1,688 research outputs found

    From quantum fusiliers to high-performance networks

    Full text link
    Our objective was to design a quantum repeater capable of achieving one million entangled pairs per second over a distance of 1000km. We failed, but not by much. In this letter we will describe the series of developments that permitted us to approach our goal. We will describe a mechanism that permits the creation of entanglement between two qubits, connected by fibre, with probability arbitrarily close to one and in constant time. This mechanism may be extended to ensure that the entanglement has high fidelity without compromising these properties. Finally, we describe how this may be used to construct a quantum repeater that is capable of creating a linear quantum network connecting two distant qubits with high fidelity. The creation rate is shown to be a function of the maximum distance between two adjacent quantum repeaters.Comment: 2 figures, Comments welcom

    Use of high performance networks and supercomputers for real-time flight simulation

    Get PDF
    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation

    Bandwidth Scheduling in High-performance Networks (Tentative)

    Get PDF
    Formulate bandwidth scheduling problems with various objects; prove complexities of these problems; design and evaluate proposed heuristics using simulation

    Adaptive Routing Strategies for Modern High Performance Networks

    Full text link
    Today’s scalable high-performance applications heavily depend on the bandwidth characteristics of their commu-nication patterns. Contemporary multi-stage interconnec-tion networks suffer from network contention which might decrease application performance. Our experiments show that the effective bisection bandwidth of a non-blocking 512-node Clos network is as low as 38 % if the network is routed statically. In this paper, we propose and ana-lyze different adaptive routing schemes for those networks. We chose Myrinet/MX to implement our proposed routing schemes. Our best adaptive routing scheme is able to in-crease the effective bisection bandwidth to 77 % for 512 nodes and 100 % for smaller node counts. Thus, we show that our proposed adaptive routing schemes are able to im-prove network throughput significantly.

    Using high-performance networks to enable computational aerosciences applications

    Get PDF
    One component of the U.S. Federal High Performance Computing and Communications Program (HPCCP) is the establishment of a gigabit network to provide a communications infrastructure for researchers across the nation. This gigabit network will provide new services and capabilities, in addition to increased bandwidth, to enable future applications. An understanding of these applications is necessary to guide the development of the gigabit network and other high-performance networks of the future. In this paper we focus on computational aerosciences applications run remotely using the Numerical Aerodynamic Simulation (NAS) facility located at NASA Ames Research Center. We characterize these applications in terms of network-related parameters and relate user experiences that reveal limitations imposed by the current wide-area networking infrastructure. Then we investigate how the development of a nationwide gigabit network would enable users of the NAS facility to work in new, more productive ways

    An integrated transport solution to big data movement in high-performance networks

    Get PDF
    Extreme-scale e-Science applications in various domains such as earth science and high energy physics among multiple national institutions within the U.S. are generating colossal amounts of data, now frequently termed as “big data”. The big data must be stored, managed and moved to different geographical locations for distributed data processing and analysis. Such big data transfers require stable and high-speed network connections, which are not readily available in traditional shared IP networks such as the Internet. High-performance networking technologies and services featuring high bandwidth and advance reservation are being rapidly developed and deployed across the nation and around the globe to support such scientific applications. However, these networking technologies and services have not been fully utilized, mainly because: i) the use of these technologies and services often requires considerable domain knowledge and many application users are even not aware of their existence; and ii) the end-to-end data transfer performance largely depends on the transport protocol being used on the end hosts. The high-speed network path with reserved bandwidth in High-performance Networks has shifted the data transfer bottleneck from network segments in traditional IP networks to end hosts, which most existing transport protocols are not well suited to handle. In this dissertation, an integrated transport solution is proposed in support of data- and network-intensive applications in various science domains. This solution integrates three major components, i.e., i) transport-support workflow optimization, ii) transport profile generation, and iii) transport protocol design, into a unified framework. Firstly, a class of transport-support workflow optimization problems are formulated, where an appropriate set of resources and services are selected to compose the best transport-support workflow to meet user’s data transfer request in terms of various performance requirements. Secondly, a transport profiler named Transport Profile Generator (TPG) and its extended and accelerated version named FastProf are designed and implemented to characterize and enhance the end-to-end data transfer performance of a selected transport method over an established network path. Finally, several approaches based on rate and error threshold control are proposed to design a suite of data transfer protocols specifically tailored for big data transfer over dedicated connections. The proposed integrated transport solution is implemented and evaluated in: i) a local testbed with a single 10 Gb/s back-to-back connection and dual 10 Gb/s NIC-to-NIC connections; and ii) several wide-area networks with 10 Gb/s long-haul connections at collaborative sites including Oak Ridge National Laboratory, Argonne National Laboratory, and University of Chicago

    Performance Optimization of Big Data Transfer in High-performance Networks: A ReinforcementLearning Approach

    Get PDF
    Choosing optimal parameter values for big data transfer in HPN
    corecore