1,728 research outputs found

    An Evaluation of Physical Disk I/Os for Complex Object Processing

    Get PDF
    In order to obtain the performance required for nonstandard database environments, a hierarchical complex object model with object references is used as a storage structure for complex objects. Several storage models for these complex objects, as well as a benchmark to evaluate their performance, are described. A cost model for analytical performance evaluation is developed, and the analytical results are validated by means of measurements on the DASDBS, complex object storage system. The results show which storage structures for complex objects are the most efficient under which circumstance

    Selective, accurate, and timely self-invalidation using last-touch prediction

    Get PDF
    Communication in cache-coherent distributed shared memory (DSM) often requires invalidating (or writing back) cached copies of a memory block, incurring high overheads. This paper proposes Last-Touch Predictors (LTPs) that learn and predict the “last touch ” to a memory block by one processor before the block is accessed and subsequently invalidated by another. By predicting a last-touch and (self-)invalidating the block in advance, an LTP hides the invalidation time, significantly reducing the coherence overhead. The key behind accurate last-touch prediction is tracebased correlation, associating a last-touch with the sequence of instructions (i.e., a trace) touching the block from a coherence miss until the block is invalidated. Correlating instructions enables an LTP to identify a last-touch to a memory block uniquely throughout an application’s execution. In this paper, we use results from running shared-memory applications on a simulated DSM to evaluate LTPs. The results indicate that: (1) our base case LTP design, maintaining trace signatures on a per-block basis, substantially improves prediction accuracy over previous self-invalidation schemes to an average of 79%; (2) our alternative LTP design, maintaining a global trace signature table, reduces storage overhead but only achieves an average accuracy of 58%; (3) last-touch prediction based on a single instruction only achieves an average accuracy of 41 % due to instruction reuse within and across computation; and (4) LTP enables selective, accurate, and timely self-invalidation in DSM, speeding up program execution on average by 11%.

    A survey of checkpointing algorithms for parallel and distributed computers

    Get PDF
    Checkpoint is defined as a designated place in a program at which normal processing is interrupted specifically to preserve the status information necessary to allow resumption of processing at a later time. Checkpointing is the process of saving the status information. This paper surveys the algorithms which have been reported in the literature for checkpointing parallel/distributed systems. It has been observed that most of the algorithms published for checkpointing in message passing systems are based on the seminal article by Chandy and Lamport. A large number of articles have been published in this area by relaxing the assumptions made in this paper and by extending it to minimise the overheads of coordination and context saving. Checkpointing for shared memory systems primarily extend cache coherence protocols to maintain a consistent memory. All of them assume that the main memory is safe for storing the context. Recently algorithms have been published for distributed shared memory systems, which extend the cache coherence protocols used in shared memory systems. They however also include methods for storing the status of distributed memory in stable storage. Most of the algorithms assume that there is no knowledge about the programs being executed. It is however felt that in development of parallel programs the user has to do a fair amount of work in distributing tasks and this information can be effectively used to simplify checkpointing and rollback recovery
    • …
    corecore