5 research outputs found

    A Modular Platform for Adaptive Heterogeneous Many-Core Architectures

    Get PDF
    Multi-/many-core heterogeneous architectures are shaping current and upcoming generations of compute-centric platforms which are widely used starting from mobile and wearable devices to high-performance cloud computing servers. Heterogeneous many-core architectures sought to achieve an order of magnitude higher energy efficiency as well as computing performance scaling by replacing homogeneous and power-hungry general-purpose processors with multiple heterogeneous compute units supporting multiple core types and domain-specific accelerators. Drifting from homogeneous architectures to complex heterogeneous systems is heavily adopted by chip designers and the silicon industry for more than a decade. Recent silicon chips are based on a heterogeneous SoC which combines a scalable number of heterogeneous processing units from different types (e.g. CPU, GPU, custom accelerator). This shifting in computing paradigm is associated with several system-level design challenges related to the integration and communication between a highly scalable number of heterogeneous compute units as well as SoC peripherals and storage units. Moreover, the increasing design complexities make the production of heterogeneous SoC chips a monopoly for only big market players due to the increasing development and design costs. Accordingly, recent initiatives towards agile hardware development open-source tools and microarchitecture aim to democratize silicon chip production for academic and commercial usage. Agile hardware development aims to reduce development costs by providing an ecosystem for open-source hardware microarchitectures and hardware design processes. Therefore, heterogeneous many-core development and customization will be relatively less complex and less time-consuming than conventional design process methods. In order to provide a modular and agile many-core development approach, this dissertation proposes a development platform for heterogeneous and self-adaptive many-core architectures consisting of a scalable number of heterogeneous tiles that maintain design regularity features while supporting heterogeneity. The proposed platform hides the integration complexities by supporting modular tile architectures for general-purpose processing cores supporting multi-instruction set architectures (multi-ISAs) and custom hardware accelerators. By leveraging field-programmable-gate-arrays (FPGAs), the self-adaptive feature of the many-core platform can be achieved by using dynamic and partial reconfiguration (DPR) techniques. This dissertation realizes the proposed modular and adaptive heterogeneous many-core platform through three main contributions. The first contribution proposes and realizes a many-core architecture for heterogeneous ISAs. It provides a modular and reusable tilebased architecture for several heterogeneous ISAs based on open-source RISC-V ISA. The modular tile-based architecture features a configurable number of processing cores with different RISC-V ISAs and different memory hierarchies. To increase the level of heterogeneity to support the integration of custom hardware accelerators, a novel hybrid memory/accelerator tile architecture is developed and realized as the second contribution. The hybrid tile is a modular and reusable tile that can be configured at run-time to operate as a scratchpad shared memory between compute tiles or as an accelerator tile hosting a local hardware accelerator logic. The hybrid tile is designed and implemented to be seamlessly integrated into the proposed tile-based platform. The third contribution deals with the self-adaptation features by providing a reconfiguration management approach to internally control the DPR process through processing cores (RISC-V based). The internal reconfiguration process relies on a novel DPR controller targeting FPGA design flow for RISC-V-based SoC to change the types and functionalities of compute tiles at run-time

    Architectures for a space-based information network with shared on-orbit processing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Engineering Systems Division, 2005.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 335-343).This dissertation provides a top level assessment of technology design choices for the architecture of a space-based information network with shared on-orbit processing. Networking is an efficient method of sharing communications and lowering the cost of communications, providing better interoperability and data integration for multiple satellites. The current space communications architecture sets a critical limitation on the collection of raw data sent to the ground. By introducing powerful space-borne processing, compression of raw data can alleviate the need for expensive and expansive downlinks. Moreover, distribution of processed data directly from space sensors to the end-users may be more easily realized. A space-based information network backbone can act as the transport network for mission satellites as well as enable the concept of decoupled, shared, and perhaps distributed space-borne processing for space-based assets. Optical crosslinks are the enabling technology for creating a cost-effective network capable of supporting high data rates. In this dissertation, the space-based network backbone is designed to meet a number of mission requirements by optimizing over constellation topologies under different traffic models. With high network capacity availability, space-borne processing can be accessible by any mission satellite attached to the network. Space-borne processing capabilities can be enhanced with commercial processors that are tolerant of radiation and replenished periodically (as frequently as every two years).(cont.) Additionally, innovative ways of using a space-based information network can revolutionize satellite communications and space missions. Applications include distributed computing in space, interoperable space communications, multiplatform distributed satellite communications, coherent distributed space sensing, multisensor data fusion, and restoration of disconnected global terrestrial networks after a disaster. Lastly, the consolidation of all the different communications assets into a horizontally integrated space-based network infrastructure calls for a space-based network backbone to be designed with a generic nature. A coherent infrastructure can satisfy the goals of interoperability, flexibility, scalability, and allows the system to be evolutionary. This transformational vision of a generic space-based information network allows for growth to accommodate civilian demands, lowers the price of entry for the commercial sector, and makes way for innovation to enhance and provide additional value to military systems.by Serena Chan.Ph.D

    The Telecommunications and Data Acquisition Report

    Get PDF
    This quarterly publication (July-Sept. 1986) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the search for extraterrestrial intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA)

    NASA Tech Briefs, June 1991

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Spacelab Science Results Study

    Get PDF
    Beginning with OSTA-1 in November 1981 and ending with Neurolab in March 1998, a total of 36 Shuttle missions carried various Spacelab components such as the Spacelab module, pallet, instrument pointing system, or mission peculiar experiment support structure. The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the U.S., Europe, and Japan. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and if appropriate, where the knowledge they produced has been applied
    corecore