algo-

rithm, termed max-min-cloud algorithm, is then devised to optimize the performance

of the cloud service. A rigorous optimality proof of the max-min-cloud algorithm is

given when the stochastic response time of a customer request assumed exponen-

tially distributed. Furthermore, extensive Monte-Carlo simulations are conducted

to validate the optimality of the max-min-cloud algorithm by comparing with other

two workload-allocation algorithms under various scenarios.

Next, the resource provisioning problem in the cloud is studied in light of the

max-min-cloud algorithm. In particular, an efficient resource-provisioning strategy,

termed the MPC strategy, is proposed for serving dynamically arriving customer re-

quests. The efficacy of the MPC strategy is verified through two practical cases when

the arrival of the customer requests is predictable and unpredictable, respectively.

As an extension of the max-min-cloud algorithm, we further devise the max-load-

first algorithm to deal with the VM placement problem in the cloud. MC simulation

results show that the max-load-first VM-placement algorithm outperforms the other

two heuristic algorithms in terms of reducing the mean of stochastic completion time

of a group of arbitrary customers’ requests. Simulation results also provide insight

on how the initial loads of servers affect the performance of the cloud system.

In summary, the findings in this dissertation work can be of great benefit to

both service providers (namely business owners) and cloud providers. For business

owners, the max-min-cloud workload-allocation algorithm and the MPC resource-

provisioning strategy together can be used help them build a better understanding

of how much virtual resources in the cloud they may need to meet customers’ ex-

pectations subject to cost constraints. For cloud providers, the max-load-first VM-

placement algorithm can be used to optimize the computational performance of the

service by appropriately utilizing the physical machines and efficiently placing the

VMs in their cloud infrastructures.

vii

Contents

List of Figures x

List of Tables xii

Glossary xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions of the Dissertation . 3

1.3 Dissertation Overview . 5

2 Cloud Computing and Relevant Research Challenges: An Overview 8

2.1 Cloud Computing and its Key Characteristics 8

2.1.1 Virtualization and Multi-tenancy 9

2.1.2 Elasticity and Pay-Per-Use Pricing Model 10

2.1.3 Performance Interference and Isolation 10

viii

Contents

2.1.4 Heterogeneity of Virtual Machines 11

2.2 Related Work . 12

2.2.1 Analytical Performance Modeling of

Cloud Services . 12

2.2.2 Workload Allocation . 14

2.2.3 Virtual Machine Placement 15

2.2.4 Resource Provisioning in the Cloud 16

2.2.5 Summary . 18

3 Probabilistic multi-tenant framework 19

3.1 Cloud Service Environment . 19

3.1.1 Two Challenging Questions 22

3.2 Cloud-Service Performance Evaluation 23

3.2.1 Characterization of the Stochastic Response Time 23

3.2.2 Percentile of the Response Time 24

3.2.3 Mean of the Response Time 24

3.2.4 Execution Rate of the Workloads 25

4 Optimal workload allocation 27

4.1 The Max-Min-Cloud Workload Allocation Algorithm 28

4.2 Optimality Proof of the Max-Min-Cloud Algorithm 28

4.3 Numerical and Simulation Results . 35

ix

Contents

4.3.1 Response Times with Exponential Distributions 36

4.3.2 Response Times with Non-Exponential Distributions 38

4.3.3 Computation Complexity . 39

5 Efficient Resource Provisioning 47

5.1 The Minimum-Provisioning-Cost Strategy 48

5.2 Elastic Virtual Cloud-Service Infrastructure

with On-Demand VMs . 49

5.3 Fixed Virtual Cloud-Service Infrastructure

with Reserved VMs . 53

6 Smart Virtual Machine Placement 58

6.1 Problem Formulation . 58

6.2 Service Performance Characterization 60

6.2.1 Impact of a Server’s Load Ratio on the Processing Rate of a VM 62

6.3 The Max-Load-First Algorithm . 62

6.4 Simulation Results . 64

7 Conclusions 71

References 74

x

List of Figures

3.1 High-level cloud-service environment 22

4.1 Percentile of the response time of request with pattern 1 and 2 39

4.1 Percentile of the response time of request with pattern 3 and 4 42

4.1 Percentile of the response time of request with pattern 5 and 6 43

4.2 Percentile of the response times for the six patterns 44

4.3 Percentile of the response times, where the execution times of the ap-

plications in the request are (a) truncated normally-distributed and (b)

Erlang-distributed . 45

4.4 The computation complexity of the model as a function of the number of

applications n. 46

5.1 The average profit for serving 10,000 customer requests as a function of

the desired response time . 51

5.2 Flowchart for efficiently serving dynamically arriving customer requests

when the virtual cloud-service infrastructure is elastic by utilizing on-

demand VMs . 52

xi

List of Figures

5.3 The rejection rate for serving 100 customers as a function of the index of

the customers . 54

5.4 (a) The steady-state rejection rate (smaller is better) under three resource-

provisioning strategies as a function of arrival rate of the customer re-

quests, and (b) the zoomed-in version of Fig. 5.4(a) 56

5.5 Flowchart for efficiently serving dynamically arriving customer requests

when the virtual cloud-service infrastructure is fixed by utilizing the re-

served VMs . 57

6.1 The VM placement problem. 60

6.2 The decreasing function d(·) models the impact of rj on the processing

rate, λui , of the ith VM. 63

6.3 The sample mean of stochastic completion times of the 10 customers’

requests applying the three algorithms when the three servers are initially

loaded at (a) 15% and (b) 25%. 68

6.3 The sample mean of stochastic completion times of the 10 customers’

requests applying the three algorithms when the three servers are initially

loaded at (c) 50%. 69

6.4 The mean of stochastic completion time of 10 customers’ requests as a

function of initial load ratio of the three servers applying the max-load-

first algorithm. 70

xii

List of Tables

3.1 Details of VMs provided by Amazon EC2 20

4.1 Six workload patterns of the request w 36

4.2 The mean of the response time of request w for the six workload

patterns . 37

4.3 Computational costs: analytical model vs. MC simulations 41

5.1 Eight patterns of a request with 450 tasks in total 50

xiii

Glossary

w A customer request with n applications w = {w1, . . . , wn}.

wi The workload (i.e., number of tasks) of the ith application.

Twi The execution time of the ith applications in the request w.

λwi The execution rate of the ith application, which equals to the reciprocal of the

mean of its execution time.

Tw The response time of the request w.

PT (w; t) The percentile of the response time of the request w.

FTw(t) The cumulative distribution function of Tw.

FTwi (t) The cumulative distribution function of Twi .

v A set of arbitrary m VMs v = {v1, . . . , vm}.

ET (w) The mean of the response time of the request w.

FX(x) The cumulative distribution function of a random variable X.

λvj ECU per vCPU of the jth VM.

PT ini(w; t) The percentile of the response time of the request w associated with

the initial allocation pattern.

xiv

Glossary

PT swap(w; t) The percentile of the response time of the request w after the reallo-

cation.

vmmc The set of m′ fastest VMs out of the m VMs.

PT ini(w; t) The percentile of the response time of the request w when the n appli-

cations are allocated to the set of VMs vmmc.

λmmc
wi

The execution rate of the ith application when the n applications are allocated

to the set of VMs vmmc. ECU per vCPU of the jth VM.

varb The set of m′′ VMs out of the m VMs that is different than vmmc.

PT arb(w; t) The percentile of the response time of the request w when the n ap-

plications are allocated to the set of VMs varb.

λarbwi The execution rate of the ith application when the n applications are allocated

to the set of VMs varb.

M The total number of types of VMs that can be chosen by the business to serve

a customer request.

kj The number of vCPUS in the jth type VM.

pricej The usage price of the jth type VM.

s The set of VMs v = {s1, . . . , sM} to be scheduled to serve a customer request.

C(s) The provisioning cost for utilizing the set of VMs s in a unit time.

tD Desired response time of a customer request.

α The confidence factor.

rev(w) The revenue for serving a customer request.

xv

Glossary

profit(w) The profit for serving a customer request.

Nj The number of available jth type VM in the virtual infrastructure.

λc The Poisson arrival rate of the customer requests.

r(t) The real-time state of the cloud computing system.

rj(t) The load ratio of the jth physical machine at time t.

u The requests submitted by a group of arbitrary n customers.

ui The workload size of the ith customer’s request.

S0 The initial state of the cloud system.

ETS0(u) The mean of completion time of a group of n customers’ request.

Tui The stochastic execution time of the ith VM.

λui The rate for executing the ith request/VM.

λsj The CPU speed of the jth physical machine.

λij The execution rate for the ith request/VM when it is mapped to the jth physical

machine.

xvi

Chapter 1

Introduction

1.1 Motivation

Cloud computing is having a profound effect in today’s business world. Many ser-

vices, including email service, application hosting, data storage, e-commerce and

more, have been implemented on cloud infrastructures. Cloud computing aims to

provide high-performance but low-cost service to end users while maintaining the

service elastic, scalable and resilient [1]. Typically, the performance of the cloud ser-

vice to be delivered is specified through the service-level agreement (SLA), a contract

negotiated and agreed between the service provider and the service user.

When a service provider (also refers to a business owner in this dissertation

work) is deploying a cloud-based service, it is essential for it to deliver services that

satisfy customers’ requirements by having adequate computing resources, namely

virtual machines (VMs). Meanwhile, it is also important for the business owner

to avoid the cost of having unnecessary VMs (excessive computing power beyond

its need). Therefore, an analytical model to accurately predict and optimize cloud-

service performance is vital as it would be of great benefit to enhancing the quality

1

Chapter 1. Introduction

of service while keeping the cost of the business within a budget.

In recent years, numerous works have looked at modeling cloud services and

analyzing their performance. Several performance metrics, such as the response

time of a task or a batch of tasks, as well as the throughput and power consumption

of cloud services have been analytically characterized [2–6]. In most of these existing

works, the analysis of the cloud-service performance is based upon queuing theory

(a detailed review of the related work will be given in Chapter 2.2.1).

The queuing models have proven their value in studying response time, through-

put and stability for cloud services. However, none of these existing models is suitable

to simultaneously address and investigate the following five critical concepts, char-

acteristics and concerns that are present in the current cloud-service environments.

These are: (i) virtualization and multi-tenancy [7–9], (ii) heterogeneity of VMs in

the virtual infrastructure [6], (iii) stochastic response time of a customer request

with a general probability distribution [4], (iv) VM isolation for the purpose of se-

curity and/or performance guarantee [10–12], and (v) efficient resource provisioning

for serving dynamically arriving customer requests [13,14]. Therefore, a new frame-

work should be developed to complement the existing models to address the issues

discussed above.

Besides the analytical cloud-service performance modeling, we further investigate

the workload-allocation problem in the cloud. It is generally known that an efficient

workload-allocation algorithm could profoundly improve the performance of cloud

services. The purposes of the existing workload-allocation algorithms are includ-

ing, for example, to minimize the resource provisioning cost, to minimize the data

access latency between data node and computation node, and to minimize the band-

width usage of the cloud service. To the best of our knowledge, however, there is no

workload-allocation algorithm devised to optimize the computational performance

of cloud services. This is mainly because that the computational performance met-

2

Chapter 1. Introduction

rics, such as the mean of the response time or the percentile of the response time of

customer requests and the throughput of the cloud service, cannot be easily charac-

terized as a linear cost function. Hence, we in this dissertation work aim to develop

an optimal but simple-to-implement workload-allocation algorithm to optimize the

computational performance of cloud services.

Furthermore, we also focus on the resource provisioning problem. Due to the fact

that cloud computing lays a solid foundation for utilizing the on-demand resources

during runtime. The importance of the resource provisioning problem has been

even more emphasized compared to traditional distributed computing platforms. To

this end, there is a need for devising a microscopic-level and SLA-based resource-

provisioning strategy with low computation complexity, which specifies the amount

of resources to be scheduled for serving dynamically arriving customer requests. An

efficient provisioning strategy is able to serve more customers while saving on costs.

To the best of our knowledge, however, most of the existing work either focused

on long-term provisioning for large-scale workflows without considering the SLA

requirements or suffered from high computation complexity (especially those based

on stochastic programming).

1.2 Contributions of the Dissertation

In this thesis, a probabilistic multi-tenant framework is developed to complement ex-

isting models for analyzing and optimizing the computational performance of cloud

services. The proposed framework considers a set of heterogeneous VMs that are

utilized to construct a cloud-service infrastructure and serve customer requests. The

customer requests studied here are complex scientific workloads consisting of many

loosely-coupled applications [15]. To speed up the completion of customer requests,

a request may be served by multiple VMs. Furthermore, multi-tenancy implies that

3

Chapter 1. Introduction

each VM may host several applications concurrently. The execution time of applica-

tions in the request are assumed stochastic with a general probability distribution.

Based on this framework, two cloud-service performance metrics are analytically

characterize, namely the percentile of the response time and the mean of the re-

sponse time of a customer request. These two metrics have been widely used in

cloud SLAs and studied in research literature.

With the two service-performance metrics characterized, we proceed to propose

a workload-allocation algorithm, termed the max-min-cloud algorithm, to efficiently

allocate the applications in an arbitrary customer request to the scheduled set of

VMs. The optimality of the max-min-cloud algorithm is rigorously proven in terms of

maximizing the percentile of the response time of the request. Extensive Monte-Carlo

(MC) simulations are also conducted to examine the optimality of the max-min-cloud

algorithm for serving customer requests with various workload patterns, and for the

cases when different probability distributions are considered for the execution times

of the applications in the requests.

In light of the max-min-cloud algorithm, the resource provisioning problem in

the cloud is further investigated. In particular, a minimum-provisioning-cost (MPC)

provisioning strategy is devised to efficiently serve dynamically arriving customer

requests. The performance of the MPC strategy is compared with two other practical

resource-provisioning strategies, which are the greedy-provisioning (GP) strategy and

the random-provisioning (RP) strategy. This is done for two practical scenarios when

either on-demand VMs or reserved VMs are utilized in the virtual infrastructure.

These findings can be used by business owners to build a better understanding of how

much virtual resources in the cloud they may need to meet customers’ expectations

subject to cost constraints.

As an extension of the max-min-cloud algorithm, we devise the max-load-first

algorithm to deal with the VM placement problem in the cloud. MC simulation

4

Chapter 1. Introduction

results show that the max-load-first algorithm outperforms the other two algorithms

in terms of reducing the mean of stochastic completion time of a group of customer

requests. Simulation results also provide insight on how the initial loads of physical

machines affect the performance of the cloud system. The max-load-first algorithm

can be used by cloud providers to optimize the computational performance of the

service by smartly mapping the VMs to the physical machines in their cloud infras-

tructures.

To date, our work has resulted in two papers [16,17].

1.3 Dissertation Overview

The rest of this dissertation is organized as follows. In the next chapter we first

present background information of the cloud, including some essential concepts and

key characteristics in the current cloud computing environment. Then we review

previous work relevant to this dissertation work. In particular, four categories of

the related work are discussed, which are analytical performance modeling of cloud-

service performance, workload allocation, resource provisioning and VM placement

in the cloud.

In Chapter 3.1, we describe the cloud-service environment to be investigated and

raise two challenging questions in such a cloud-service environment. The main effort

dedicated in this dissertation work is to answer the two questions. A probabilistic

multi-tenant framework for cloud services is then developed and two performance

metrics are mathematically characterized in Chapter 3.2.

In Chapter 4.1, we apply the proposed analytical model to devise the max-min-

cloud workload-allocation algorithm that optimize the performance of cloud services.

Given the assumption that the execution times of the applications in the customer

5

Chapter 1. Introduction

request are exponentially distributed, we rigorously prove in Chapter 4.2 that the

max-min-cloud algorithm can achieve the maximum percentile as well as the mini-

mum mean of the response time for serving for an arbitrary customer request. In

Chapter 4.3.1, extensive MC simulation results are conducted to illustrate the opti-

mality of the max-min-cloud algorithm by comparing with the MCT-cloud algorithm

for the case when the execution times of the applications in the customer request are

assumed exponentially distributed. The impact of the different workload patterns

of the customer request is investigated and discussed. In Chapter 4.3.2, we further

show and explain that for the cases when the execution times the applications are

with non-exponential probability distributions, the max-min-cloud algorithm has the

greater advantage over the MCT-cloud algorithm. One more inherent value of the

proposed analytical model is also shown by studying its computation complexity in

Chapter 4.3.3.

In Chapter 5, we focus on investigating the resource provisioning problem in

the cloud. In light of the max-min-cloud algorithm, we devise the MPC resource-

provision strategy in Chapter 5.1. The MPC strategy specifies how to dynamically

schedule the amount of computing resources in the virtual cloud-service infrastruc-

ture to serve the arriving customer requests. The MPC strategy aims to minimize

the provisioning cost for serving a customer request while guarantee the performance

quality of the service. After that we investigate the efficacy of the MPC strategy

under two practical scenarios when the arrival of customer requests are unpredictable

and predictable in Chapter 5.2 and Chapter 5.3, respectively. For the unpredictable

case, we assume that on-demand VMs are utilized to serve the customer requests and

that the virtual cloud-service infrastructure is elastic. For the predictable case, on

the other hand, reserved VMs are utilized and the virtual cloud-service infrastructure

is fixed. In both scenarios, the MPC strategy exhibits outstanding performance in

terms of generating as much profit or revenue to service providers.

6

Chapter 1. Introduction

In Chapter 6, we extend the proposed multi-tenant framework and apply the

max-min-cloud algorithm to superficially study the VM placement problem in the

cloud computing system. The specified problem statement is given in Chapter 6.1.

The performance of the cloud computing system is characterized in Chapter 6.2. To

capture the performance interference between VMs, we approximately model such

behavior by considering the impact of the physical load ratio on the service perfor-

mance in Chapter 6.2.1. In Chapter 6.3, the max-load-first VM-placement algorithm

is then devised, as a byproduct of the max-min-cloud algorithm, to optimize the

computational performance of the cloud computing system. The supremacy of the

max-load-first algorithm is shown in Chapter 6.4 by means of MC simulations in

comparison to other two algorithms.

Our conclusions are given in Chapter 7. We point out that the results presented

in this dissertation work are not limited to the case when cloud-service performance

is dependent mainly on the ECU (i.e., vCPU speed) of the VMs. Namely, our

framework can also be extended to scenarios when the cloud-service performance

is determined and affected by other factors, such as network bandwidth, energy

consumption, memory capacity and storage space. In those cases, the max-min-

cloud algorithm and the MPC strategy are also useful for optimizing the cloud-

service performance by considering the utilization of network bandwidth and/or the

consumption of energy in the VMs.

7

Chapter 2

Cloud Computing and Relevant

Research Challenges: An Overview

This Chapter begins with a brief description of cloud computing and some of the

key concepts and characteristics that are widely-used in cloud computing, which is

followed by discussion of some of the research challenges in the cloud relevant to our

work.

2.1 Cloud Computing and its Key Characteristics

There exist various definition of cloud computing in literature. As an example, the

work in [18] compared over 20 different definitions. However, the most adopted and

cited version by researchers is provided by The National Institute of Standards and

Technology (NIST) [1] in the following.

NIST definition of cloud computing Cloud computing is a model for enabling

convenient, on-demand network access to a shared pool of configurable computing

8

Chapter 2. Cloud Computing and Relevant Research Challenges: An Overview

resources (e.g., networks, servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal management effort or service provider

interaction.

To deploy a cloud service, typically the service providers (refers also to business

owners later in the dissertation) rent virtual resources from one or many cloud (in-

frastructure) providers to establish the infrastructure and serve the end users (refers

to customers in the dissertation). The cloud providers lease resources according to a

pay-per-use pricing model. During recent years, large technique companies such as

Amazon, Google and Microsoft strive to provide more powerful, reliable and cost-

efficient cloud platforms, such as Amazon EC2 [19], Google Compute Engine [20]

and Microsoft Azure [21].

Similarly to the many existing computing platforms such as cluster computing,

grid computing and utility computing, cloud computing, too, is a distributed com-

puting paradigm. However, cloud computing evolves and adopts to the emerging

technologies to make it highly attractive to business owners. Here we list some of

the key concepts and characteristics that are commonly emphasized in modern cloud

services.

2.1.1 Virtualization and Multi-tenancy

In general, cloud computing has profoundly accelerated as a result of the popularity

and adoption of virtualization. Virtualization is a technology that abstracts away

the details of physical hardware and provides virtual resources for high-level applica-

tions [8]. Specifically, virtualization software (known as a hypervisor) is used to run

multiple VMs on a single physical server to provide the same functions as multiple

physical machines [7].

By taking advantage of virtualization, the virtual resources in a cloud infrastruc-

9

Chapter 2. Cloud Computing and Relevant Research Challenges: An Overview

ture can be easily pooled to serve multiple users and/or applications [7], which is

termed as multi-tenancy. With the multi-tenancy characteristic, the cloud infrastruc-

ture is able to serve all the customer requests concurrently [9]. As a result, service

providers maximize the utilization of resources, so as to decrease the operating costs.

2.1.2 Elasticity and Pay-Per-Use Pricing Model

When deploying services based on cloud, it is easy to expand and reduce resources

according to specific service requirement, which is one of the most important ad-

vantages of cloud computing. Generally, service providers can unilaterally provision

the virtual resources, i.e., expand and reduce the resources depending on their de-

mands [1, 7]. For example, a business owner may pay and ask more on-demand

resources from cloud providers for the peak hours in order to keep the same quality

of service, and then release the extra resources after the peak hours or the completion

of the customer requests.

The typical pricing model in cloud computing is known as per-per-use. Business

owners pay cloud providers only when using the resources, either for a short term

or for a longer duration. Such pricing lowers service operating cost as it charges

customers on a per-use basis. However, it also introduces complexities in controlling

the operating cost [8].

2.1.3 Performance Interference and Isolation

Virtualization and multi-tenancy allows different tenants/applications to run in the

same VM, however, there is a common issue that extensive resource sharing can

easily cause performance interference. In particular, when multiple applications are

executed in the same VM there may exist the potential bad behaviors of one tenant

10

Chapter 2. Cloud Computing and Relevant Research Challenges: An Overview

to adversely affect the performance of others in an unpredictable manner and the

unbalanced situation where some tenants achieve very high performance at the cost

of others,

Generally, the behavior of performance interference within/between VMs is fairly

complicated. Some preliminary work have been achieved by conducting experimental

or measurement studies to understand and analyze the performance interference

effects in virtual environments [22–24].

To prevent performance interference, performance isolation is crucial and has

been commonly utilized in the multi-tenancy environment. A simple and practical

method is to limit the number of applications that are executed simultaneously in a

VM [17]. Another method is that if a customer request is identified as an aggressive

request, such request may be rejected [11].

2.1.4 Heterogeneity of Virtual Machines

Similar to other modern computing platforms, such as cluster computing [25] and

grid computing [26], cloud computing environments also exhibit substantial hetero-

geneity [6, 27,28]. Typically cloud providers, offer a wide selection of different types

of VMs (namely instances) to business owners. Each instance comprises various

combinations of CPU, memory, storage, and networking capacity. According to the

purpose of the cloud service to be provided, business owners have the flexibility to

choose the appropriate mix of VMs to fit their need. Although service providers

can start deploying their virtual cloud-service infrastructure with near-homogeneous

instances, the facility will become more heterogeneous over time due to the upgrade

and replacement of VMs featuring the latest technologies.

11

Chapter 2. Cloud Computing and Relevant Research Challenges: An Overview

2.2 Related Work

In this section, a survey of four categories of previous work will be presented. The

first category is the work on the analytical performance modeling of cloud services.

The second category of the related work is on workload allocation (or task scheduling)

in heterogeneous computing and cloud computing environments. The third is on the

resource provisioning problem and the last category is on the VM placement problem

in the cloud

2.2.1 Analytical Performance Modeling of

Cloud Services

Analytical performance modeling for distributed systems under parallel and grid

computing environments has been the focus of attention for a long time. To the

best of our knowledge, however, there are only a small portion of works that have

addressed cloud environments.

In general, the times for serving customer requests in the cloud are considered

stochastic. This is due to the fact that VMs may exhibit a varying and unstable

performance especially when multiple tenants are concurrently running on the same

VM. For the ease of deriving an exact (rather than approximation) analysis on the

cloud-service performance especially in queuing models [2,3,5], the service times are

typically assumed exponentially distributed. To make the results more practical,

however, the service times must be modeled by a general probability distribution [4].

One of the pioneering works was proposed by Xiong et al. [2], where the cloud

service environment is modeled as an M/M/1 queuing network. In their model, the

arrival and response times of customer requests are assumed to be exponentially

distributed. The probability distribution of the response time was characterized by

12

Chapter 2. Cloud Computing and Relevant Research Challenges: An Overview

using the Laplace transform. The relationship among the maximum number of tasks,

minimum service resources and highest level of service was then determined.

Subsequently, many queuing models were proposed to relax the assumptions in [2]

and to consider additional stochastic factors that are inherent in the cloud. In [3],

Yang et al. used an M/M/m/m+r queue to model the service environment of the

cloud. The service response time of a customer request is assumed to be composed of

submission, waiting, service and execution times. The probability density function

and the mean of the customer’s response time were derived. Khazaei et al. [4]

assumed a general execution time for customer requests as well as a large number

of servers in the cloud environment. The authors then modeled the cloud service

based upon a M/G/m queuing system, and proposed an analytical technique for

performance evaluation based on an approximate Markov-chain model.

Despite their many advantages, the queuing models have a common flaw in that

they are unable to address virtualization and multi-tenancy in the cloud. In partic-

ular, the customers’ requests to be served in the queuing models are considered as

identical computational jobs rather than VMs that may consist of different number

of jobs. In the queuing models, each server is assumed to execute only one job at

one time. As the current virtualization technology is getting mature, however, the

support of multi-tenancy becomes essential for serving customers’ requests in cloud

computing, where the requests from different customers (or tenants) could be served

concurrently on the same physical server by sharing the hardware resources. Fur-

thermore, it is also difficult for queuing models to capture the impact of hardware

resources on the service performance of the cloud system. In fact, the service perfor-

mance will be highly affected by the hardware resources of the system, including the

number of servers, as well as the CPU speed of the servers, memory size and storage

space.

Besides the above works using queuing models, Yeo and Lee [6] considered the

13

Chapter 2. Cloud Computing and Relevant Research Challenges: An Overview

heterogeneity of the servers in the cloud. Namely, the authors assumed that the CPU

speed of the servers in the cloud are uniformly-distributed random variables, and as

such, the response times for executing a customer request also followed a uniform

distribution. They then derived statistics (including the mean and variance) of the

execution time for a given number of requests. The authors also applied regression

methods to estimate the relationship between power and performance over time, and

further performed energy-consumption analysis.

2.2.2 Workload Allocation

As for the second category of the related work, we shall discuss the workload-

allocation (namely VM/task-scheduling) problem in cloud computing environments,

which is one of the most critical factors that optimizes the cloud-service performance.

Many heuristic allocation/scheduling algorithms based upon queuing models have

been proposed for various schemes that are used. For example, Braun et al. [29] pro-

vided a comparison of eleven task-scheduling algorithms through experiments. The

experimental results indicated that a genetic algorithm leads to the best perfor-

mance for all the cases. The min-min algorithm reported in [29] was the second best

algorithm but with significantly less computational cost than that of the genetic algo-

rithm. In [30] Wu et al. proposed the segmented min-min algorithm which improves

the Min-min algorithm by scheduling large tasks first. The segmented min-min al-

gorithm balances the load well and demonstrates even better performance in both

makespan and running time. Later, Ritchie and Levine embedded a local-search pro-

cedure into the min-min algorithm [31]; they proposed the min-min+LS algorithm

that significantly improves the performance of the min-min algorithm but maintains

a similar computational cost to that for the min-min algorithm.

In [32], Maguluri et al. defined a stochastic model for a cloud service where tasks

14

Chapter 2. Cloud Computing and Relevant Research Challenges: An Overview

are assumed to arrive according to a stochastic process and are subsequently queued.

The authors focused on studying the stability of the cloud service and developed

frame-based non-preemptive VM configuration algorithms. These algorithms can be

made nearly throughput-optimal by choosing sufficiently long frame durations.

2.2.3 Virtual Machine Placement

Next, we shall discuss the VM placement problem in the cloud as the third category.

As virtualization becomes a core technology of cloud computing, the problem of

VM placement becomes crucial. Note that other researchers may call it as the VM-

mapping, load-balancing or workload/server consolidation problem. In fact, the VM

placement problem is similar to the workload allocation problem based on their

essence. However, they are distinguished mainly by the assumptions, limitations

and service environments associated with the specific problems.

A great volume of VM-placement algorithms has been proposed in the literature

to achieve different goals, such as increasing quality of service (QoS), throughput and

reliability of the cloud system. In [33], techniques of VM placement and consolidation

which leverage min-max and shares features provided by hypervisors were explored.

In [34], a dynamic consolidation mechanism based on constraint programming was

developed. This consolidation mechanism was originally designed for homogeneous

clusters. However, heterogeneity which is common in a multiple cloud provider en-

vironment was ignored.

Some of the existing VM-placement algorithms are based on the concept of load

balancing. For example, Hu et al. [35] proposed a algorithm based on genetic al-

gorithms. The authors used historical data and state of the system to achieve best

system resource utilization so as to reduce the cost of dynamic VM migration. In [36]

Liu et al. proposed the LBLV algorithm to balance the virtual storage in the cloud

15

Chapter 2. Cloud Computing and Relevant Research Challenges: An Overview

storage system. The algorithm enhanced flexibility and robustness of the system

and their results provided suggestions for designing the storage architecture of large-

scale net data storage [36]. Meanwhile, Bhadani and Chaudhary [37] proposed the

CLBVM algorithm, which used global state information to balance the load evenly in

the cloud system. The algorithm aimed to decrease response time and increase sys-

tem throughput, and therefore the overall performance of the system was improved.

Recently Xu and Fortes [38] further focused on multi-objective optimization for

the VM placement problem. Their goal is to simultaneously minimize total re-

source wastage, power consumption and thermal dissipation costs. An genetic algo-

rithm with fuzzy multi-objective evaluation is proposed for efficiently searching the

large solution space and conveniently combining possibly conflicting objectives. A

simulation-based evaluation using power-consumption and thermal-dissipation mod-

els, demonstrates the good performance, scalability and robustness of our proposed

approach.

Survey papers such as [39] and [40] offer further details and addition examples

for recently proposed algorithms.

2.2.4 Resource Provisioning in the Cloud

Finally, we shall discuss the resource provisioning problem in the cloud. Due to the

elasticity of the cloud, the resource provisioning in the cloud may be more dynamic

compared to the traditional distributed computing models, i.e., service providers

could acquire resources based on the current demand, which can considerably lower

the operating cost.

A large portion of the existing work are based on the macroscopic level [14,41–44],

i.e., long-term provisioning for large-scale workflows. However, these work do not

consider the notion of SLA requirements, which is one of the most important business

16

Chapter 2. Cloud Computing and Relevant Research Challenges: An Overview

concepts in cloud computing. For example, Yang et al. [42] proposed a profile-based

approach for developing just-in-time scalability for cloud applications. As a result,

on-demand resources in cloud can be efficiently provisioned. In [43] and [14], Chaisiri

et al. proposed the OVMP algorithm and its refinement, the OCRP algorithm, to

minimize the total cost of resource provisioning. The authors applied stochastic inte-

ger programming with two-stage recourse to solve the resource provisioning problem.

The uncertainty of the demand and provisioning cost is considered in their cloud-

service model. The OVMP and OCRP algorithms can optimally adjust the tradeoff

between reservation of resources and allocation of on-demand resources.

Recently, some of the work addressed the SLA requirements and the elasticity of

cloud computing in the design of resource-provisioning algorithms. For example, Li

and Guo [45] proposed a model for optimization of SLA-based resource scheduling in

cloud computing based on stochastic integer programming technique. The authors

applied Gröbner bases theory for solving the stochastic integer programming. How-

ever, the algorithm still suffers from the fact that the size of Gröbner basis grows

exponentially. Feng et al. [46] relied on the performance-aware pricing model in

SLAs for maximizing providers’ revenues through Lagrange multiplier method based

resource allocation among the customers. Zhao et al. [47] presented an end-to-end

framework that facilitates adaptive and dynamic provisioning in the database tier

by applying consumer-centric policies to satisfy the SLA requirements and control

the monetary cost. Hwang et al. [48] presented a two-phase algorithm, long-term

reservation and on-demand subscription, for service operators to minimize the cost

of provisioning their service, but QoS has not been considered well. Ran et al. [49]

focus on the dynamic resource provisioning for compute-intensive tasks with cost

optimization and QoS guaranteeing. An online resource provisioning strategy based

on the large deviation principle is proposed, which avoids requiring any priori knowl-

edge of the workload and triggers a prompt response when the overload probability

violates the desired QoS.

17

Chapter 2. Cloud Computing and Relevant Research Challenges: An Overview

2.2.5 Summary

To date, the development of cloud computing is still at an early stage. There are

still many challenges for researchers to make contributions and, in turn, bring sig-

nificant progress to the industry. We, in this dissertation, focus on optimizing the

computational performance of cloud services via efficient resource provisioning and

optimal workload allocation.

For more details and research challenges of cloud computing, we point interested

readers to the following survey papers [7–9,50,51].

18

Chapter 3

Probabilistic multi-tenant

framework

In this chapter, we first describe the cloud-service environment to be investigated.

The response time of an arbitrary customer request is then analytically characterized.

In general, the response time is one of the most commonly adopted performance

metrics specified in the cloud SLAs [52–54]; it is also considered extensively in the

research literature [2–4,15].

3.1 Cloud Service Environment

Suppose that a business deploys a virtual cloud-service infrastructure by utilizing

on-demand or reserved VMs, purchased from cloud providers, to serve its customers.

Here, these VMs are heterogeneous and they may belong to different categories.

Namely, each category of VMs has several sub-types that are comprised of varying

combinations of attributes, such as elastic computing unit (ECU), number of virtual

CPUs (vCPUs), memory, storage, and networking capacity. As an example, Table 1

19

Chapter 3. Probabilistic multi-tenant framework

Table 3.1: Details of VMs provided by Amazon EC2

Category Type ECU vCPUs Memory(GB) Price(per hour)1

m1.small 1 1 1.7 $0.022

General m1.medium 2 1 4 $0.044

Purpose m3.large 6.5 2 7.5 $0.133

m4.xlarge 13 4 16 $0.239

c1.medium 5 2 1.7 $0.075

Compute c3.large 7 2 3.75 $0.105

Optimized c4.xlarge 16 4 7.5 $0.209

c4.2xlarge 31 8 15 $0.419

Memory Optimized r3.xlarge 13 4 30.5 $0.333

Storage Optimized i2.xlarge 14 4 30.5 $0.853

lists four categories of VMs provided by Amazon EC2. Depending upon the purpose

of a service, the business may choose the corresponding category of VMs or mixed

categories of VMs. Since this work focuses on analyzing and optimizing the com-

putational performance of cloud services, we assume that the virtual cloud-service

infrastructure investigated in this study is comprised of only Compute Optimized and

General Purpose [19] VMs, as listed in Table 1.

We assume that a customer request consists of a group of loosely-coupled and

heterogeneous applications. Here, each application is considered as a workload that

consists of a certain number of tasks. A task is assumed to be the smallest unit pro-

cessed by a VM. For example, we could refer to a task here as 1,000 basic mathemati-

cal operations. We assume that the applications are not embarrassingly parallel [55].

That is, the tasks in an application are dependent and should not be parallelized to

1The listed prices for m1.small, m1.medium and c1.medium VMs have been adjusted

to eliminate the unfairness in terms of ECU/price ratio for these three types of VMs due

to the generation upgrade in Amazon EC2.

20

Chapter 3. Probabilistic multi-tenant framework

more than one thread since the overhead from synchronization and communication

would dominate the execution time of the application. To fulfill a request, all the ap-

plications in the request must be executed. Due to the multi-tenancy characteristic

of the cloud, it is also assumed that one VM is able to serve multiple applications si-

multaneously. To this end, the heterogeneous applications in a customer request are

allocated to and executed concurrently by multiple VMs in the virtual infrastructure.

Moreover, all the tasks in an application are served within the same VM.

To guarantee the security and performance of the cloud service, we further assume

that an isolation mechanism is utilized. As typically employed in the cloud, a VM

can only serve those applications that belong to the same customer. When a request

is completed, the set of VMs that execute the request will be released and become

available for serving subsequent customer requests. In addition, each vCPU in a VM

serves only one application at a time. For example, a VM with two vCPUs may serve

at most two applications concurrently. By doing so, we assume that the performance

interference between the applications executed in the same VM can be ignored. As

such, the execution of the applications in a customer request can be considered as

mutually-independent.

For convenience, we give a simple example to illustrate how a request is served

in the proposed cloud-service environment, which is also shown in Fig. 3.1. Suppose

that a customer submits his/her request consisting of five heterogeneous applications

for execution. Suppose also that two VMs in the virtual infrastructure, say VM 1

with four vCPUs and VM 2 with two vCPUs, are scheduled to serve this request.

One scenario is that three of the applications in the request are hosted on VM 1 and

the other two of the applications are hosted on VM 2, as shown in Fig. 3.1(b). In

fact, there are
(
5
1

)
+
(
5
2

)
= 15 ways in total to allocate the five applications to the

two VMs.

21

Chapter 3. Probabilistic multi-tenant framework

(a)

(b)

Figure 3.1: High-level cloud-service environment

3.1.1 Two Challenging Questions

Given the multi-tenant cloud-service environment described above, two challenging

questions are raised.

• Suppose that VM 1 and VM 2 are scheduled to serve the request as illustrated

in Fig. 3.1(b), then which allocation pattern of the 15 possibilities will result

in the best performance of the request?

22

Chapter 3. Probabilistic multi-tenant framework

• Which VMs (including number and type) in the virtual infrastructure are the

most appropriate amount of computing resource to serve the request?

We will specifically answer the above two questions in Chapter 4 and Chapter 5.

3.2 Cloud-Service Performance Evaluation

3.2.1 Characterization of the Stochastic Response Time

From a customer’s point of view, the response time of his/her request is one of the

most important concerns when using the cloud service [56]. We therefore focus on

analyzing and minimizing the response times of customer requests as detailed next.

Let w = {w1, ..., wn} be a set representing a customer request. Such a request

may consist of n arbitrary applications, where wi is the workload size of the ith

application. Based on the cloud-service environment described above, the n appli-

cations are executed by n vCPUs concurrently. Let Twi , for i = 1, . . . , n, represent

the execution times of the n applications in the request w. In this thesis, we assume

that the execution times of the n applications dominate the response time of such a

request. As such, the response time of the request w is determined by the application

that is completed last, and we can write

Tw = max(Tw1 , . . . , Twn). (3.1)

The execution time of the ith application, Twi for i = 1, . . . , n, is assumed to be

stochastic. Namely, the probability distribution of Twi is considered to be a general

distribution with the execution rate λwi that equals the reciprocal of the mean of its

execution time.

23

Chapter 3. Probabilistic multi-tenant framework

3.2.2 Percentile of the Response Time

Next, we analytically characterize two statistics of the stochastic response time of

the customer request as key performance metrics to evaluate the cloud service. The

first metric is the percentile of the response time of the customer request before time

t, which is defined as the cumulative distribution function (CDF) of the response

time of the request [2]. In particular, the percentile of the response time gives the

probability that request w can be completed before time t. This performance metric

has also been considered by other researchers in prior works [13, 57, 58]. Namely,

let PT (w; t) represent the percentile of the response time of the request w. By

definition, we have

PT (w; t) , FTw(t), (3.2)

where FTw(t) is the CDF of T (w). With the performance isolation mechanism applied

to the cloud service, the execution of the n applications is assumed to be mutually-

independent. To this end, we can further write the percentile of the response time

as

PT (w; t) =
n∏
i=1

FTwi (t), (3.3)

where FTwi (t) is the CDF of the execution time of the ith application. Note that

when a request w = {w1, ..., wn} is served by two different sets of VMs, v and v′, for

which the vCPUs in v are pair-wise faster than for those in v′ (i.e., λwi ≥ λ′wi for i =

1, . . . , n), then

PT (w; t) ≥ PT ′(w; t) for all t > 0. (3.4)

3.2.3 Mean of the Response Time

The second performance metric to be characterized is the mean of the response time

of the request, which is another widely-adopted performance metrics in cloud SLAs

24

Chapter 3. Probabilistic multi-tenant framework

and prior works [54,59–61]. From equation (3.1), we can write

ET (w) , E[Tw] = E[max{Tw1 , ..., Twn}]. (3.5)

as the mean of the response time of the request w. Note that for any non-negative

random variable X,

E[X] =
(∫ ∞

0

1− FX(x)
)
dx,

where FX(x) is the CDF of random variable X. Hence, ET (w) can be further written

as

ET (w) =

∫ ∞
0

(
1− FTw(t)

)
dt

=

∫ ∞
0

(
1−

n∏
i=1

FTwi (t)
)
dt. (3.6)

Equation (3.6) can be numerically evaluated given the knowledge of FTwi (t) for i =

1, . . . , n.

It is important to note that there is a connection between ET (w) and PT (w; t),

that is

ET (w) =

∫ ∞
0

(
1− PT (w; t)

)
dt. (3.7)

3.2.4 Execution Rate of the Workloads

To completely characterize the two performance metrics, it remains to model the

CDFs, FTwi (t), of the execution times for the n applications. Here, we assume

that a set of m available VMs in the virtual infrastructure, denoted by the set

v = [v1, ..., vm], are scheduled to execute the n applications. Now suppose also that

the ith application is hosted on the jth VM, whose ECU per vCPU is denoted by

λvj . Then the execution rate, namely the reciprocal of average execution time, of

25

Chapter 3. Probabilistic multi-tenant framework

the ith application, λwi , is modeled by the following two realistic rules: 1) λwi is

proportional to λvj ; and 2) λwi is inversely-proportional to the workload size of the

application. Hence, we can write

λwi = c
λvj
wi
, (3.8)

where c is a constant indicating the rate for serving one task on a vCPU with one unit

of ECU. For convenience, we assume that c = 1 in this thesis. Depending upon the

specific probability distribution of the stochastic execution times of the applications,

FTwi (t) can be further characterized given the knowledge of λwi , for i = 1, . . . , n.

We would like to clarify that PT (w; t) and ET (w) also depend upon the set

of m VMs v as well as the workload allocation algorithm that specifies how the

n applications are hosted on the m VMs. However, the explicit reference to this

dependence can be omitted from the notation for convenience.

26

Chapter 4

Optimal workload allocation

Workload allocation (or task scheduling) is a critical issue in heterogeneous comput-

ing environments such as cloud computing. Here, allocating the workloads efficiently

can clearly improve service performance. However, finding the optimal workload-

allocation algorithm in a heterogeneous computing environment is in general an NP-

hard problem [30,31]. Hence many heuristic workload-allocation algorithms, such as

the minimum completion time (MCT), the min-min and the max-min, were proposed

in [29] and their efficacy were investigated under various schemes [29]. However, to

the best of our knowledge, there is little work in the existing literature addressing

the workload-allocation problem based upon the multi-tenancy principle in the cloud.

In fact, the proposed algorithms in [29] behave quite differently in the multi-tenant

model as illustrated later in this chapter.

In the following, we begin by reviewing the max-min-cloud algorithm, whose

elementary version was first proposed in our prior work [16]. Here we rigorously

prove the optimality of the max-min-cloud algorithm in Chapter 4.2. This proof

illustrates that the max-min-cloud algorithm gives the best performance in the multi-

tenant cloud-service environment for any arbitrary customer request, i.e., where the

27

Chapter 4. Optimal workload allocation

optimality is in the sense of maximizing the percentile of the response time of the

request and minimizing the mean of the response time of the request.

4.1 The Max-Min-Cloud Workload Allocation Al-

gorithm

In brief, the motivation for devising the max-min-cloud algorithm is based upon the

concept of load balancing for the case when the execution times of the applications

are deterministic. Intuitively, the necessary condition for obtaining the minimum

response time of a request is that the execution times of the n applications should be

as close to each other as possible. Specifically, the max-min-cloud algorithm follows

a greedy pattern for allocating the n heterogeneous applications to a fixed set of m

VMs (with at least n vCPUs by default). It requires that the n applications in request

w are sorted from the largest to the smallest, based upon their workload sizes, while

the m VMs are also sorted in terms of ECU from the fastest to the slowest. Next, the

application with the largest workload size is allocated to the fastest available VM. If

there is at least one idle vCPU in a VM, this VM is defined as an available VM. For

convenience, details of the max-min-cloud algorithm are summarized in Algorithm

1.

4.2 Optimality Proof of the Max-Min-Cloud Al-

gorithm

Consider the case when a set of heterogeneous VMs, v = {v1, ..., vm}, that have at

least n vCPUs in total, is scheduled to serve a customer request w = {w1, ..., wn}.

We prove that the maximum PT (w; t), for any t > 0, and the minimum ET (w)

28

Chapter 4. Optimal workload allocation

Algorithm 1 The max-min-cloud algorithm

Initiation: A customer submits his/her request w consisting of arbitrary n applica-

tions. Suppose that a set of m VMs in the cloud-service infrastructure are scheduled

for serving the request, and the jth server has kj vCPUs for j = 1, ...,m, respec-

tively.

1: Sort the n applications in the request w from the largest to the smallest based

upon the workload sizes of the n applications. Let a vector ~w = [w1, ..., wn]

represent the sorted n applications.

2: Sort the m VMs in terms of ECU from the largest to the smallest. Let a vector

~v = [v1, ..., vm] represent the sorted m VMs.

3: for i = 1 to n do

4: for j = 1 to m do

5: if the number of applications that are hosted on the jth VM is smaller than

kj, then

6: allocate the ith application to the jth VM;

7: break;

8: end if

9: end for

10: end for

will be obtained by utilizing the max-min-cloud algorithm. The only assumption

in our proof is that the stochastic execution times of applications are exponentially

distributed. In this case, the formulas for PT (w; t) and ET (w), from (3.2) and (3.6),

become

PT (w; t) =
n∏
i=1

(
1− e−λwi t

)
(4.1)

and

ET (w) =

∫ ∞
0

(
1−

n∏
i=1

(1− e−λwi t)
)
dt, (4.2)

29

Chapter 4. Optimal workload allocation

respectively. However, we will also conduct MC simulations to show the optimality

of the max-min-cloud algorithm when the execution times are assigned with other

probability distributions.

Remark 1: Equations (3.4) and (3.7) together imply the fact that the mean of the

response time of a customer request, ET (w), is minimized when the percentile of

the response time of the request, PT (w; t), is maximized for all t > 0.

Theorem 1: For any t > 0, the maximum percentile of the response time of a

request w = {w1, ..., wn} is obtained when the max-min-cloud algorithm is utilized

to allocate the n applications in the request w to a set of VMs v = {v1, ..., vm} that

have exactly n vCPUs in total.

Clearly, Theorem 1 also implies that the minimum mean of the response time

of the request w is obtained when the max-min-cloud algorithm is utilized as a

consequence of Remark 1.

In order to prove Theorem 1, we begin by giving an example to define an operation

termed app-swap, which helps us introduce Lemma 1. Suppose that two applications

w1 and w2, with w1 > w2, are initially hosted on two VMs v2 and v1, with λv1 >

λv2 , respectively. If we reallocate the application w1 to v1, and w2 to v2, then this

operation is defined as an app-swap between w1 and w2. In particular, by performing

an app-swap between w1 and w2, the application with the larger workload size (i.e.,

w1) will be reallocated to the faster VM (i.e., v1), while the application with smaller

workload size (i.e., w2) will be reallocated to the slower VM (i.e., v2).

Lemma 1: Suppose that a customer request w = {w1, ..., wn} is executed by a

set of heterogeneous VMs v = {v1, ..., vm} that have exactly n vCPUs in total.

Suppose also that two of the applications w1 and w2, with w1 > w2, are allocated

to the two VMs v2 and v1, with λv1 > λv2 , respectively. Let PT ini(w; t) denote the

percentile of response time of the request w associated with the initial allocation

30

Chapter 4. Optimal workload allocation

pattern. Suppose that we reallocate w1 and w2 by performing an app-swap between

them, and let PT swap(w; t) denote the percentile of the response time of w after the

reallocation. Then,

PT swap(w; t) > PT ini(w; t), for all t > 0.

Now we first show Proposition 1 and Proposition 2 as the necessary steps before

the proof of Lemma 1.

Proposition 1: f(x) = xe−x

1−e−x is a monotonically decreasing function for x > 0.

Proof : We will show that the derivative of f(x),

f ′(x) =
e−x

(1− e−x)2
(1− x− e−x), (4.3)

is negative for x > 0. Let g(x) = 1 − x − e−x, and note that g(0) = 0. To show

that f ′(x) is negative, it is sufficient to show that g(x) is a monotonically decreasing

function, i.e., g′(x) < 0 for x > 0. Clearly,

g′(x) = e−x − 1 < 0, for x > 0. 2

Proposition 2: Suppose that w1 > w2 > 0 and λv1 > λv2 > 0. Let λw1 = λv1/w1,

λw2 = λv2/w2, λ
′
w1

= λv1/w2 and λ′w2
= λv2/w1. Then the function

f(w1, w2, λv1 , λv2 , t) =

(1− e−
λv1
w1

t
)(1− e−

λv2
w2

t
)− (1− e−

λv1
w2

t
)(1− e−

λv2
w1

t
) (4.4)

is positive for t > 0.

Proof : We rewrite the function f(w1, w2, λv1 , λv2 , t) as a function of λv1 , denoted by

g(·), with the other four variables fixed. We show that for all w1 > w2 > 0, λv2 > 0

and t > 0,

g(x) = (1− e−
x
w1
t
)(1− e−

λv2
w2

t
)− (1− e−

x
w2
t
)(1− e−

λv2
w1

t
) > 0,

31

Chapter 4. Optimal workload allocation

when x > λv2 .

To see this, first note that g(x) = 0 when x = λv2 . Hence, it is sufficient to

show that the function g(x) is monotonically increasing for x > λv2 . We proceed by

showing that the derivative of g(x) is positive for x > λv2 , i.e.,

g′(x) = (1−e−
λv2 t

w2)
t

w1

e
− t
w1
x

− (1− e−
λv2 t

w1)
t

w2

e
− t
w2
x
> 0. (4.5)

To do so, note that if x2 > x1 > 0 we immediately have

x1e
−x1

1− e−x1
/ x2e

−x2

1− e−x2
> 1, (4.6)

as a consequence of Proposition 1. Let x1 = λv2t/w1 and x2 = λv2t/w2. It is clear

that x2 > x1 > 0. Hence, we can rewrite the inequality in (4.6) as

1− e−
λv2 t

w2

1− e−
λv2 t

w1

·
(t
w1
λv2)e

− t
w1
λv2

(t
w2
λv2)e

− t
w2
λv2

> 1. (4.7)

Now for x ≥ λv2 , define h(x) ,
(t
w1
x)e
− t
w1

x

(t
w2
x)e
− t
w2

x
= w2

w1
e
(1
w2
− 1
w1

)xt
. We then rewrite the

inequality in (4.7) as

1− e−
λv2 t

w2

1− e−
λv2 t

w1

h(λv2) > 1.

Note that h(x) is monotonically increasing since it is an exponential function. In

addition, it is obvious that the term 1−e−
λv2 t
w2

1−e−
λv2 t
w1

> 0. As such,

1− e−
λv2 t

w2

1− e−
λv2 t

w1

h(x) > 1 for x > λv2 , (4.8)

which implies the inequality in (4.5). 2

32

Chapter 4. Optimal workload allocation

Proof of Lemma 1: Note that by performing the app-swap between w1 and w2,

the execution rates of w1 and w2 change while the execution rates for the rest of the

n− 2 applications in w remain the same. According to (4.1),

PT ini(w; t) = (1− eλw1 t)(1− eλw2 t)
n∏
i=3

(
1− eλwi t

)
and

PT swap(w; t) = (1− eλ′w1
t)(1− eλ′w2

t)
n∏
i=3

(
1− eλwi t

)
.

Hence,

PT ini(w; t)− PT swap(w; t) =
(
(1− eλv1 t)(1− eλv2 t)

− (1− eλv′1 t)(1− eλv′2 t)
) n∏
i=3

(
1− eλvi t

)
.

Using Proposition 2, we conclude that

(1− eλw1 t)(1− eλw2 t)− (1− eλ′w1
t)(1− eλ′w2

t) < 0 for all t > 0.

Therefore,

PT ini(w; t) < PT swap(w; t), for all t > 0.2 (4.9)

Proof of Theorem 1: Let the n applications in the request be allocated to the m

VMs in an arbitrary initial allocation pattern. We will then implement a sequence

of app-swaps between two of the n applications based on a sorting algorithm, say

bubble sort. After some finite number of app-swaps, there can be no more app-

swaps within the n applications that can be implemented. At this point, the n

applications are reallocated to the m VMs following the allocation pattern where

the largest applications is hosted on the fastest VMs. Note that this final allocation

pattern obtained at the end of the sequence of app-swaps is precisely prescribed by

the max-min-cloud algorithm.

33

Chapter 4. Optimal workload allocation

With the knowledge of Lemma 1, it is clear that each app-swap enhances the

performance for serving the request w. Therefore, we can claim that the maximal

percentile of the response time of the request w is achieved for all t > 0 by utilizing

the max-min-cloud algorithm. 2

Next, we extend Theorem 1 by considering the general case when the set of m

VMs has more than n vCPUs in total.

Theorem 2: Suppose that a request with n applications is to be executed by a set

of m VMs that have more than n vCPUs in total. Then for any t > 0, the maximum

percentile of the response time of the request w is obtained when the max-min-cloud

algorithm is utilized.

Proof : First, consider the case when the n applications in the request are allocated

to the set of m′ fastest VMs, denoted by vmmc, of the m VMs. Without loss of

generality, we can assume that the set of VMs in vmmc has exactly n vCPUs. (For

the case when there are more than n vCPUs in vmmc, the vCPUs that has the smallest

ECU per vCPU can be ignored, since they will not be executing any applications.)

By Theorem 1, the best performance for serving the n applications by the set of VMs

vmmc is obtained by applying the max-min-cloud algorithm. In this case, we use the

term PTmmc(w; t) to denote the percentile of the response time of the request w, and

the execution rates of the n applications are denoted by λmmc
w1

, . . . , λmmc
wn .

Next, consider the other case when a different collection of m′′ VMs, denoted

by varb, are selected to serve the n applications, i.e., varb 6= vmmc. Without loss of

generality, we can also assume that the set of VMs in varb has exactly n vCPUs.

Again by Theorem 1, the best performance is obtained by applying the max-min-

cloud algorithm. Let PTarb(w; t) denote the percentile of the response time of the

request w for this scenario, and the execution rates of the n applications are denoted

by λarbw1
, . . . , λarbwn .

34

Chapter 4. Optimal workload allocation

Note that the VMs in vmmc are the selection of the fastest VMs. Now when the

max-min-cloud algorithm is utilized, the vCPU of the VM in vmmc is faster than the

vCPU of the VM in varb pair-wisely for executing the same workload, i.e.,

λmmc
wi
≥ λarbwi for i = 1, . . . , n.

Hence, we have

PTmmc(w; t) > PTarb(w; t) for all t > 0

as a result of (3.4). The proof of Theorem 2 is completed by noting that the selection

of the collection of m′′ VMs was arbitrary. 2

Theorem 2 also implies that the minimum mean of the response time is obtained

when the max-min-cloud algorithm is utilized due to Remark 1. To this end, we

have rigorously proven the optimality of the max-min-cloud algorithm in the sense

of maximizing the percentile of the response time for any t > 0 as well as minimizing

the mean of the response time for serving an arbitrary customer request when a fixed

set of VMs has been scheduled to serve this request.

4.3 Numerical and Simulation Results

In this section, we conduct MC simulations to validate the efficacy of the max-min-

cloud algorithm under various scenarios. To do so, we compare its performance to

that of a widely-adopted workload-allocation algorithm termed the MCT-cloud al-

gorithm, which extends the minimum completion time (MCT) algorithm introduced

in [31]. The MCT-cloud algorithm allocates the applications in a request w, in

arbitrary order, to the fastest available VM in a scheduled set of VMs v. The MCT-

cloud algorithm performs well for cloud services whose virtual infrastructure consists

of near-homogeneous VMs [6].

35

Chapter 4. Optimal workload allocation

Table 4.1: Six workload patterns of the request w

request workloads in the request

pattern [w1, . . . , w9]

1 [370, 10, 10, 10, 10, 10, 10, 10, 10]

2 [90, 90, 90, 90, 50, 10, 10, 10, 10]

3 [50, 50, 50, 50, 50, 50, 50, 50, 50]

4 [90, 50, 50, 50, 50, 50, 50, 50, 10]

5 [90, 80, 70, 60, 50, 40, 30, 20, 10]

6 [60, 60, 60, 60, 52, 52, 38, 38, 30]

4.3.1 Response Times with Exponential Distributions

Consider the case for which a customer submits his/her request w consisting of

nine applications with 450 tasks to the virtual cloud-service infrastructure. We as-

sume that four VMs, including one c4.xlarge instance, one c3.large instance, one

c1.medium instance and one m1.medium instance, are scheduled to serve the re-

quest. Six workload patterns of the request with the same total number of tasks are

studied. The execution times of the applications in the request are exponentially

distributed. The mean of response times of the six requests are listed in Table 4.1

for the cases when the max-min-cloud algorithm and the MCT-cloud algorithm are

utilized. Here, the columns labeled as “Theo.” and “Sim.” present the results ob-

tained by numerically evaluating the analytical characterization of ET (w) in (3.2)

and after averaging 10,000 realization of independent experiments, respectively. It

is noted that the execution rates of the applications cannot be determined when the

MCT-cloud algorithm is utilized. Hence, there is no theoretical prediction of ET (w)

for the MCT-cloud algorithm.

It can be observed from Table 4.1 that for any of the six patterns, the mean of

the response time corresponding the max-min-cloud algorithm are less than or equal

36

Chapter 4. Optimal workload allocation

Table 4.2: The mean of the response time of request w for the six workload patterns

request mean of response time (in seconds)

pattern theo. prediction sim. max-min-cloud sim. MCT-cloud

1 93.06 92.97 133.12

2 48.40 48.37 67.83

3 47.55 47.53 47.58

4 45.45 45.43 53.92

5 43.55 43.52 59.46

6 42.47 42.44 50.83

to that for the MCT-cloud algorithm. Note that the theoretical prediction of ET (w)

also matches the MC simulation results. It is also important to note that different

patterns of the request w may lead to variation in the values of ET (w), even though

these patterns have the same number of tasks in total. For example, ET (w) of

“pattern 1” request is 167.8 seconds, which is about three times longer than that

of “pattern 6” request (58.5 seconds). This is because the workloads in “pattern

1” request are highly unbalanced as compared to the distribution of the ECU per

vCPU of the four scheduled VMs that serve the request. Meanwhile, the workloads

in “pattern 6” request have the most similar distribution of ECU per vCPU of the

four VMs among the six patterns of the request under study.

Next, in Fig. 4.1, we show the percentile of the response time of the request w

by applying the max-min-cloud algorithm and the MCT-cloud algorithm (for the six

patterns described earlier). The solid curves representing the theoretical predictions

are obtained by evaluating (3.2) numerically when the max-min-cloud algorithm is

utilized. The MC simulation results marked by squares and crosses are presented

respectively for the max-min-cloud algorithm, and the MCT-cloud algorithm. Each

point in the MC simulations are averaged using 10,000 independent experiments.

As expected, the max-min-cloud algorithm leads to larger values of PT (w; t) for all

37

Chapter 4. Optimal workload allocation

t > 0. Here too, our theoretical predictions agree well with the MC results when the

max-min-cloud algorithm is utilized. It is interesting to observe in Fig. 4.1(e) that all

the curves for “pattern 5” requst coincide. This is because all the applications in the

request have the same workload sizes. As such, there is no difference for allocating

applications in the request when the two algorithms are utilized.

To better illustrate the impact of the workload pattern of the request on PT (w; t)

we also show results obtained by theoretical predictions for the six workload patterns

of the request together in Fig. 4.2.

4.3.2 Response Times with Non-Exponential Distributions

Next, we illustrate the optimality of the max-min-cloud algorithm when the execution

times of the applications are not exponentially-distributed. We consider two cases

when the execution times are (a) truncated normally-distributed whose variance is

one third of its mean (as similarly considered in [6]) and (b) Erlang-distributed. The

corresponding percentile of the response time of the “pattern 4” request under these

two distributions are shown in Figs. 4.3(a) and (b), respectively.

It can be observed from Fig. 4.3 that the superiority of the max-min-cloud al-

gorithm over the MCT-cloud algorithm is more profound versus the case when the

execution times of the applications are exponentially-distributed. For example, in

Fig. 4.1(a) and (b) when t = 60 seconds, the max-min-cloud algorithm can lead to

approximately 55% higher probability for completing the request than that for the

MCT-cloud algorithm. Meanwhile in Fig. 4.1(c) the related probability is about 50%

higher.

38

Chapter 4. Optimal workload allocation

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

time, s

p
er

ce
n

ti
le

 o
f

re
sp

o
n

se
 t

im
e

theo. prediction

sim. max−min−cloud

sim. MCT−cloud

(a)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

time, s

p
er

ce
n

ti
le

 o
f

re
sp

o
n

se
 t

im
e

theo. prediction

sim. max−min−cloud

sim. MCT−cloud

(b)

Figure 4.1: Percentile of the response time of request with pattern 1 and 2

4.3.3 Computation Complexity

Besides the accuracy, another critical criteria for judging the proposed analytical

model is the computation complexity. In general, we wish that computation com-

39

Chapter 4. Optimal workload allocation

plexity of the analytical model is comparable to or even lower than MC simulation

for acquiring the same results. Furthermore, we also wish that the computation

complexity of the analytical model is not growing exponentially (typically linear

complexity is the best case), so that the model can still be utilized to deal with

similar problems when they may highly scale in other scenarios.

With the max-min-cloud algorithm at hand, we now can show the computational

efficacy of the analytical model in this section. To do so, we compare the compu-

tational costs for acquiring the mean (rather than the percentile) of the response

time of the request by numerically evaluating the analytical characterization in (3.6)

against by MC simulations, since an extra integration is needed for evaluating ET (w)

compared to PT (w) as explicitly stated in (3.7).

Table 4.3 lists the computation times for the “pattern 4” request under four cases.

The execution times of the applications are assumed exponentially distributed. All

the results in Table 4.3 as well as in this section are acquired from Matlab R2011b on

a laptop equipped with Intel Core i5-3210M 2.5GHz 4-thread CPU and 16GB RAM.

As expected, the error in MC simulations decreases as the number of independent

experiments increases. In order to have a precise approximation, i.e., say the error

is less than 2%, it is necessary to run the simulation for at least 10,000 independent

experiments. In that case, the computational cost for running simulation would

be more than ten times compared to cost by numerically evaluating the analytical

characterization.

Next, we investigate how computation complexity of the proposed analytical

model grows as the number of applications increases. Without loss of generality,

we can simply consider the case that a customer request consisting of n applications

with the same workload size, say 100, are allocated onto n vCPUs with the same

ECU per CPU, say 1. In Fig. 4.4, we show the computational cost for evaluating

ET (w) as a function of n. The results are averaged by 100 iterations. It is clear

40

Chapter 4. Optimal workload allocation

Table 4.3: Computational costs: analytical model vs. MC simulations

Anal. result Simu. results

Number of experiments N/A 100 1,000 10,000

Mean of response time 45.4515 s 49.0853 s 43.6593 s 46.6074 s

Error(approx.) N/A 8% 5% 2%

Computation cost (in seconds) 0.00698 0.00267 0.00951 0.07584

that the computation complexity of the proposed model is approximately growing

linearly, i.e., O(n).

41

Chapter 4. Optimal workload allocation

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

time, s

p
er

ce
n

ti
le

 o
f

re
sp

o
n

se
 t

im
e

theo. prediction

sim. max−min−cloud

sim. MCT−cloud

(c)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

time, s

p
er

ce
n

ti
le

 o
f

re
sp

o
n

se
 t

im
e

theo. prediction

sim. max−min−cloud

sim. MCT−cloud

(d)

Figure 4.1: Percentile of the response time of request with pattern 3 and 4

42

Chapter 4. Optimal workload allocation

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

time, s

p
er

ce
n

ti
le

 o
f

re
sp

o
n

se
 t

im
e

theo. prediction

sim. max−min−cloud

sim. MCT−cloud

(e)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

time, s

p
er

ce
n

ti
le

 o
f

th
e

re
sp

o
n

se
 t

im
e

theo. prediction

sim. max−min−cloud

sim. MCT−cloud

(f)

Figure 4.1: Percentile of the response time of request with pattern 5 and 6

43

Chapter 4. Optimal workload allocation

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

time, s

p
er

ce
n

ti
le

 o
f

re
sp

o
n

se
 t

im
e

o
f

re
q

u
es

t

pattern 1

pattern 2

pattern 3

pattern 4

pattern 5

pattern 6

Figure 4.2: Percentile of the response times for the six patterns

44

Chapter 4. Optimal workload allocation

15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

time, s

p
er

ce
n
ti

le
 o

f
re

sp
o
n
se

 t
im

e

theo. prediction

sim. max−min−cloud

sim. MCT−cloud

(a)

15 20 25 30
0

0.2

0.4

0.6

0.8

1

time, s

p
er

ce
n
ti

le
 o

f
re

sp
o
n
se

 t
im

e

theo. prediction

sim. max−min−cloud

sim. MCT−cloud

(b)

Figure 4.3: Percentile of the response times, where the execution times of the applications

in the request are (a) truncated normally-distributed and (b) Erlang-distributed

45

Chapter 4. Optimal workload allocation

0 100 200 300 400 500
1

2

3

4

5

6
x 10

−3

n

co
m

p
u
ta

ti
o
n
al

 c
o
st

,
se

co
n
d
s

Figure 4.4: The computation complexity of the model as a function of the number of

applications n.

46

Chapter 5

Efficient Resource Provisioning

When a customer submits his/her request, the amount of computing resources for

serving this request needs to be determined and scheduled before the execution of

the request. To schedule an appropriate set of VMs for serving customer requests

is a challenging problem, typically termed as resource provisioning in the cloud [53].

Here the challenge in devising an efficient provisioning strategy is twofold. On one

hand, the business must provide a service that meets the customer expectations (i.e.,

avoid under-provisioning). On the other hand, the business must try to maximize

its profit or keep the cost at a minimum for operating the cloud service (i.e., avoid

over-provisioning).

Therefore, our goal is to find an efficient provisioning strategy that brings as

much profit or revenue to the business as possible. To this end, we in this chap-

ter propose a minimum-provisioning-cost (MPC) resource-provisioning strategy for

serving the incoming customer requests and compare its performance with other

resource-provisioning strategies via MC simulations.

47

Chapter 5. Efficient Resource Provisioning

5.1 The Minimum-Provisioning-Cost Strategy

In brief, the idea is to minimize provisioning costs while guaranteeing the performance

for serving customer requests. Specifically, suppose that there are M types of VMs

that can be chosen by the business to serve a customer request w = {w1, ..., wn}.

The jth type VM has kj vCPUs and its usage price is denoted as pricej. The

MPC strategy needs to determine the appropriate set of VMs, denoted by s =

{s1, . . . , sj, . . . , sM}, to be scheduled to serve the request w. Here, sj represents the

number of jth type VM in s for j = 1, . . . ,M . We model the provisioning cost for

serving the request w as the product of the price paid for using the set of VMs s

and the mean of the response time of the request w. Mathematically, we define the

provisioning cost as

C(s) = ET (w)
M∑
j=1

pricej. (5.1)

The set of VMs determined by the MPC strategy is the set s that minimizes C(s)

subject to the following three constraints:

(a)
∑M

i=1 kjsj ≥ n, namely the total number of vCPUs of the VMs in s should be

greater than or equal to the number of applications in the request w.

(b)
∑M

i=1 kjsj ≤ n + maxj=1,...,M(kj). In light of the optimality proof of the max-

min-cloud algorithm given in Chapter 4.2, it is clear that the redundant and idle

VMs/vCPUs that do not run any workload do not enhance the service performance

of the customer request.

(c) PT (w; tD) ≥ α. Given the desired response time tD, the probability of completing

the request w before tD should be greater than or equal to a confidence factor α.

Here PT (w; tD) is computed by utilizing the max-min-cloud algorithm.

To solve this optimization problem required by the MPC strategy, we have to

48

Chapter 5. Efficient Resource Provisioning

exhaustively check all the combinations of possible values of n1, n2, ..., nM that satisfy

the three constraints. The solution is one of the elements in the search space that

leads to the minimum C(s). However, it is important to note that constraints (a) and

(b) together reduce the size of the search space. Hence, the computational complexity

for finding the solution is much lower than a typical combinatorial optimization

problem.

Next, we investigate the efficacy of the MPC strategy under two practical sce-

narios when the arrival of customer requests is unpredictable and predictable. For

the unpredictable case, we assume that on-demand VMs are utilized to serve the

customer requests and that the virtual cloud-service infrastructure is elastic. For

the predictable case, on the other hand, reserved VMs are utilized and the virtual

cloud-service infrastructure is fixed.

5.2 Elastic Virtual Cloud-Service Infrastructure

with On-Demand VMs

Consider a scenario where the arrival of customer requests is highly dynamic and

unpredictable. In this case, on-demand VMs are typically used by the business for

serving these customer requests. The business can take full advantage of the elasticity

of the cloud, i.e., the VMs in the virtual infrastructure can be unilaterally expanded

and reduced depending upon the demand [1, 7]. When a request is completed, the

on-demand VMs will then be shut down and removed from the virtual infrastructure.

The cost for operating the cloud service on an elastic virtual infrastructure is pay-

per-use, i.e., the longer a VM is used the more the business pays.

Next, we present a experimental study to illustrate the efficacy of the MPC

strategy. Assume that four types of VMs, including c4.xlarge, c3.large, c1.medium

49

Chapter 5. Efficient Resource Provisioning

and m1.medium, can be chosen to serve the customer requests. The costs for utilizing

these four VMs are listed in Table 1. For one realization of the experiment, we assume

that 100 customers submit their requests. Here, each request is randomly chosen from

8 different patterns of a request with 450 tasks in total (as listed in Table 5.1).

Table 5.1: Eight patterns of a request with 450 tasks in total

pattern # workloads in the request

1 [80, 70, 60, 50, 40, 40, 35, 30, 25, 20]

2 [80, 80, 45, 45, 45, 45, 45, 45, 10, 10]

3 [90, 90, 50, 50, 50, 50, 50, 10, 10]

4 [90, 80, 70, 60, 50, 40, 30, 20, 10]

5 [90, 80, 70, 65, 55, 40, 30, 20]

6 [90, 90, 60, 60, 55, 55, 20, 20]

7 [90, 80, 70, 60, 60, 50, 40]

8 [90, 85, 65, 65, 65, 50, 30]

In this particular scenario, the metric to be used for evaluating the efficacy of

a resource-provisioning strategy is the average profit for serving a certain number

of customers. We further assume that the business can earn full revenue from a

customer if his/her request is completed within the desired response time, and partial

(or even zero) revenue is generated if the completion time is larger than the desired

response time. Specifically in our experiment, the revenue for serving a customer

request (same for the eight patterns) is modeled as

rev(w) =

r if Tw ≤ tD

r/2 if tD < Tw ≤ 2tD,

0 if Tw > 2tD

(5.2)

where r is the rated revenue when a request can be completed within the desired

response time tD. Hence the profit for serving a customer is then

profit(w) = rev(w)− C(s)Tw. (5.3)

50

Chapter 5. Efficient Resource Provisioning

For comparison, we apply two other commonly-used and straightforward resource-

provisioning strategies as benchmarks. One is the greedy-provisioning (GP) strategy,

where the minimum number of VMs with the highest ECU that have at least n

vCPUs will be scheduled to serve the request. The other is the random-provisioning

(RP) strategy, where VMs that have at least n vCPUs will be randomly chosen and

scheduled to serve the request.

40 50 60 70 80 90 100
10

15

20

25

30

35

40

45

50

desired response time, s

p
ro

fi
t,

 d
o

l
l
a

r
s

GP

RP

MPC

Figure 5.1: The average profit for serving 10,000 customer requests as a function of the

desired response time

The average profit for serving 10,000 customers as a function of the desired re-

sponse time are shown in Fig. 5.1, where the rated revenue r = 0.01 (namely 1

cent). The three curves represent the results obtained by utilizing the GP strat-

egy, the RP algorithm and the MPC strategy, respectively. Each point in the three

curves is averaged by 1,000 realizations. As expected, the average profit increases

as tD becomes larger. It is clear that the MPC strategy outperforms the other two

strategies in terms of generating more profit for the business under any tD. It is also

interesting to find that the GP strategy outperforms the RP strategy when tD < 75

51

Chapter 5. Efficient Resource Provisioning

but falls behind when tD > 75. The reason here is that the RP strategy is not able

to guarantee the service performance. As a result, a substantial proportion of the

requests may be completed beyond tD when the desired response time is relatively

short, and this leads to a large loss in revenue. Meanwhile, when the desired response

time is relatively long, the main factor to determine the revenue is the provisioning

cost. Hence the performance of the GP strategy becomes worse as tD increases.

In summary, the MPC strategy overcomes the inherent shortcomings of the other

two resource-provisioning strategies and emerges the best performance in terms of

generating the most profit.

Figure 5.2: Flowchart for efficiently serving dynamically arriving customer requests when

the virtual cloud-service infrastructure is elastic by utilizing on-demand VMs

The results shown in Fig. 5.1 are highly helpful for businesses negotiating with

their customers on some critical attributes of the SLAs, e.g., such as the charge plan

and the desired response time for serving the requests. For convenience, in Fig. 5.2

we show a flowchart for efficiently serving dynamically arriving customer requests in

an elastic virtual cloud-service infrastructure with on-demand VMs.

52

Chapter 5. Efficient Resource Provisioning

5.3 Fixed Virtual Cloud-Service Infrastructure

with Reserved VMs

Next, we consider another practical scenario when all the VMs in the virtual cloud-

service infrastructure are reserved, and no on-demand VMs will be added to the

virtual infrastructure. Such cloud service is typically used when the response time

is not the first concern by the customers, and the arrival of the customers follows

a certain pattern. The advantages of utilizing reserved VMs compared to the on-

demand VMs include less cost (e.g., a significant discount up to 75% in Amazon

EC2 [19]) for obtaining the same amount of computing power per unit time and the

ease of maintenance and management of the VMs (in the virtual infrastructure).

In this case, the virtual cloud-service infrastructure and the cost for operating

such cloud service is fixed. When a customer submits his/her request, the business

can only utilize the available VMs in the fixed virtual infrastructure to serve the

request. The business also has the right to reject a customer’s request [11] if there

is insufficient number of available VMs. We also assume that the business can earn

full revenue from a customer as long as his/her request is accepted.

Note that the MPC strategy proposed in Chapter 5.1 needs to be slightly modified

by adding one more constraint in order to suit the fixed virtual infrastructure:

(d) sj ≤ Nj, j = 1, ...,M , that is, the number of VMs in s is limited by the num-

ber of available VMs, denoted by Nj for j = 1, ...,M , in the virtual cloud-service

infrastructure.

Note that there may be no solution to this optimization problem, which implies

that the there is insufficient number of available VMs to serve the request. Such

request will be rejected. Clearly in this scenario an efficient resource-provisioning

strategy aims to serve as many customers as possible. Hence, we use the rejection

53

Chapter 5. Efficient Resource Provisioning

rate of customers to be served as a metric to evaluate the performance of a resource-

provisioning strategy. Next, we present a experimental study to illustrate the efficacy

of the MPC strategy in the case only the reserved VMs are utilized to serve the

dynamically arriving customers.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ith request

re
je

ct
io

n
 r

at
e

GP

RP

MPC

Figure 5.3: The rejection rate for serving 100 customers as a function of the index of the

customers

Suppose that the fixed virtual cloud-service infrastructure consisted of 50 reserved

VMs, comprising 5 c4.xlarge VMs, 10 c3.large VMs, 15 c1.medium VMs and 20

m1.medium VMs. Customers submit their requests sequentially following a Poisson

process with arrival rate λc. The rejection rate of the ith customer (averaged over

10,000 realizations) is shown in Fig. 5.3 for λc = 0.4. The three curves represent the

results obtained by utilizing the GP strategy, the RP strategy and the MPC strategy,

respectively. It can be observed that the rejection rate starts increasing after the

service of about 10 requests and then becomes stable after serving 30 requests. The

MPC strategy leads to the minimum steady-state rejection rate compared to the

other two strategies.

54

Chapter 5. Efficient Resource Provisioning

In Fig. 5.4, we further show the steady-state rejection rate for customer requests

as a function of the arrival rate, λc. It is noted that the MPC strategy again out-

performs the other two strategies in terms of reducing the steady-state rejection rate

for any λc. The GP strategy has the worst performance in this scenario. The dif-

ference in the performance of the three strategies is subtle only when λc < 0.05 and

λc > 4. This is simply because that either none or all of the customer requests will

be rejected if the average time between the arrivals of two requests (namely 1/λc) is

relatively too long or too short compared to the average response time of a request,

respectively.

As seen in Fig. 5.4, the GP strategy in general yields the worst performance by

having the largest steady-state rejection rate among the three strategies. It is also

noted that the MPC strategy outperforms the RP strategy about 2-5% in the sense

of reducing the steady-state rejection rate when 0.1 < λc < 0.5. The superiority of

the MPC strategy is not as prominent as in the previous scenario when the virtual

cloud-service infrastructure is elastic and on-demand VMs are utilized. However, this

approach still gives tremendous benefits for this particular scenario, since the cloud

service based upon reserved VMs is typically running for long terms, i.e., several

years. Reducing the steady-state rejection rate by 5% directly implies an increase in

the generated revenue by 5%. Overall, investigation of the steady-state rejection rate

in the cloud (as shown in Fig. 5.4) can help businesses better understand how much

VMs they need to purchase in order to maintain quality of service and satisfy their

customers, which implies keeping the rejection rate to a minimum. For convenience,

we show in Fig. 5.5 a flowchart for efficiently serving dynamically arriving customer

requests in a fixed virtual cloud-service infrastructure with reserved VMs.

55

Chapter 5. Efficient Resource Provisioning

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

request arrival rate

st
ea

d
y

−
st

at
e

re
je

ct
io

n
 r

at
e

GP

RP

MPC

(a)

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

request arrival rate

st
ea

d
y

−
st

at
e

re
je

ct
io

n
 r

at
e

GP

RP

MPC

(b)

Figure 5.4: (a) The steady-state rejection rate (smaller is better) under three resource-

provisioning strategies as a function of arrival rate of the customer requests, and (b) the

zoomed-in version of Fig. 5.4(a)

56

Chapter 5. Efficient Resource Provisioning

Figure 5.5: Flowchart for efficiently serving dynamically arriving customer requests when

the virtual cloud-service infrastructure is fixed by utilizing the reserved VMs

57

Chapter 6

Smart Virtual Machine Placement

In this chapter, we apply the proposed mult-tenant framework and the max-min-

cloud algorithm to investigate the VM placement problem in the cloud as an exten-

sion.

6.1 Problem Formulation

Consider a cloud system consisting of certain servers (namely physical machines) a

network. The servers are heterogeneous in CPU speed as well as their capacities,

including the number of CPU cores, memory size and storage size. When a customer

submits his/her request to the system, the request will be served by exactly one

virtual machine. We consider a customer’s request as an entire workload that can

be evenly divided into certain tasks. Similarly as described in Chapter 3.1, a task is

the smallest computing task in the cloud system.

Depending on the workload size of a customer’s request, i.e., the number of tasks,

we assume that the server virtualiztion software, known as hypervisor in the cloud

will create an appropriate VM (without a specific type) to serve the customer’s

58

Chapter 6. Smart Virtual Machine Placement

request and map the VM onto a physical server in the system according to a VM-

placement algorithm. The physical server must have certain amount of available

resources to host such VM depending on the workload size of the customer request

to be completed.

Due to the multi-tenancy support in cloud computing, multiple VMs could be

hosted concurrently on a single physical server. As also explained in Chapter 3.1, the

time for serving a customer’ requests to be stochastic, due to the fact that VMs may

exhibit a varying and unstable performance when multiple VMs are concurrently

running on the same physical server.

Here, we also assume that certain VM isolation mechanisms are utilized here. As

a result, the execution of customer requests are assumed to be mutually independent

with a mean proportional to the size of the workload to be served. Furthermore, the

new VMs to be hosted on a physical machine would not affect the performance of

the VMs that have already been hosted on the physical machine.

To make the VM placement problem more challenging, the performance metric of

the cloud service we considered is the mean of stochastic completion time of a group of

arbitrary customer requests, (namely the completion time of a batch of VMs) rather

than a specific customer request. We assume that these customers submit their

requests to the system all at the same time. For example, the group of customers is

from a large company, a school or a community. Due to the large granularity of VM

resources and the great amount of data transferred in migration and the suspension

of VM service, the VM migration is not allowed in this preliminary study. Our goal is

to find a suboptimal solution for smartly mapping the batch of VMs to the physical

machines in the cloud computing system to obtain a satisfactory completion time.

59

Chapter 6. Smart Virtual Machine Placement

(a)

(b)

Figure 6.1: The VM placement problem.

6.2 Service Performance Characterization

Given the service environment of the cloud system, we next develop a state-space

model to characterize the performance of the cloud service. At any time t, the state

of a cloud computing system can be described by the following information: (i)

the number of servers in the cloud; (ii) the capacities of the servers; and (iii) the

type and number of VMs hosted on each server. Suppose that there are m physical

machines in the cloud. We assign a time-varying vector, r(t) = [r1(t), . . . , rm(t)], to

represent the real-time load ratio of the servers in the cloud. The value of rj(t), for

i = 1, . . . ,m, denotes the load ratio of server j at t, where rj(t) ∈ [0, 1]. The load

60

Chapter 6. Smart Virtual Machine Placement

ratio of a server is defined as the quotient between the consumed memory by all the

VMs on the server and the memory capacity of the server. A server can only host

a certain number of VMs that is limited by its capacity. If other types of resources,

such as the number of CPU cores and storage space, are to be considered we can

easily extend the definition of the load ratio to be weighted average of the load ratios

for all the resources.

Let the vector u = [u1, ..., un] denote the requests submitted by a group of ar-

bitrary n customers, where ui is the workload size of the ith customer’s request for

i = 1, . . . , n. Given the initial state of the cloud computing system S0 = [r1, ..., rm]

before the n customers submit their requests to the cloud system, we proceed to

characterize the mean of stochastic completion time of the n customers’ requests.

We denote such average completion time by TS0(u). Clearly, TS0(u) also depends on

the VM-placement algorithm, but the explicit reference to this dependence can be

omitted from the notation for convenience.

When the n customers submit their requests, the cloud system creates n VMs and

maps the n VMs to the physical servers to process the requests. Due to the multi-

tenancy characteristic considered in the model, the n VMs are served concurrently

with their own stochastic service times and the VM that finishes last determines

the completion time. Therefore, TS0(u) is actually the mean of the maximum of the

stochastic service times of the n VMs, i.e.,

ETS0(u) = E[max{Tu1 , ..., Tun}], (6.1)

where Tui is the stochastic execution time (with rate λui) of the ith VM.

61

Chapter 6. Smart Virtual Machine Placement

6.2.1 Impact of a Server’s Load Ratio on the Processing

Rate of a VM

Due to the existence of performance interference between VMs hosted in the same

physical machine, we assume that as the consumed resource of a physical server

is approaching its capacity, i.e., as more VMs are hosted by the physical server

concurrently, the performance and efficacy of the server will encounter bottlenecks.

To model such behavior, we assume here that it takes more time for a server to

process a job when it is heavily loaded than that for the case when the server is

lightly loaded.

Specifically, suppose that the current load ratio of the jth server is rj and the

ith VM is mapped to the jth server. To capture the impact of the jth server’s load

ratio on the processing rate of the ith VM, we propose the following simple model

λij =
λsj
ui
d(rj), (6.2)

where λij is the execution rate of the ith VM is when it is mapped to the jth server.

The term λsj is the CPU speed of server j, and d(·) is a decreasing function that

reflects the reduction of the processing rate resulting from the load ratio of server j.

An example of d(·) is

d(rj) =

 1 if 0 ≤ x ≤ 0.5

0.75− arctan(40rj − 30)/6 if 0.5 < x ≤ 1
, (6.3)

which is shown in Figure 6.2.

6.3 The Max-Load-First Algorithm

In this section, we aim to devise a heuristic VM-placement algorithm that can result

in obtaining the minimum completion time of the batch of n VMs. We assume

62

Chapter 6. Smart Virtual Machine Placement

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

Load ratio of server j, r
j

d(
r j)

Figure 6.2: The decreasing function d(·) models the impact of rj on the processing rate,

λui , of the ith VM.

that the n VMs are allocated sequentially. To this end, there are two issues to be

considered for devising the VM-placement algorithm. The first issue is the decision

on which server is the best one for each incoming VM to be mapped. The second

issue is the placement order of the n VMs.

To address the first issue, each VM should be mapped to the fastest physical

server, since the VMs are no longer queued but are served concurrently in the cloud

system. To address the second issue, we consider three ordering strategies for place-

ment the VMs in terms of the workload size they serve. Specifically, the three

ordering strategies are as follows: 1) from the largest workload size to the smallest

workload size; 2) from the smallest workload size to the largest workload size; and

3) random ordering. Based on the three VM-ordering strategies described above, we

can propose three algorithms, respectively. In light of the max-min-cloud algorithm

proposed in Chapter 4.1, we intuitively believe that the first VM-ordering strategy

63

Chapter 6. Smart Virtual Machine Placement

would lead to the best performance. We will then compare the efficacy of the three

algorithms by means of MC simulations to verify our guess.

As an extension of the max-min-cloud algorithm, we elaborate the max-load-

first algorithm in Algorithm 2. The max-load-first algorithm is different and more

complicated than the max-min-cloud algorithm in three aspects. First, there is a

memory capacity limit of physical servers to be checked for mapping the VMs; while

the max-min-cloud has the limit on the number of vCPUs in VMs. Secondly, a pre-

calculation of the execution rates of the VMs after the mapping has to be obtained

in order to determine which physical machines is the best one to choose among all

the candidates. On the contrary, only a sorting of VMs based on ECU per CPU is

needed in the max-min-cloud algorithm. Thirdly, after a mapping of a new VM the

load ratio of the selected physical machine needs to be updated.

Similarly, we can also propose the min-load-first algorithm and the random-load

algorithm based on the other two VM-ordering strategies. Note that the concepts of

the three algorithms proposed above are similar to the max-min, min-min and OLB

algorithms that have been proposed in [29]. However, the three algorithms proposed

here are modified and generalized to fit the cloud environment described in Chapter

6.1. Furthermore, our proposed algorithms exhibit a totally different performance

trend compared to those reported in [29] because our model is based on multi-tenant

principle whereas the algorithms in [29] are based on queuing models.

6.4 Simulation Results

With the three VM-placement algorithms at hand, we first present MC simulation

results to compare the performance of the three algorithms. The algorithm that

leads to the smallest average-completion-time metric implies the best efficacy.

64

Chapter 6. Smart Virtual Machine Placement

Algorithm 2 The max-load-first algorithm

1: order the n VMs from the largest to the smallest based on their workload size;

2: use a vector V = [v1, ..., vn] to restore the ranked VMs;

3: for i = 1 to n do

4: choose the ith VM, vi;

5: for j = 1 to m do

6: if the jth server does not have enough memory to host vi, then

7: λij ← 0;

8: else

9: λij ← λjd(rj);

10: end if

11: end for

12: j∗i = argmax
j=1:m

[λi1, ..., λij, ..., λim];

13: allocate vi to the j∗i th server;

14: update the load ratio, rj∗i , of the j∗i th server;

15: end for

For a better comparison of the performance of the three algorithms, the cloud

system simulated in this section is similar to a private cloud, which is consisted

of small number of physical servers with limited memory capacities, rather than a

public cloud that is assumed to have unlimited resources. Specifically, without loss of

generality, the simulated cloud system is composed of three heterogeneous physical

servers. The CPU speeds of the three servers are 1, 1.2 and 1.5 GHz, respectively.

The memory capacities of the servers are 1 GB, 2 GB and 4 GB, respectively. At

t = 0, we assume that a group of 10 customers submit their requests to the system,

and the requests are consisted of 500, 450, 400, 150, 125, 100, 50, 40, 30 and 20

tasks, respectively. We also assume that each job requires 1 MB for a physical server

to host such job and ideally it takes on average 0.1 second for the server with 1GHz

CPU speed to process a task.

65

Chapter 6. Smart Virtual Machine Placement

In Figure 6.3(a), the sample mean of stochastic completion time of the 10 cus-

tomers’ requests is compared among the three algorithms. In this scenario, all the

servers have the same initial load ratio of 15%. The sample mean curves may exhibit

unpredictable fluctuations especially for the first dozens of realizations because the

stochastic service times of VMs are assumed to be exponentially distributed and

they could be highly different in each realization. However, the sample mean curves

become stable asymptotically after 500 realizations of the experiment. Clearly, the

max-load-first algorithm has the best performance among the three algorithms, while

the min-load-first algorithm results in the largest mean of stochastic completion time.

Similar results have also been shown in Figure 6.3(b) and (c), where the initial load

ratios of all the servers are 25% and 50%. This is because that the mean of stochas-

tic service time of the largest customer’s request (500 jobs) has the most impact on

the mean of stochastic completion time of all the customers’ requests. According to

our modeling of the impact of a server’s load ratio on the processing rate of a VM

proposed in Chapter 6.2.1, given the same initial system state the mean of stochas-

tic service time of the largest customer’s request when applying the max-load-first

algorithm will be smaller than that for the scenario when applying the min-load-first

or the random-load algorithms. As such, the max-load-first algorithm will result in

the minimum average-completion-time metric among the three algorithms.

After finding out the supremacy of the max-load-first algorithm, we further study

how the initial load ratio of all the servers affects the performance of the max-load-

first algorithm. Figure 6.4 shows the mean of stochastic completion time of the 10

customers’ requests as a function of initial load ratio of the servers. Each point

on the curve is a average over 2000 realizations. It is clear that as the load ratio

increases the performance deteriorates. It is also interesting that there appears to be

a phase transition in the slope of the curve. In particular, when the load ratio rises

beyond 28% the slope of the curve increases abruptly. This observation suggests that

it is critical to keep the load ratio under a certain threshold in order to maintain a

66

Chapter 6. Smart Virtual Machine Placement

good performance. Such threshold mainly depends on the memory capacities of the

servers and the total number of jobs of the customers in the group.

67

Chapter 6. Smart Virtual Machine Placement

0 100 200 300 400 500
50

55

60

65

70

75

Number of realizations

S
am

pl
e

m
ea

n
of

 s
to

ch
as

tic
 c

om
pl

et
io

n
tim

e,
 s

max−load−first
min−load−first
random−load

(a)

0 100 200 300 400 500
40

50

60

70

80

90

100

110

Number of realizations

S
am

pl
e

m
ea

n
of

 s
to

ch
as

tic
 c

om
pl

et
io

n
tim

e,
 s

max−load−first
min−load−first
random−load

(b)

Figure 6.3: The sample mean of stochastic completion times of the 10 customers’ requests

applying the three algorithms when the three servers are initially loaded at (a) 15% and

(b) 25%.

68

Chapter 6. Smart Virtual Machine Placement

0 100 200 300 400 500
70

80

90

100

110

120

130

140

150

Number of realizations

S
am

pl
e

m
ea

n
of

 s
to

ch
as

tic
 c

om
pl

et
io

n
tim

e,
 s

max−load−first
min−load−first
random−load

(c)

Figure 6.3: The sample mean of stochastic completion times of the 10 customers’ requests

applying the three algorithms when the three servers are initially loaded at (c) 50%.

69

Chapter 6. Smart Virtual Machine Placement

0.1 0.2 0.3 0.4 0.5
50

60

70

80

90

100

110

Load ratio of the servers

T
he

 m
ea

n
of

 s
to

ch
as

tic
 c

om
pl

et
io

n
tim

e,
 s

Figure 6.4: The mean of stochastic completion time of 10 customers’ requests as a function

of initial load ratio of the three servers applying the max-load-first algorithm.

70

Chapter 7

Conclusions

In this dissertation we have proposed a novel probabilistic multi-tenant framework to

model the service of customers in the cloud. The model considers essential features

and concerns in modern cloud services including server virtualization, multi-tenancy,

heterogeneity of VMs in the virtual infrastructure, as well as security and perfor-

mance isolation mechanisms. To this end, the percentile and mean of the stochastic

response times of customer requests have been analytically characterized. These two

quantities are widely-used metrics for evaluating the performance of cloud services

in the research community as well as cloud SLAs.

Based upon the proposed cloud-service framework, we have devised a max-min-

cloud algorithm for allocating the workloads in an arriving request to VMs. We

have rigorously proved the optimality of the max-min-cloud algorithm and further

conducted extensive MC simulations to demonstrate its optimality under various

scenarios.

In light of the max-min-cloud algorithm, we also devised an efficient resource-

provisioning strategy, termed the MPC strategy, for determining the appropriate

amount of computing resources in the cloud required to serve dynamically arriving

71

Chapter 7. Conclusions

customer requests. Our practical case study shows that utilizing the MPC strategy

can yield a 10 - 40% increase in profit to businesses compared to other resource-

provisioning strategies when the cloud service is based upon on-demand VMs. On

the other hand, when the cloud service is based upon reserved VMs with fixed cost,

we have found that the MPC strategy outperforms the other strategies by accepting

2 - 20% more requests when customers are submitting their requests with a normal

pace.

As a byproduct of the max-min-cloud algorithm, we proposed a VM-placement

algorithm, termed the max-load-first algorithm, to improve the performance of the

cloud system. The supremacy of the max-load-first algorithm has been shown by

means of MC simulations in comparison to other two algorithms. We have also found

the presence of critical threshold of servers’ load ratios beyond which the average-

completion-time metric increases abruptly. The findings in our preliminary investi-

gation on the VM placement problem could be of great benefit to cloud providers

in the sense of smartly scheduling the VMs/requests as well as efficiently managing

and updating the physical infrastructure that is used to support cloud computing,

which, in turn, optimizes the performance of their cloud services.

Finally, we would like to emphasize that the results presented in this dissertation

work are not limited to the case when cloud-service performance is dependent on

the ECU (i.e., vCPU speed) of the VMs. Namely, our framework can also be ex-

tended to scenarios when the cloud-service performance is determined and affected

by other factors, such as network bandwidth, energy consumption, memory capacity

and storage space. For example, consider the data transmission service in the cloud

where data throughput is the key performance metric. In this case, the throughput is

mainly dependent upon the network bandwidth of the VMs that are used to process

and transfer data. To improve the utilization of the network bandwidth, the network

bandwidth in a VM is typically shared by several workloads/tenants. Hence, we can

72

Chapter 7. Conclusions

replace ECU with network bandwidth in the proposed multi-tenant framework to

characterize the cloud-service performance. Here the max-min-cloud algorithm is

also useful for optimizing the utilization of network bandwidth in the VMs. For the

case when energy consumption is a concern, the MPC strategy can also be extended

to include additional constraints on the energy consumption of the VMs.

73

References

[1] P. Mell and T. Grance, “The nist definition of cloud computing,” NIST Special

Publication 800-145, September 2011.

[2] K. Xiong and H. Perros, “Service performance and analysis in cloud computing,”

in Proc. IEEE World Conf. Services, 2009, pp. 693–700.

[3] B. Yang, F. Tan, Y. Dai, and S. Guo, “Performance evaluation of cloud service

considering fault recovery,” in Proc. First Intl Conf. Cloud Computing (Cloud-

Com 09), 2009.

[4] H. Khazaei, J. Mǐsić, and V. B. Mǐsić, “Performance analysis of cloud comput-

ing centers using m/g/m/m+r queueing systems,” IEEE Trans. Parallel and

Distributed Systems, vol. 23, no. 5, pp. 936–943, 2012.

[5] B. Yang, F. Tan, and Y.-S. Dai, “Performance evaluation of cloud service con-

sidering fault recovery,” J. Supercomput., vol. 65, pp. 426–444, 2013.

[6] S. Yeo and H. Lee, “Using mathematical modeling in provisioning a hetero-

geneous cloud computing environment,” Computer, vol. 44, no. 8, pp. 55–62,

2011.

[7] T. Sridhar, “Cloud computing–a primer,” The Internet Protocol Journal, vol. 12,

no. 3, 2009.

74

References

[8] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and

research challenges,” Journal of internet services and applications, vol. 1, no. 1,

2010.

[9] I. Foster et al., “Cloud computing and grid computing 360-degree compared,”

in Proc. Grid Computing Environments Workshop GCE’08, 2008.

[10] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing performance

isolation across virtual machines in xen,” in Middleware 2006. Springer, 2006.

[11] X. H. Guo et al., “Spin: Service performance isolation infrastructure in multi-

tenancy environment,” Service-Oriented ComputingICSOC, 2008.

[12] S. Subashini and V. Kavitha, “A survey on security issues in service delivery

models of cloud computing,” Journal of network and computer applications,

vol. 34, no. 1, pp. 1–11, 2011.

[13] Y. Hu, J. Wong, G. Iszlai, and M. Litoiu, “Resource provisioning for cloud

computing,” in Proceedings of the 2009 Conference of the Center for Advanced

Studies on Collaborative Research, 2009, pp. 101–111.

[14] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource provisioning

cost in cloud computing,” Services Computing, IEEE Transactions on, vol. 5,

no. 2, pp. 164–177, 2012.

[15] A. Iosup et al., “Performance analysis of cloud computing services for many-

tasks scientific computing,” Parallel and Distributed Systems, IEEE Transac-

tions on, vol. 22, no. 6, pp. 931–945, 2011.

[16] Z. Wang, M. M. Hayat, N. Ghani, and K. B. Shaban, “A probabilistic multi-

tenant model for virtual machine allocation in cloud systems,” in the 2014 3rd

IEEE International Conference on Cloud Networking (CloudNet), 2014.

75

References

[17] ——, “Optimizing cloud-service performance: Efficient resource provisioning

via optimal workload allocation,” submitted to IEEE Trans. Parallel and Dist.

Systems.

[18] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the

clouds: towards a cloud definition,” ACM SIGCOMM Computer Communica-

tion Review, vol. 39, no. 1, pp. 50–55, 2008.

[19] Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/.

[20] Google ComputeEngine, https://cloud.google.com/compute/.

[21] Microsoft Azure, http://azure.microsoft.com/.

[22] Y. Koh et al., “An analysis of performance interference effects in virtual envi-

ronments,” in Performance Analysis of Systems and Software, 2007. ISPASS

2007. IEEE International Symposium on, 2007.

[23] X. Pu et al., “Understanding performance interference of i/o workload in vir-

tualized cloud environments,” in Cloud Computing (CLOUD), 2010 IEEE 3rd

International Conference on, 2010.

[24] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: managing performance

interference effects for qos-aware clouds,” in Proceedings of the 5th European

conference on Computer systems. ACM, 2010, pp. 237–250.

[25] K. Xiong and H. Perros, “Sla-based resource allocation in cluster computing

systems,” in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE In-

ternational Symposium on. IEEE, 2008, pp. 1–12.

[26] I. Foster and C. Kesselman, The Grid 2: Blueprint for a new computing infras-

tructure. Elsevier, 2003.

76

References

[27] A. L. Rosenberg and R. C. Chiang, “Toward understanding heterogeneity in

computing,” in Parallel & Distributed Processing (IPDPS), 2010 IEEE Inter-

national Symposium on. IEEE, 2010, pp. 1–10.

[28] M. Rahman, X. Li, and H. Palit, “Hybrid heuristic for scheduling data analytics

workflow applications in hybrid cloud environment,” in Parallel and Distributed

Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International

Symposium on. IEEE, 2011, pp. 966–974.

[29] T. Braun et al., “A comparison of eleven static heuristics for mapping a class of

independent tasks onto heterogeneous distributed computing systems,” Journal

of Parallel and Distributed Computing, vol. 61, no. 6, pp. 810–837, 2001.

[30] M.-Y. Wu, W. Shu, and H. Zhang, “Segmented min-min: A static mapping

algorithm for meta-tasks on heterogeneous computing systems,” in Proceedings

9th Heterogeneous Computing Workshop (HCW 2000). IEEE, 2000, p. 375.

[31] G. Ritchie and J. Levine, “A fast, effective local search for scheduling indepen-

dent jobs in heterogeneous computing environments,” Technical report, Centre

for Intelligent Systems and their Applications, School of Informatics, University

of Edinburgh, 2003.

[32] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load balancing

and scheduling in cloud computing clusters,” in Proc. IEEE INFOCOM, 2012,

pp. 702–710.

[33] M. Cardosa, M. R. Korupolu, and A. Singh, “Shares and utilities based power

consolidation in virtualized server environments,” in Integrated Network Man-

agement, 2009. IM’09. IFIP/IEEE International Symposium on. IEEE, 2009,

pp. 327–334.

77

References

[34] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall, “Entropy:

a consolidation manager for clusters,” in Proceedings of the 2009 ACM SIG-

PLAN/SIGOPS international conference on Virtual execution environments.

ACM, 2009, pp. 41–50.

[35] J. Hu, J. Gu, G. Sun, and T. Zhao, “A scheduling strategy on load balancing

of virtual machine resources in cloud computing environment,” in Third In-

ternational Symposium on Parallel Architectures, Algorithms and Programming

(PAAP), 2010.

[36] H. Liu, S. Liu, X. Meng, C. Yang, and Y. Zhang, “Load balancing strategy for

virtual storage,” in IEEE International Conference on Service Sciences (ICSS),

2010.

[37] A. Bhadani and S. Chaudhary, “Performance evaluation of web servers using

central load balancing policy over virtual machines on cloud,” in Proceedings of

the Third Annual ACM Bangalore Conference (COMPUTE), 2010.

[38] J. Xu and J. A. Fortes, “Multi-objective virtual machine placement in virtu-

alized data center environments,” in Green Computing and Communications

(GreenCom), 2010 IEEE/ACM Int’l Conference on & Int’l Conference on Cy-

ber, Physical and Social Computing (CPSCom). IEEE, 2010, pp. 179–188.

[39] N. J. Kansal and I. Chana, “Cloud load balancing techniques: A step towards

green computing,” International Journal of Computer Science Issues, vol. 9,

no. 1, pp. 238–246, 2012.

[40] K. A. Nuaimi, N. Mohamed, M. A. Nuaimi, and J. Al-Jaroodi, “A survey of load

balancing in cloud computing: Challenges and algorithms,” in Network Cloud

Computing and Applications (NCCA), 2012 Second Symposium on, 2012.

78

References

[41] G. Juve and E. Deelman, “Resource provisioning options for large-scale sci-

entific workflows,” in eScience, 2008. eScience’08. IEEE Fourth International

Conference on. IEEE, 2008, pp. 608–613.

[42] J. Yang, J. Qiu, and Y. Li, “A profile-based approach to just-in-time scalability

for cloud applications,” in Cloud Computing, 2009. CLOUD’09. IEEE Interna-

tional Conference on. IEEE, 2009, pp. 9–16.

[43] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimal virtual machine placement across

multiple cloud providers,” in Services Computing Conference, 2009. APSCC

2009. IEEE Asia-Pacific. IEEE, 2009, pp. 103–110.

[44] M. Mao and M. Humphrey, “Scaling and scheduling to maximize application

performance within budget constraints in cloud workflows,” in Parallel & Dis-

tributed Processing (IPDPS), 2013 IEEE 27th International Symposium on.

IEEE, 2013, pp. 67–78.

[45] Q. Li and Y. Guo, “Optimization of resource scheduling in cloud computing,”

in 12th International Symposium on Symbolic and Numeric Algorithms for Sci-

entific Computing. IEEE, 2010, pp. 315–320.

[46] G. Feng, S. Garg, R. Buyya, and W. Li, “Revenue maximization using adaptive

resource provisioning in cloud computing environments,” in Proceedings of the

2012 ACM/IEEE 13th International Conference on Grid Computing. IEEE

Computer Society, 2012, pp. 192–200.

[47] L. Zhao, S. Sakr, and A. Liu, “A framework for consumer-centric sla manage-

ment of cloud-hosted databases,” Services computing, IEEE Transactions on,

vol. 8, no. 4, pp. 534–549, 2015.

[48] R.-H. Hwang, C.-N. Lee, Y.-R. Chen, and D.-J. Zhang-Jian, “Cost optimiza-

79

References

tion of elasticity cloud resource subscription policy,” Services Computing, IEEE

Transactions on, vol. 7, no. 4, pp. 561–574, 2014.

[49] Y. Ran, J. Yang, S. Zhang, and H. Xi, “Dynamic iaas computing resource provi-

sioning strategy with qos constraint,” Services Computing, IEEE Transactions

on.

[50] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud comput-

ing systems,” in INC, IMS and IDC, 2009. NCM’09. Fifth International Joint

Conference on, 2009, pp. 44–51.

[51] M. Armbrust et al., “A view of cloud computing,” Communications of the ACM,

vol. 53, no. 4, pp. 50–58, 2010.

[52] L. Wu, S. K. Garg, and R. Buyya, “Sla-based resource allocation for software as a

service provider (saas) in cloud computing environments,” in Cluster, Cloud and

Grid Computing (CCGrid), 2011 11th IEEE/ACM International Symposium on.

IEEE, 2011, pp. 195–204.

[53] R. Buyya et al., “Cloud computing and emerging it platforms: Vision, hype, and

reality for delivering computing as the 5th utility,” Future Generation computer

systems, vol. 25, no. 6, pp. 599–616, 2009.

[54] P. Patel, A. H. Ranabahu, and A. P. Sheth, “Service level agreement in cloud

computing,” in Cloud Workshops at OOPSLA09, Orlando, Florida, USA, 2009.

[55] I. Foster, “Designing and building parallel programs,” 1995.

[56] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource provi-

sioning for read intensive multi-tier applications in the cloud,” Future Genera-

tion Computer Systems, vol. 27, no. 6, pp. 871–879, 2011.

80

References

[57] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of virtual ma-

chine live migration in clouds: A performance evaluation,” in Cloud Computing.

Springer, 2009, pp. 254–265.

[58] K. Boloor, R. Chirkova, Y. Viniotis, and T. Salo, “Dynamic request allocation

and scheduling for context aware applications subject to a percentile response

time sla in a distributed cloud,” in Cloud Computing Technology and Science

(CloudCom), 2010 IEEE Second International Conference on. IEEE, 2010, pp.

464–472.

[59] W. Iqbal, M. Dailey, and D. Carrera, “Sla-driven adaptive resource management

for web applications on a heterogeneous compute cloud,” in Cloud Computing.

Springer, 2009, pp. 243–253.

[60] H. N. Van, F. D. Tran, and J.-M. Menaud, “Sla-aware virtual resource man-

agement for cloud infrastructures,” in Computer and Information Technology,

2009. CIT’09. Ninth IEEE International Conference on, vol. 1. IEEE, 2009,

pp. 357–362.

[61] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning of cloud re-

sources for real-time services,” in Proceedings of the 7th International Workshop

on Middleware for Grids, Clouds and e-Science. ACM, 2009.

81

	University of New Mexico
	UNM Digital Repository
	5-1-2016

	Optimizing Cloud-Service Performance: Efficient Resource Provisioning Via Optimal Workload Allocation
	Zhuoyao Wang
	Recommended Citation

	diss_approval

