6 research outputs found

    High-order Discretization of a Gyrokinetic Vlasov Model in Edge Plasma Geometry

    Full text link
    We present a high-order spatial discretization of a continuum gyrokinetic Vlasov model in axisymmetric tokamak edge plasma geometries. Such models describe the phase space advection of plasma species distribution functions in the absence of collisions. The gyrokinetic model is posed in a four-dimensional phase space, upon which a grid is imposed when discretized. To mitigate the computational cost associated with high-dimensional grids, we employ a high-order discretization to reduce the grid size needed to achieve a given level of accuracy relative to lower-order methods. Strong anisotropy induced by the magnetic field motivates the use of mapped coordinate grids aligned with magnetic flux surfaces. The natural partitioning of the edge geometry by the separatrix between the closed and open field line regions leads to the consideration of multiple mapped blocks, in what is known as a mapped multiblock (MMB) approach. We describe the specialization of a more general formalism that we have developed for the construction of high-order, finite-volume discretizations on MMB grids, yielding the accurate evaluation of the gyrokinetic Vlasov operator, the metric factors resulting from the MMB coordinate mappings, and the interaction of blocks at adjacent boundaries. Our conservative formulation of the gyrokinetic Vlasov model incorporates the fact that the phase space velocity has zero divergence, which must be preserved discretely to avoid truncation error accumulation. We describe an approach for the discrete evaluation of the gyrokinetic phase space velocity that preserves the divergence-free property to machine precision

    Numerical evaluation of line, surface and toroidal integrals on level sets of toroidally symmetric functions

    Get PDF
    We investigate strategies to numerically integrate closed lines and surfaces that are implicitly defined by level sets (iso-contours) of continuously differentiable toroidally symmetric functions. The “grid-transform” approach transforms quantities given in non-surface-aligned coordinates onto a numerically constructed surface-aligned grid. Here, line and surface integrals, as well as so-called flux-surface averages, can be easily evaluated using high order integration formulas. We compare this method to ones that base on numerical representations of the delta-function. For the grid-transform method we observe high order convergence of line, surface and volume integration. Quantitatively, the errors for line and area integration are several orders of magnitude smaller than previously reported errors for delta-function methods. Furthermore, a delta-function method based on a Gaussian representation shows qualitatively wrong results of surface integrals near O- and X-points. Contrarily, the grid transform method suffers no deterioration near O-points. However, close to X-points we observe reduced first order convergence in volume integral and derivative tests due to the diverging volume element. Our methods can be applied to toroidal and flux-surface averages in simulations of three-dimensional plasma dynamics on non-aligned grids. Further applications include closed line and surface integrals in level set methods. Efficient implementations can be found in the freely available Feltor library
    corecore