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ABSTRACT

AN INTEGRATED TRANSPORT SOLUTION TO BIG DATA
MOVEMENT IN HIGH-PERFORMANCE NETWORKS

by
Daqing Yun

Extreme-scale e-Science applications in various domains such as earth science and high

energy physics among multiple national institutions within the U.S. are generating

colossal amounts of data, now frequently termed as “big data”. The big data must be

stored, managed and moved to different geographical locations for distributed data

processing and analysis. Such big data transfers require stable and high-speed network

connections, which are not readily available in traditional shared IP networks such as

the Internet. High-performance networking technologies and services featuring high

bandwidth and advance reservation are being rapidly developed and deployed across

the nation and around the globe to support such scientific applications. However,

these networking technologies and services have not been fully utilized, mainly

because: i) the use of these technologies and services often requires considerable

domain knowledge and many application users are even not aware of their existence;

and ii) the end-to-end data transfer performance largely depends on the transport

protocol being used on the end hosts. The high-speed network path with reserved

bandwidth in High-performance Networks has shifted the data transfer bottleneck

from network segments in traditional IP networks to end hosts, which most existing

transport protocols are not well suited to handle.

In this dissertation, an integrated transport solution is proposed in support of

data- and network-intensive applications in various science domains. This solution

integrates three major components, i.e., i) transport-support workflow optimization,

ii) transport profile generation, and iii) transport protocol design, into a unified

framework. Firstly, a class of transport-support workflow optimization problems are



formulated, where an appropriate set of resources and services are selected to compose

the best transport-support workflow to meet user’s data transfer request in terms of

various performance requirements. Secondly, a transport profiler named Transport

Profile Generator (TPG) and its extended and accelerated version named FastProf

are designed and implemented to characterize and enhance the end-to-end data

transfer performance of a selected transport method over an established network path.

Finally, several approaches based on rate and error threshold control are proposed to

design a suite of data transfer protocols specifically tailored for big data transfer over

dedicated connections. The proposed integrated transport solution is implemented

and evaluated in: i) a local testbed with a single 10Gb/s back-to-back connection

and dual 10Gb/s NIC-to-NIC connections; and ii) several wide-area networks with

10Gb/s long-haul connections at collaborative sites including Oak Ridge National

Laboratory, Argonne National Laboratory, and University of Chicago.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Next-generation scientific applications in various domains such as earth science and

high energy physics among multiple national institutions [4] within U.S. are generating

colossal amounts of data, now frequently termed as “big data”, which must be stored,

managed and moved to different geographical locations for distributed data processing

and analysis [18,23]. The successes of these collaborative applications highly depend

on stable and high-bandwidth network connections, which, unfortunately, are not

readily available in traditional shared IP networks. For example, on the Internet,

very little guarantee can be provided on the transport performance and the resource

availability is subject to constant changes due to concurrent network traffics.

High-performance Networks (HPNs) such as ESnet [6] and Internet2 [13]

featuring dedicated connections with reserved high-bandwidth enabled by the recent

development of high-performance networking technologies offer a promising solution

to support data- and network-intensive applications. A number of high-performance

networking projects are already under way to extend such capabilities to broad science

communities. In recent years, significant progress has been made in various aspects [6]

including the deployment of 100Gb/s networks with future 1Tb/s capacity, the

increase in end-host capabilities with multiple cores and buses, the improvement in

large-capacity disk arrays, and the use of parallel file systems such as Lustre [16] and

GPFS [10]. For example, DOE ESnet and Advanced Networking Initiatives (ANI)

network infrastructures [6] have recently been upgraded to 100Gb/s to meet the

long-haul network demands for such big data transfers.
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Although having been developed and deployed at various locations, these

networking services or resources only have a very limited scope of users at present and

are far from being fully utilized. The main reason is that their use typically requires

a considerable level of knowledge for network and end host system configurations,

which most science domain experts lack. Oftentimes, scientific users are still using

old-fashioned tools (e.g., scp over a default IP path) that they are familiar with

from their empirical studies for their data transfer needs, even not being aware of the

existence of such advanced networking resources.

Moreover, even if a dedicated channel is provisioned in high-performance

networks and the advanced technologies and services are selected to use, the end-to-

end data transfer performance still largely depends on the transport protocols/methods

being used on the end hosts. Along with the emergence and proliferation of high-

performance networks, various data transfer protocols have been rapidly proposed and

developed, including TCP variants and enhancements [30,42,52,54,58,64,66,83,89,90]

and UDP-based protocols such as Tsunami [22], RBUDP [53], RAPID/RAPID+ [26,

36], PA-UDP [39], SABUL [47], and UDT [49]. Maximizing their throughput

performance over complex high-speed connections is still very challenging: i) their

optimal operational zone is affected by the configurations and dynamics of the

network, the end hosts, and the protocol itself, ii) their default parameter setting

does not always yield the best performance, iii) application users, who are domain

experts, typically do not have necessary knowledge to choose which transport protocol

to use and which parameter value to set, and iv) the data transfer bottleneck in

high-performance networks shifts from network segments as observed on the Internet

to the end hosts, which most existing transport protocols are not well suited to handle.

Consequently, application users have not seen the corresponding increase in transport

performance especially in terms of application-level goodput despite the bandwidth

upgrades in the backbones of high-performance networks.
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1.2 An Integrated Transport Solution

In view of the above challenges and limitations, we propose an integrated transport

solution to big data movement in HPNs, which integrates three major components,

i.e., i) transport-support workflow optimization, ii) transport profile generation, and

iii) transport protocol design, into a unified framework. The ultimate goal is to

provide users an integrated solution for host and network resource discovery, end-

to-end path composition and establishment, transport profile generation, and actual

data transfer to support large-scale scientific applications in various science domains.

Figure 1.1 shows the framework of the proposed transport solution. Within

this framework, the user needs to submit a request that describes the desired data

transfer services such as the start and end time, the data source and destination nodes,

a desirable or target bandwidth, and possibly a financial cost limit on the deployment

and utility expenses. Upon the receipt of such a request, our solution first invokes

Network-aware Data Movement Advisor (NADMA) [31, 32] to explore and discover

available services and resources, which are modeled as transport-support workflow

modules and maintained in a database. Based on these modules, the transport-

support workflows are constructed and optimized to compose the best end-to-end data

transfer path and select the most appropriate transport methods that perform actual

data transfer. The Transport Control System (TCS) takes the established end-to-end

path and the selected transport method as input, conducts transport profiling on

the selected transport method using Transport Profile Generator (or FastProf if

necessary) to determine the optimal zone of the control parameters that may have

effects on the data transfer performance. The actual data transfer is then conducted

using the selected transport method with the tuned parameter values. Optionally, a

notification may be sent to user after the data transfer is completed, and meanwhile,

corresponding performance measurements are stored in the database for future use.
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Figure 1.1 Framework of a workflow-based transport solution.

1.3 Main Contributions

We summarize the technical contributions of this dissertation research as follows.

• We model the network resources and services as transport-support workflow
modules and formulate a class of transport-support workflow optimization
problems for end-to-end data transfer path composition as well as transport
method selection. We prove the formulated problem to be NP-complete and
design optimal pseudo-polynomial algorithms.

• We design and implement a Transport Profile Generator (TPG) to charac-
terize and enhance the performance of existing transport protocols. TPG is
provided to end users as a command-line tool to conduct one-time profiling,
which supports both multiple parallel data streams and multiple NIC-to-NIC
connections. We further develop FastProf, a stochastic approximation-based
transport profiler, to accelerate the profiling process for big data transfer in high-
performance networks. FastProf significantly reduces the profiling overhead
while achieving a comparable level of end-to-end throughput performance with
the exhaustive search-based approach.

• We model and analyze the performance of the Tsunami UDP protocol over
dedicated channels, and then propose several approaches based on rate and
error threshold control to design a suite of data transfer protocols specifically
tailored for big data transfer in high-performance networks.
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CHAPTER 2

TRANSPORT-SUPPORT WORKFLOW OPTIMIZATION

2.1 Introduction

Big data transfer in distributed scientific applications requires high-speed network

infrastructure where data packets are transmitted across various network segments

such as edge and backbone networks from a source to a destination, as shown in

Figure 2.1. Generally, to meet a specific request, we must take multiple steps to

acquire and deploy appropriate system hardware/software, select suitable technologies

based on available resources, determine the best data transfer path, and perform the

actual data transfer, as shown in Figure 2.2. The system and network resources vary

significantly in their type, cost, performance, reliability, and security. For example,

an end host might be equipped with network interface cards (NICs) of different speed

and cost; OSCARS in ESnet [7] and ION in Internet2 [14] provide different levels of

provisioning services at different cost and admission rates.

The goal of our work is to develop an integrated solution for resource discovery

and path composition to support such big data transfer. In our transport framework,

a user only needs to submit a request that describes the data transfer requirements

End-host

Server

End-to-end

data transfer path

User

Backbone

network 1

Edge

network
Edge

network

Backbone

Network n

Figure 2.1 Network infrastructure for wide-area data transfer.
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Figure 2.2 General steps in a data transport solution.

such as the service start and end time, the data source and destination nodes, a

desirable (target) bandwidth, or possibly a financial cost limit on the deployment

and utility expenses1. Upon the receipt of such a request, our solution first invokes

NADMA [31,32] to explore available services and resources within end systems, edge

segments, and backbone networks, and then models and profiles them as transport-

support workflow modules with quantified parameters. Based on these modules, we

formulate a class of workflow optimization problems with different objectives such as

(financial or technical) cost, delay, throughput, bandwidth, reliability, and security

requirements. Note that some objectives may be in conflict with each other, which

makes the problem nontrivial.

Typically, users want their data to be transferred at a low cost (both financial

and technical), at a fast speed, and in a reliable and secure manner; in other

words, users are generally greedy, but oftentimes these requirements cannot be met

simultaneously. For example, there is an obvious tradeoff between the cost and

the speed under a normal circumstance. Furthermore, the modules selected in

different segments must match well to achieve an overall good transport performance.

In an extreme case, an old end host equipped with a low-speed NIC or CPU

1Even though most network services and resources are not free, their financial cost is quite
minimal and is often negligible, especially in shared IP networks. Some advanced services
such as OSCARS and ION are currently free to authorized users, but it is predictable that
some accounting components will be integrated into these services in the future.
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may become the bottleneck of the entire transport path and therefore limit the

achievable throughput, no matter how much bandwidth is reserved in the backbone

or edge networks. The solution to this optimization problem would select a set

of appropriate transport-support workflow modules to composite and establish an

end-to-end network path together with a suitable transport method selected to

perform the actual data transfer.

We prove the formulated transport-support workflow optimization problem to

be NP-complete and design optimal pseudo-polynomial algorithms. We evaluate the

proposed algorithms using simulations in comparison with a greedy approach, and

also conduct proof-of-concept experiments in wide-area networks to validate the cost

models and illustrate the efficacy of the proposed workflow-based transport solution.

2.2 A Brief Description of Related Projects

The importance of dedicated channels for big data transfer has been well recognized

and several network research projects funded by different agencies are developing such

bandwidth provisioning capabilities, as summarized below2.

UltraScience Net, developed at Oak Ridge National Laboratory, is a wide-area

experimental network testbed capable of provisioning dedicated channels through

layer-2 switching to support large-scale computational science applications [74].

TeraPaths [29] at Brookhaven National Laboratory (BNL) offers a service to

create end-to-end virtual paths together with guaranteed bandwidth for specific data

streams. It is a fully-distributed system, dealing with the problem of supporting

efficient, reliable, predictable petascale data movement in modern, high-speed

networks whose virtual paths prioritize, protect, and throttle network flows in

accordance with site agreements and user requests.

2More details about these projects can be obtained from [1,3, 5, 9, 11,12,15,24,62,74,84].
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Circuit-switched High-speed End-to-End Transport ArcHitecture (CHEETAH)

is an add-on service to the primary Internet connectivity service by providing

end hosts with high-speed, end-to-end circuit connectivity based on a call-by-call

sharing [93]. The “circuit” includes Ethernet segments at the ends, which are mapped

into Ethernet-over-SONET long-distance circuits.

On-Demand Secure Circuits and Advance Reservation System (OSCARS) [7,

51] is a prototype service enabling advance reservation of secure virtual circuit with

guaranteed bandwidth within ESnet [6]. The management and operation of virtual

circuits within the network are implemented at layer 3 using Multi-Protocol Label

Switching (MPLS) [25] and Resources Reservation Protocol (RSVP) to create virtual

circuits or Label Switched Paths (LSPs).

Interoperable On-demand Network (ION) provisions dedicated circuits across

the Internet2 and other networks [13, 14]. It uses community-developed technologies

and protocols to provide on-demand, dedicated paths between end hosts.

B4 [55] is a private WAN that connects Google’s data centers around the

globe for big data transfer. It adopts a software-defined networking architecture for

the data center interconnect, and uses OpenFlow [31, 67] to manage switches and

realize centralized traffic control.

2.3 Resource Discovery

We use Network-Aware Data Movement Advisor (NADMA) [31, 32] to explore and

discover available services and resources, which are modeled as transport-support

workflow modules and maintained in a database. NADMA is a client-end program

that interacts with existing data and storage management systems, discovers network

and system resources, and advises application users of efficient strategies for successful

and high-speed data transfer. Based on discovered resources, NADMA composes a
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Figure 2.3 Graphical user interface of NADMA [31].

series of feasible route options with performance estimations and provides detailed

steps for users to authorize and execute data transfer.

NADMA provides a Graphic User Interface (GUI) for users to submit data

transfer requests based on various transport methods such as SRM, GSIFTP, HTTP,

HTTPS, BBFTP, SCP, and SFTP. The interface also displays the detailed information

of discovered end hosts and network segments as well as the resultant guidelines

for data movement. As shown in Figure 2.3, the user specifies the source and

destination nodes, between which the data transfer should be performed. This is

the minimal information NADMA requires to perform its initial network and storage

resource discovery process. Except the source and destination hosts, others such

as authentication and protocol-specific information are not required and additional

information about the characteristics of the data to be transferred may be optionally

provided by the end user. Within NADMA, a user-desired data transfer service is
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determined by specifying the following: i) the size of data that needs to be transferred;

ii) the maximum desired duration of the transfer; iii) the (expected) earliest start time

of the transfer; and iv) the (expected) latest time of the data transfer must complete.

When searching for possible data movement strategies, NADMA takes these

parameters into consideration and provides the user with prioritized well-structured

data movement options. NADMA probes the availability of popular protocols at

predefined ports. In the current version, the path composition is done manually,

and the user has to select the best possible route among all feasible route options.

As domain experts, science users may not have sufficient knowledge in networking or

system domains to understand the performance or capability of each workflow module

to make an informative choice. Our work is to automate this path composition process

by modeling workflow modules with quantified parameters and presenting to the user

the appropriate transport path based on the given performance requirements.

2.4 A Simple Example of Transport-Support Workflow

This transport solution involves three tasks in this part: i) workflow module modeling,

ii) transport-support workflow construction, and iii) performance optimization. Note

that the workflow in this context is essentially a step-by-step guide for users to

compose an end-to-end network path for data transfer. Since different network

segments (different steps of the procedure) use different services with different costs

and performance metrics, we must create appropriate cost models that reflect the

characteristics of such resources and services. In order to create a transport-support

workflow, we divide the entire data transfer process into K zones, and categorize

those workflow modules (resources modules and services modules) into one of them,

as shown in Figure 2.4. Each module represents a certain type of task that needs to
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Figure 2.4 Zone-based transport-support workflow structure.

be performed to meet the user’s data transfer request, and there might exist execution

dependency between some of these modules.

HTTP UDT

End Host 

(sender)

FTP TSP

TCP UDP

IPv4 IPv6

TCP UDP

HTTP UDT

End Host 

(receiver)

FTP TSP

Network

Figure 2.5 A simple example of transport-support workflow.

We shall use an extremely simplified transport-support workflow example to

illustrate our approach. Let us consider a user request for reliable and TCP-friendly

data transfer from source host “sender” to destination host “receiver”, both of

which are connected to the Internet. Given the protocols detected on the hosts and

the resources available in the network, we could categorize them into K = 3 zones, as

shown in Figure 2.5. In this simple case, one can easily construct a transport-support

workflow, i.e., HTTP → TCP → IPv4 → TCP → HTTP, which is the default IP
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path on the Internet, and the selected TCP protocol ensures the fairness in resource

sharing with concurrent traffic. However, since there may exist multiple services

of various types in high-performance network environments, it is challenging to

select appropriate modules to compose a satisfactory workflow, especially when some

conflictive performance requirements are specified simultaneously in the user request.

In fact, in most high-performance networks, data packets are not carried by a single

TCP stream over the default IP path, but oftentimes by multiple concurrent TCP or

UDP streams over dedicated channels established by certain bandwidth provisioning

services, which introduce inter-stream competition that may lead to complex transfer

dynamics even over dedicated connections.

2.5 Cost Models

In this section, we model various services and resources in different segments of the

network and end host as transport-support workflow modules.

2.5.1 End Host Modules

Figure 2.6 shows a general structure of end host modules, which are divided into 3

zones, namely, system resources, transport methods, and user applications.
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…

System 

Resources

VM

NIC CPU RAM BUS …

Climate 
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Figure 2.6 General structure of end host modules.
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The modules in the system resource zone include both hardware such as

CPU, network interface card (NIC), and random access memory (RAM), and system

software such as operating systems. The modules in the transport modules zone

include application-layer transport protocols, kernel-level transport protocols, and

other network services and resources. We model the application-layer protocol HTTP

as a module that runs over the kernel-level transport protocol TCP, which is also

modeled as a module in transport modules zone. We place them in the same zone as

both of them are transport protocols providing services to user applications.

Table 2.1 Parameters of End Host Modules

Parameters Remarks

Financial cost Purchase/install of hardware/software

CPU cores Affinities

CPU cycles Time-varying

Memory space Time-varying

NIC Speed, ring buffer, IRQ coalesce

BUS Speed, connectivity

Stability Data transfer protocols/applications

Reliability Data transfer protocols/applications

Security ssh library

Packet loss rate Measured at end hosts

Delay Round-trip time, one-way delay

Jitter Measured at end hosts

Max packet size MTU, MSS, UDT MSS, etc.

We would like to point out that this zone-based structure is flexible in that

we can further divide the modules in each zone into more sub-zones as in the case

of TCP/IP stack as shown in Figure 2.6. The modules in the user application zone

include all user applications that require data transfer services. These applications

come from a wide range of disciplines spanning from climate research, nanoscience,

astronomy, neutron sciences, high energy physics, computational materials, fusion

simulation, to computational biology.
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The packet receiving at the end host generally involves three steps across all

the three zones: i) a data packet arrives at the NIC and generates an interrupt, ii) the

kernel traps the interrupt and reads the packet from the NIC’s buffer to the transport

protocol buffer, and iii) the transport protocol processes and forwards the packet to

the target user application. The parameters we may consider for end host modules

are tabulated in Table 2.1.

2.5.2 Networking Service Modules

In our model, a networking service is a technology, mechanism, hardware, or software

system, which takes the user’s request as input, performs certain predefined routines,

and sends back to the user the resources and/or other relevant results under request.

Table 2.2 Networking Services and Resources

Modules Remarks

USN DOE/DOD Ultra-Science Net

OSCARS Bandwidth reservation in ESnet

ION Bandwidth reservation on Internet2

DYNES Edge network bandwidth reservation for Internet2

DRAGON Resource allocation via GMPLS optical networks

CHEETAH Circuit-switched optical network infrastructure

TeraPaths End-to-end virtual path with bandwidth guarantees

ESCPS Dynamic provisioning of inter-domain circuits

UCLP Network resources treated as software objects

JGN (2/2plus) Fully-fledged next-generation testbed

Geant2 NRENs and EC network testbed for research

GENI Virtual laboratory for exploring future Internet

B4 Google’s globally-deployed software-defined WAN

We list in Table 2.2 the commonly existing networking service modules, each

of which could provide users either a default IP or a network provisioning service with

guaranteed bandwidth. These modules utilize graph-based algorithms to compute a

path for a reservation request. A user request typically includes several parameters
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such as the start time and end time of the demanded service, the source host address

and destination host address of the data transfer, the required bandwidth, and in

some cases, loss rate, transfer reliability, and transfer security. To compute the data

transfer path, in addition to the user request, these networking service modules also

take as input the network topology with capacity information and the current resource

reservation status, as shown in Figure 2.7. The parameters of networking modules

we may consider are listed in Table 2.3.

AAA
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Request

On-demand 
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Link Capacities

Network Traffic
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Figure 2.7 Networking service module.

Table 2.3 Parameters of Networking Service Modules
Parameters Remarks
Start time Of the required service
End time Of the required service
Source IP address or hostname
Destination IP address or hostname
Data size Size of data to be transferred
Bandwidth Desired or target bandwidth/speed
Cost To use services such as OSCARS
Network speed Decided by the bottleneck link
Stability Network connections/links
Reliability Network connections/links
Security Transfer security level
Delay Typically from 0ms to 380ms
Jitter Measured within networks
Topology Used for path computation
Link capacity Connection capacity
Reserved bandwidth Allocated in advance, target rate
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2.6 Technical Approach

In this section, we formally define the Transport-Support Workflow Optimization

Problem (TSWOP), prove it to be NP-complete, and design optimal pseudo-

polynomial algorithms to select a subset of transport-support workflow modules for

the composition of an end-to-end data transfer path. Please refer to Table 2.4 for the

notations used in the definition of TSWOP.

2.6.1 User Request

A user request r specifies the desired data transfer service such as transfer start time

ts, transfer finish time te, source host address hs, destination host address hr, and

transfer data size DS as well as some data transfer constraints and objectives such

as the required or target bandwidth B and upper bound of the (financial) cost Cmax

for the service/resource use. Although a user request may have its specific objectives

and constraints, there exist some general ones, as listed in Table 2.5. We model a

generic user request as an n-tuple, i.e.,

r = (r1, r2, ..., rn), (2.1)

where rk (1 ≤ k ≤ n) are the user-specified parameters of the desired services or

constraints such as Cmax, ts, te, hs, hr, DS, and B, as detailed in Table 2.1 and

Table 2.3. Note that a specific user request may involve only a subset of parameters, in

which case, we assign 0 or null to other parameters that are not under consideration.

Figure 2.8 shows a user request r (n = 10) that asks for the following data transfer

service: reliably (see the 8th parameter in Figure 2.8) and securely (see the 9th

parameter in Figure 2.8) move 1.0TB data of file /dir/to/srcfile on sender tubes

to the folder /dir/to/dstfile on receiver midway at a target rate of 5.0Gb/s during

a time window from “00:00:00” to “00:30:00”.
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Table 2.4 Notations Used in the Formulation of TSWOP

Notations Definitions

ts Start time of data transfer

te End time of data transfer

hs Sender host

hr Receiver host

r User request

n Number of elements in a user request

α Weight vector corresponding to r

DS Data size to be transferred

B Target (expected) bandwidth

G(M,E) A DAG-structured transport-support workflow

K Number of zones in G(M,E)

M The set of modules in G

mi,j The ith module at the jth zone

pi,j Profit vector corresponds to module mi,j

Pi,j Profit of module mi,j

Ci,j Cost of module mi,j

d Edge density of G

E The set of dependencies in G

e(i1,j1),(i2,j2) The dependency between mi1,j1 and mi2,j2

Cmax Cost constraint

CRGMS The cost of the path calculated by RGMS

CGmax
The cost of the longest cost path in G

CGmin
The cost of the shortest cost path in G

D(·) Intermediate maximal achievable profit

xi,j Binary variable of module selection

K ′ Number of disjoint classes of items in MCKP

m′
i,j The ith item of the jth class in MCKP

P ′
i,j Value of item m′

i,j in MCKP

C′
i,j Weight of item m′

i,j in MCKP

C′
max Capacity of knapsack in MCKP

x′
i,j Binary variable of item selection in MCKP
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Table 2.5 Data Transfer Objectives and Constraints

Objectives Remark

Loss rate Low

Failure rate Low

Throughput High

Energy-efficiency High

Transfer delay Low

Objectives Remark

Bandwidth As required

Cost Upper bound

Reliability As required

Security level As required

Transfer stability Required with a target rate

r (tubes, /dir/to/srcfile, midway, /dir/to/dstfile, 00:00:00, 00:30:00, 5.0 Gb/s, true,  true,  1TB) 

p (1.0,            1.0,                1.0,                1.0,                 1.0,           1.0,        0.75,        1.0,   1.0,    1.0) 

Figure 2.8 User request and profit vector.

2.6.2 Profit Vector

As illustrated in Figure 2.4, we categorize the tasks involved in the entire data transfer

process into K zones (or layers3), in each of which, there may exist multiple modules

that can perform the corresponding functions at a certain level. To meet a given data

transfer request, we need to select appropriate modules from each zone to accomplish

the task involved in each data transfer step. Depending on the module’s properties,

the parameters ri in the user request may be fulfilled partially or completely by the

selected module, which reflects the degree of satisfaction for the data transfer request.

Consider K zones with Nj modules in the jth zone (1 ≤ j ≤ K) as shown in

Figure 2.4. Our goal is to select a subset of modules across all K zones to maximize

the satisfaction of a given user request. For a request r, we define a profit vector pi,j

3The terms “zones” and “layers” are used interchangeably in this context.
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corresponds to module mi,j (i.e., the ith module in the jth zone) as

pi,j = (pi,j,1, pi,j,2, ..., pi,j,n), (2.2)

where pi,j,k ∈ [0, 1] (k = 1, 2, · · · , n) is i) 1 when mi,j is selected from its zone and

satisfies the user request parameter rk completely4; ii) 0 when mi,j is selected but it

does not fulfill rk at all5; and iii) between 0 and 1 when mi,j satisfies rk partially6.

Obviously, the profit vector is specific to a given data transfer scenario including

various factors such as host and system configurations and network connection

properties. In practice, we use a profiling approach to obtain such profit vectors,

as further discussed in Section 2.6.3. Figure 2.8 shows an example of profit vector p,

which represents a module that completely satisfies all the requirements in request r

except r7, which is set to be 0.75 because the selected protocol is only able to achieve

an average throughput of 3.75Gb/s from tubes to midway for a given target rate of

5.0Gb/s, based on the historical profiling data.

Ideally, we wish to select modules that completely satisfy a user request for all

of its objectives and constraints. However, due to network resource limitations and

potentially conflictive parameters, it is generally infeasible to select such modules since

application users are not expected to always provide reasonable or realistic requests

(in many cases, users tend to be greedy).

Given a user request r = (r1, r2, · · · , rn), we calculate the profit Pi,j of a

selected module mi,j as

Pi,j =
n

∑

k=1

αk · pi,j,k, (2.3)

4For example, when a user sets the target rate to be 5.0Gb/s, if a protocol is selected and
is able to transfer at a speed no less than 5.0Gb/s, then the selected protocol completely
satisfies the target rate requirement.
5For example, UDP cannot fulfill the reliability requirement of a data transfer.
6For example, for a target rate of 5.0Gb/s, if the selected tool is only able to transfer data

at an average speed of 2.5Gb/s, then the corresponding pi,j,k is set to be
2.5

5
= 0.5.
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where αk is the weight for each component service parameter rk that indicates the

importance of rk and could be either manually specified by the user or automatically

assigned by our model. Intuitively, Pi,j reflects how well module mi,j satisfies user

request r if selected, and a larger value of Pi,j indicates a better satisfaction.

2.6.3 Discussion on Profit Vector Estimation

Given a workflow module, it is critical to determine the parameter values of p since it

affects module selection and eventually transport performance. Due to the complex

properties of networking services and dynamic requirements of various applications,

it is difficult to determine the parameters through a uniform approach.

Some of these parameters may be straightforward to determine while others

may not. For example, it is relatively easier to determine if a module is able to provide

a reliable data transfer service than to ensure the satisfaction of a certain failure rate

or security level requirement. For example, TCP-based transport methods provide

reliable data transfer, while UDP-based transport methods generally do not unless an

application-level retransmission mechanism is implemented, as in UDP-based Data

Transfer (UDT) protocol [48].

For applications that do not require reliable data transfer, the requirement

on packet loss is not very critical and is oftentimes application-dependent, e.g., for a

real-time video steam, a 5% loss rate might be tolerable; while for applications that

require reliable data transfer, a loss rate of 5% makes it almost impossible to yield

a satisfactory performance using reliable transport protocols such as TCP, especially

when data transfer is conducted over long-haul high-speed connections. In such cases,

loss rate clearly has a higher importance value (i.e., the value of α) and should be

considered as a more critical performance metric.

It is not straightforward to determine the parameters of p for hardware and

system resource modules on end hosts due to time-varying workloads and system
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dynamics, which must be explicitly accounted for. Some other requirements are

even more difficult to determine. For example, OSCARS [6,7] uses a topology-based

graph algorithm to determine the path for a circuit reservation request, and the

topology and capacity information is obtained from network devices every hour and

then imported into the OSCARS topology database. When a user request is received,

OSCARS generates a base topology graph from the database taking into account any

existing reservation whose time ranges conflict with the new one. Subsequently, path

computation is performed on the base topology graph considering the parameters and

constraints specified in the reservation request such as source and destination hosts,

required bandwidth or VLAN tagging. Since OSCARS replies to the user with a

notification of success or failure, it is straightforward in such cases to determine the

elements in p corresponding to the required bandwidth and dedicated channels. If

the user submits a request with certain requirements on failure rate or loss rate, it

would be difficult for OSCARS to determine if such requirements can be met as they

also depend on other components along the data transfer path as well as the current

status of the networks. A feasible approach is to use historical and profiling data

to estimate and predict the performance of a service, which can be further used to

estimate and determine the corresponding parameters in p.

2.6.4 Module Dependencies

As exemplified in Figure 2.5, among the transport-support workflow modules that

are categorized into K disjoint zones, there exist certain dependencies between the

modules in adjacent zones. We model such dependencies as directed edges associated

with binary variables e(i1,j1),(i2,j2), whose value is 1 if and only if there is a dependency

from module mi1,j1 to module mi2,j2. Such dependencies represent the precedences

among the available resources and services.
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2.6.5 Transport-Support Workflow Optimization Problem

We formally define the Transport-Support Workflow Optimization Problem (TSWOP)

as follows.

Definition 1. Given

• a user data transfer request r = (r1, r2, · · · , rn) that contains n elements with

an associated weight vector α = (α1, α2, · · · , αn),

• a set M = {mi,j} of transport-support workflow modules that are categorized

into K zones, where zone j contains Nj modules (i = 1, 2, · · · , Nj; and j =

1, 2, · · · , K),

• a set E = {e(i1,j1), (i2,j2)} of dependencies from adjacent modules mi1,j1 to mi2,j2,

• a profit vector pi,j = (pi,j,1, pi,j,2, · · · , pi,j,n) and a (financial) cost Ci,j for each

module mi,j (the ith module in the jth zone), and

• a cost constraint Cmax,

we wish to choose a subset of modules across all K zones to compose an end-to-end

data transfer path to meet the user request r with the maximum profit:

max

K
∑

j=1

Nj
∑

i=1

Pi, j · xi, j = max

K
∑

j=1

Nj
∑

i=1

n
∑

k=1

αk · pi, j, k · xi, j , (2.4)

subject to
K
∑

j=1

Nj
∑

i=1

Ci, j · xi, j ≤ Cmax, (2.5)

Nj
∑

i=1

xi, j = 1, 1 ≤ j ≤ K, (2.6)

xi, j ∈ {0, 1}, 1 ≤ i ≤ Nj, 1 ≤ j ≤ K, (2.7)

K−1
∏

j=1

e(i∗j , j),(i∗j+1
, j+1) = 1, xi∗j , j

= 1, 1 ≤ j ≤ K − 1. (2.8)
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In the above definition, we use a binary variable xi,j to denote the module

selection, which is 1 if the ith module is selected from the jth zone, and is 0, otherwise

(see Equation 2.7).

The constraints in Equation 2.6 and Equation 2.8 ensure that the module

selection always results in a path from zone 1 to zone K in the workflow. Equation 2.6

ensures that one and only one module is selected from each zone. In Equation 2.8,

we use i∗j to denote the index of the module selected from the jth zone, i.e., xi∗j , j
= 1

indicates mi∗j , j
is selected from zone j. Thus Equation 2.8 guarantees that if two

selected modules belong to adjacent zones, there must be a directed edge between

them. This constraint applies to any two modules in adjacent zones (i.e., zone j

and zone j + 1 (1 ≤ j ≤ K − 1)) and ensures the selected modules to form a path

from zone 1 to zone K. In Equation 2.5, the constraint Cmax, which is specified in r,

could be the financial cost for deploying network devices or using network resources.

The lower part of Figure 2.9 shows an example problem instance of TSWOP with

14 modules that are categorized into 5 layers and the modules in adjacent zones are

fully-connected. Without loss of generality, we add a virtual start module m1,0 and

a virtual end module m1,6 in the workflow with zero cost and zero profit.

2.6.6 Complexity Analysis

As shown in Figure 2.4, each zone stands for a segment in the entire process of data

transfer. Since there exist dependencies between adjacent modules, the zone-based

structure of a transport-support workflow can be represented by a topologically-sorted

Directed Acyclic Graph (DAG).

We analyze the computational complexity of TSWOP in two cases: i) when

modules are free of cost, i.e., Cmax = ∞, and ii) when modules incur certain costs,

i.e., Cmax < ∞.
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If services are free, i.e., Cmax = ∞, TSWOP is polynomially solvable by

searching for a longest profit path in the given DAG-structured workflow. In

Algorithm 1, we design a Critical Path-based Module Selection (CPMS) algorithm

for TSWOP under this condition.

If services are not free, i.e., Cmax < ∞, TSWOP becomes weakly NP-complete

and can be solved in pseudo-polynomial time. We first prove the NP-completeness of

TSWOP by reducing from the Multiple-Choice Knapsack Problem (MCKP) [43] and

then design a Dynamic Programming-based Module Selection (DPMS) algorithm as

shown in Algorithm 2.

Theorem 1. The Transport-Support Workflow Optimization Problem is NP-complete.

Proof. Without loss of generality, we consider the profit and cost values of each

module to be integers within independent ranges.

We define a decision version of TSWOP by introducing an integer bound I on

the sum of profits: is there a module selection S with a total profit larger than I and

a total cost under Cmax?

Consider a solution S to TSWOP, which is a subset of modules of the given

workflow. It takes polynomial time (O(K), where K is the number zones in the

workflow) to determine whether the subset of modules has a sum of profits larger

than I and has a sum of cost less than Cmax, as we only need to traverse each module

and add up their profit values and cost values, respectively. Hence, TSWOP is NP.

We reduce from the well-known NP-complete Multiple-Choice Knapsack

Problem (MCKP) [57], which is defined as: Given K ′ mutually disjoint classes of

items to be packed into a knapsack of capacity C′
max, where class j (1 ≤ j ≤ K ′)

contains N ′
j items and the ith item in the jth class, denoted as m′

i, j, has a value

P ′
i, j and a weight C′

i, j, we want to choose exactly one item from each class such that

the total profit is maximized without exceeding the capacity C′
max. If we use a binary

variable x′
i, j to denote whether or not item m′

i,j is selected from class N ′
j , the objective
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Figure 2.9 NP-completeness proof of TSWOP.

function of MCKP is given as

max

K ′

∑

j=1

N ′

j
∑

i=1

P ′
i, j · x

′
i, j, (2.9)

subject to
K ′

∑

i=1

N ′

j
∑

i=1

C′
i, j · x

′
i, j ≤ C′

max, (2.10)

N ′

j
∑

i=1

x′
i, j = 1, 1 ≤ j ≤ K ′, (2.11)

x′
i, j ∈ {0, 1}, 1 ≤ i ≤ N ′

j , 1 ≤ j ≤ K ′. (2.12)

Given an instance of the MCKP problem, we construct an instance of a special

case of TSWOP where adjacent layers (zones) are fully connected. As shown in
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Figure 2.9, we take the following steps to construct an instance of TSWOP: i) we

treat the capacity C′
max in MCKP as the cost constraint Cmax in TSWOP, and then

without loss of generality, construct each of the disjoint classes in MCKP as a layer

(zone) in TSWOP, in which the items are treated as the modules in the zone with its

value P ′
i,j as the profit Pi,j and its weight C′

i,j as the cost Ci,j , ii) we fully connect the

modules in adjacent layers (zones), and iii) we add a virtual start module and a virtual

end module, as shown in Figure 2.9. Since the adjacent zones are fully-connected,

the module selection in a specific zone does not prevent any modules in its adjacent

zones from being selected. Therefore, if we find an optimal module selection across

each layer in TSWOP under cost constraint Cmax, then this selection would result

in an optimal solution to the instance of MCKP under capacity constraint C′
max,

and vice versa. Note that the instances of TSWOP constructed from the instances

of MCKP have fully-connected adjacent zones, and hence are a subset of general

TSWOP problem instances with arbitrary edges between adjacent zones.

Since MCKP is well-known to be NP-complete [43], so is TSWOP. Proof ends.

2.6.7 Algorithm Design

We design two algorithms for TSWOP under constraints Cmax = ∞ and Cmax < ∞,

respectively.

Without Cost Constraint Since some advanced services such as OSCARS [7]

in ESnet [6] and ION [14] in Internet2 [13] are currently free to authorized users,

from a practical point of view, it is worthy to explicitly study the complexity of

TSWOP when Cmax = ∞. Given the profit vector p of each module, if we do

not consider the cost constraint in Equation 2.5 or consider it as unlimited, the

problem could be described as a longest profit path problem in a topologically-sorted

DAG, which is polynomially solvable. We design the Critical Path-based Module
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Selection (CPMS) algorithm that employs a dynamic programming approach to solve

the transport-support workflow optimization problem under Cmax = ∞ constraint, as

shown Algorithm 1. As previously mentioned, without loss of generality, we add a

virtual start module m1, 0 (i.e., the 1st and the only module at zone 0) and a virtual

end module m1, K+1 (i.e., the 1st and the only module at zone K +1) with profit and

cost of each module are both zero, and then the problem is equivalent to find the

longest profit path from module m1, 0 to module m1, K+1. Detailed CPMS algorithm

is given in Algorithm 1, which runs in O(|E|) time, where |E| is the total number of

edges (dependencies) between the modules in adjacent zones.

Algorithm 1 Critical Path-based Module Selection (CPMS)

Input: A DAG-structured transport-support workflow G(M,E,K,Nj, {Pi,j}, {Ci,j}).

Output: A longest profit path formed by the modules selected from G.

1: Add virtual modulesm1, 0 andm1, K+1 and let P1, 0 = P1, K+1 = C1, 0 = C1, K+1 = 0;

2: Let D(i, j) be the maximal achievable profit on the path from m1, 0 to mi, j;

3: Let L(i, j) be the longest path corresponds to D(i, j);

4: D(1, 0) = 0, L(1, 0) = {m1, 0};

5: for j = 1 to K + 1 do

6: for i = 1 to Nj do

7: D(i, j) = max
{

D(i′, j − 1)
∣

∣e(i′,j−1),(i,j) = 1
}

+ Pi,j ;

8: L(i, j) = max
{

L(i′, j − 1)
∣

∣e(i′, j−1), (i, j) = 1
}

∪ {mi, j};

9: return D(1, K + 1) and L(1, K + 1);

With Cost Constraint We design the Dynamic Programming-based Module

Selection (DPMS) algorithm shown in Algorithm 2 for TSWOP when Cmax < ∞,

which also employs a dynamic programming-based approach.

A unique property of TSWOP’s given is that the DAG-structured workflow

is already topologically-sorted, and moreover, there only exist dependencies between
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Algorithm 2 Dynamic Programming-based Module Selection (DPMS)

Input: A DAG-structured transport-support workflow G(M,E,K,Nj, {Pi,j}, {Ci,j})

and a cost constraint Cmax < ∞.

Output: A longest profit path formed by the modules selected from G with their

total cost under Cmax.
1: Add virtual modulesm1, 0 andm1, K+1 and let P1, 0 = P1, K+1 = C1, 0 = C1, K+1 = 0;

2: Let D(C, i, j) be the maximal achievable profit under cost constraint C using

modules from zone 0 to zone j and module mi,j is selected;

3: Let L(C, i, j) be the longest path corresponds to D(C, i, j);

4: for 1 ≤ i ≤ N0 do

5: for 0 ≤ C ≤ Cmax do

6: D(C, i, 0) = 0;

7: L(C, i, 0) = {mi,0};

8: for 1 ≤ j ≤ K + 1 do

9: for 1 ≤ i ≤ Nj do

10: for 0 ≤ C ≤ Cmax do

11: if Ci,j > C then

12: D(C, i, j) = −1;

13: else if

∣

∣

∣

∣

{

mi′,j

∣

∣

∣
e(i′,j−1),(i,j) = 1 && D(C − Ci,j , i

′, j − 1) ≥ 0
}

∣

∣

∣

∣

6= ∅ then

14: D(C, i, j) = max

{

D(C − Ci,j , i
′, j − 1)

∣

∣

∣ e(i′,j−1),(i,j) = 1 && D(C −

Ci,j , i
′, j − 1) ≥ 0

}

+ Pi,j;

15: L(C, i, j) = max

{

L(C − Ci,j , i
′, j − 1)

∣

∣

∣
e(i′,j−1),(i,j) = 1 && D(C −

Ci,j , i
′, j − 1) ≥ 0

}

∪ {mi,j};

16: else

17: D(C, i, j) = −1;

18: return D(Cmax, 1, K + 1) and L(Cmax, 1, K + 1);
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adjacent zones, which allows us to design our algorithm using a layer-based approach

without considering more complicated connectivity between non-adjacent zones.

Since one and only one module must be selected from any zone, i.e., the path that

maximizes the profit under the cost constraint must go through a module in each

layer, if we let D(C, i, j) be the maximal achievable profit using modules selected

from zone 0 to zone j when module mi,j is known to be selected at zone j, then the

desired final solution would be D(Cmax, 1, K + 1). At any given layer j (1 ≤ j ≤ K),

since one and only one module in layer j must be on the path, there are at most

Nj possibilities for the path with maximal profit under cost constraint. Suppose

that the “optimal” path exists under cost constraint Cmax and module mi,j is on this

“optimal” path, the path with maximal profit using modules from layer 0 to layer j

with a certain cost constraint C must go through one of mi,j ’s preceeding modules

mi′,j−1 at layer j − 1. Moreover, since mi,j takes a cost of Ci,j, module mi′,j−1 must

be on the longest path from the modules in layer 0 to the modules in layer j− 1 that

have succeeding module mi,j with a cost under Cmax − Ci,j , i.e., we have the optimal

sub-structure of TSWOP as

D(C, i, j) = Pi,j+

max























D(C − Ci,j , i
′, j − 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e(i′,j−1),(i,j) = 1,

D(C − Ci,j , i
′, j − 1) ≥ 0























. (2.13)

Based on Equation 2.13, we get the optimal result as D(Cmax, 1, K+1) through

filling a sparse 3-dimensional matrix. In Algorithm 2, we also first add a virtual start

module and a virtual end module and make them with zero profit and zero cost

(Line 1), and set up the basics from Line 4 to Line 7, where D(C, i, 0) = 0 indicates

that module mi,0 (i.e., the only module in layer 0) can be (and should be) on the
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“optimal” path formed by the selected modules. Next, we traverse each module in

every layer (from Line 8 to Line 9), and for each module, we calculate D(C, i, j)

for each integer value of the parameter C (0 ≤ C ≤ Cmax). If the cost of the current

module mi,j is less than the current cost constraint C, there are not any possible paths

exist and we set D(C, i, 0) = −1 to indicate such cases (from Line 11 to Line 12).

Otherwise, we check module mi,j’s preceding modules that has feasible paths traverse

through (Line 13), select the one that has maximal achievable profit, and then based

on which calculate the value of D(C, i, j) for the module being considered (Line 14)

and keep track of the path in L(C, i, j) (Line 15). If none of mi,j’s preceding modules

contain feasible paths, mi,j ’s D(C, i, j) value is also –1 (Line 17). After traversing

each module in each layer and computing its corresponding value of D(C, i, j), the

desired final result is returned as D(Cmax, 1, K + 1) (Line 18) and the corresponding

module selection (i.e., the longest path under cost constraint) can be interpreted from

L(Cmax, 1, K+1). The DPMS algorithm runs in pseudo-polynomial time O(|E|·Cmax),

where |E| the number of edges (dependencies) in the given workflow.

2.7 Simulation-based Performance Evaluation

We conduct simulation-based performance evaluations to show the effectiveness and

efficiency of proposed CPMS and DPMS algorithms.

2.7.1 Simulation Setup and Performance Criterions

The test datasets are generated using the following strategies. The problem size is

determined by a 3-tuple 〈|M |, K, d〉, where |M | is the number of modules, |K| is the

number of zones, and d is the “density” of the edges that is defined as the ratio of the

average edge number of each module over the number of modules in its succeeding

zone. The density d in turn determines the total number of edges |E| in the workflow.
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We first vary the number of modules |M | from 1,000 up to 10,000, and

randomly pick up the number of modules in each layer from the range

[

1,
|M |

K
· ξ

]

,

where ξ = 1.5 decides the variance of the number of modules in each zone. We then

vary the number of zones from 10 to 100, where small values (e.g., 10–30) represent

the scale of domestic data movement, medium values (e.g., 40–70) represent the scale

of inter-continental data movement, and large values (e.g., 80–100) represent the scale

of global data movement. The edge density d (0.0 < d ≤ 1.0) represents the number

of edges on each module that is decided as follows. For module mi,j in zone j, we

randomly select d · Nj+1 modules from zone j + 1 as mi,j ’s succeeding modules and

to which add directed edges from mi,j. We check for each module to make sure that

there is at least one incoming edge, and if there is not, we randomly choose one from

its preceding adjacent zone. We choose the value of d from three categories: i) fully

connected adjacent zones, where d = 1.00; ii) moderately connected adjacent zones,

where d ∈ {0.75, 0.50}; and iii) sparsely connected adjacent zones, where d = 0.25.

Given the value of profit within the range of 0 ≤ pi,j,k ≤ 1 and the value of cost

as an arbitrary positive number, we could always scale them into a range of positive

integers, in our simulations, the profit and cost of each module are both randomly

picked up from a pre-defined range [1, 100].

We use a naive greedy approach named Ratio-based Greedy Module Selection

(RGMS) algorithm as the comparison base, in which each zone is went through and

the available module with the best (largest) ratio of
Pi,j

Ci,j
is selected. In each simulation

test, we measure the following criterions: i) the profit of the path calculated by CPMS,

which is the best possible path of the workflow since CPMS does not consider any

cost constraint; ii) the profit of the path calculated by RGMS, which is the most

cost-efficient path; and iii) the profit of the path calculated by DPMS under the cost

constraint Cmax, which is the best path as defined in TSWOP.
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2.7.2 Simulation Results

The total cost of the path resulted from RGMS (denoted as CRGMS) is used in DPMS

as the cost constraint. In such a way, we could measure the improvement of DPMS

over RGMS under the same condition. We first run RGMS on a randomly generated

workflow and calculate the resulted cost CRGMS , and then use CRGMS in DPMS, i.e.,

Cmax = CRGMS, on the same workflow. We compare the profit achieved by RGMS,

DPMS, and CPMS, and plot representative results in Figure 2.10, where K = 100

and d ∈ {0.25, 0.50, 0.75, 1.00}. As |M | increases, the profit achieved by DPMS is

consistently and significantly higher than RGMS given the same values of K and

Cmax. Note that we also plot the profit achieved by CPMS where Cmax = ∞ to show

the upper bound of the maximal achievable profit.
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Figure 2.10 Comparison between RGMS, DPMS, and CPMS corresponds to the
number of modules (Cmax = CRGMS).
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We also compare in Figure 2.11 the profits achieved by RGMS, DPMS, and

CPMS correspond to K, where |M | = 10, 000 and d ∈ {0.25, 0.50, 0.75, 1.00}. Since

each module’s profit is randomly generated within the range [1, 100], the actual value

of profit increases as K increase and DPMS achieves much higher profit than RGMS.

In addition, the improvement becomes larger as K increases.
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Figure 2.11 Comparison between RGMS, DPMS, and CPMS corresponds to the
number of zones (Cmax = CRGMS).

Figures 2.10 and 2.11 show the superiority of DPMS over naive greedy RGMS.

We plot in Figure 2.12 more complete results to show the performance improvement

of DPMS over RGMS, where |M | is from 1,000 to 10,000 with an interval of 1,000

and K is from 100 to 1,000 with an interval of 10. We also pick up value of d from

{0.25, 0.50, 0.75, 1.00}. Figure 2.12 shows that the improvement of DPMS over RGMS
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Figure 2.12 Improvement of DPMS over RGMS (Cmax = CRGMS).

is consistently higher than 40% up to more than 180% under the same conditions with

the same cost constraints.

We next use an even smaller value of cost constraint Cmax to test DPMS

since the cost consumed by a greedy-based RGMS might be too large to show the

significant superiority of DPMS over others. Given a workflow G, we first calculate

its longest cost path CGmax
and shortest cost path CGmin

, respectively, i.e., the longest

and shortest cost paths calculated by considering the cost Ci,j of each module rather

than the profit Pi,j of each module as the criterion. We then set the cost constraint

using Equation 2.14, i.e., we set the cost constraint as a quarter of the maximal cost

of all possible paths in the workflow if it is feasible, otherwise we simply use the

minimal cost of all possible paths,

Cmax = max{CGmin
,
1

4
· CGmax

}. (2.14)

We also test and compare DPMS, RGMS, CPMS to show the performance

superiority of DPMS over the others under such a smaller cost constraint. Note that
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in these simulations, we do not set the cost constraint for RGMS (i.e., CRGMS = ∞) to

ensure the randomly generated test cases to be feasible, which provides RGMS with

an extremely relaxed cost constraint comparing with the cost constraint for DPMS.

We set the number of zones as 100 and pick up the value of edge density d

from {0.25, 0.50, 0.75, 1.00}, as shown in Figure 2.13, with a smaller cost constraint,

DPMS achieves slightly smaller profit than CPMS since CPMS is the best possible

one without constraint. DPMS achieves much higher profit than RGMS even RGMS

is without any cost constraint. As the number of modules increases from 1,000 to

10,000, the differences between DPMS and CPMS become smaller and the results are

quite similar across different values of the edge density d.
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Figure 2.13 Comparison between RGMS, DPMS, and CPMS corresponds to the

number of modules (Cmax = max{CGmin
,
1

4
· CGmax

}).
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In Figure 2.14, we also compare the profits achieved by RGMS, DPMS, and

CPMS under a smaller cost constraint corresponds to the number of zones, where

we set the number of modules as 10,000 and the value of d is also selected from

{0.25, 0.50, 0.75, 1.00}. The results are similar to that in Figure 2.11, i.e., i) the

actual value of profit increases as number of zones increase; ii) DPMS with a smaller

cost constraint achieves much higher profit than RGMS without cost constraint; and

iii) the improvement also becomes larger as the number of zones increases.
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Figure 2.14 Comparison between RGMS, DPMS, and CPMS corresponds to the

number of zones (Cmax = max{CGmin
,
1

4
· CGmax

}).

The complete results on the performance improvement of DPMS over RGMS

are plotted in Figure 2.15, where the number of modules is from 1,000 to 10,000 with

an interval of 1,000 and the number of zones is from 100 to 1,000 with an interval

of 10. We also pick up the value of d from {0.25, 0.50, 0.75, 1.00}. Figure 2.15 shows
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that the improvement of DPMS with a smaller cost constraint over RGMS without

cost constraint is consistently higher than 20% up to 180%.
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Figure 2.15 Improvement of DPMS over RGMS (Cmax = max{CGmin
,
1

4
· CGmax

}).

2.7.3 How Weak is the NP-completeness of TSWOP?

The MCKP problem has been widely studied in the literature [57] and quite a few

heuristics could possibly be adopted for solving TSWOP. The DPMS algorithm is

optimal, but runs in pseudo-polynomial time. From a practical point of view, we are

more concerned with the optimal module selection rather than the running time of

the computation. If the running time of DPMS is tolerable for the use of the solution

in reality, by no means we should use heuristics without performance guarantees.

We implement the DPMS algorithm in C/C++ and measure the execution time of

DPMS algorithm on a RedHat Linux Workstation equipped with Intel(R) Xeon(R)

CPU E5-2620 v3 CPU of 2.40GHz and 16.00GB memory. Figure 2.16 shows the

average execution time of the DPMS algorithm. When the number of modules is
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up to 10,000, the number of zones is up to 100, the cost constraint is up to the

same level of CRGMS , and the modules in adjacent zones are fully-connected (i.e.,

the edge density d = 1.00), the DPMS algorithm on average finishes less than one

minute. As the value of d decreases (i.e., the edges of the workflow becomes more

sparse), the execution time of DPMS further decreases to be less than 20 seconds.

The results in Figure 2.16 show that DPMS makes the “on-line” path composition

feasible, considering its optimality, we are more in favor of DPMS rather than any

other heuristics that take shorter time but without any performance guarantee.

Edge Density (d)

1.00 0.95 0.75 0.50 0.25

S
ec
on

d
s

0

10

20

30

40

50

60

70
|M | = 10000,K = 100, Cmax = CRGMS

Figure 2.16 Running time of DPMS with 10,000 modules in 100 zones and a cost
limit Cmax = CRGMS .

2.8 Experiment-based Case Study

In this section, we evaluate our workflow-based transport solution using real-life

network experiments based on the services and resources discovered by NADMA [32].

2.8.1 Case Study 1: Data Transfer from Oak Ridge National Laboratory
to Lawrence Berkeley National Laboratory

In this experiment, we consider a data transfer request from Oak Ridge National

Laboratory (ORNL) to Lawrence Berkeley National Laboratory (LBNL) within the

DOE network.
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Table 2.6 User Request of Data Transfer from ORNL to LBNL

Notation Value

Star time (ts) Not specified, starts as soon as possible

End time (te) Not specified, finishes as soon as possible

Sender (hs) dtn01.css.ornl.gov (128.219.168.100)

Receiver (hr) datagrid.lbl.gov (128.3.41.146)

Cost (Cmax) Ignored (considered as unlimited)

User Request In this experiment, the user requests to transfer data from the

source host hs at ORNL to the destination host hr at LBNL. Since ORNL and LBNL

are both connected to ESnet, OSCARS can be used to set up a dedicated channel

in the backbone network free of charge (at least at present to authorized users).

Moreover, since the networking devices and end host hardware and software systems

have already been deployed, we assume that the financial cost at the end host and on

the networking services and resources are negligible. We list the parameters of the

user request in Table 2.6.

Table 2.7 Discovered Resources on End Hosts at ORNL and LBNL

Protocol Port# Description
FTP 21 File Transfer Protocol
SCP 22 Secure Copy Protocol
TFTP 69 Trivial File Transfer Protocol
HTTP 80 HyperText Transfer Protocol
SFTP 115 SSH File Transfer Protocol
HTTPS 443 Secure HyperText Transfer Protocol
GridFTP 2281, 2811 GridFTP
bbFTP-std 5021 bbFTP-std
bbFTP 5022 bbFTP-ssh
SRM 8433,10080 Storage Resource Manager

Resource Discovery Based on the source and destination hosts, NADMA discovers

the services and resources that are available to the user. At the end host, several

transfer protocols are detected as listed in Table 2.7. The network segments between
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ORNL and LBNL are visualized in Figure 2.17, where ESCPS is available in ORNL’s

edge network, and OSCARS is available in the ESnet backbone. Note that the default

IP path is also available between these two hosts.
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F: Aggregate flow endpoint
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ESnet

Figure 2.17 Network segments from ORNL to LBNL.

Source (A): ornl.gov Destination (F): lbl.gov

Network: OSCARS Max. Backbone Capacity: 5536Mb/s

Available Bandwidth:

A B: 10000 Mb/s (10GE-Link)

B C:   8897Mb/s C D: 5536 Mb/s

D E:   9067Mb/s E F:  10000Mb/s (2*MAN 10G RING)

Path:

A: ORNL (ornl.gov)  ORNL (site)

B: (NASH)    NASH C: (STAR)   STAR

D: (PNWG)  PNWG E: (SUNN)  SUNN

F: LBNL (lbl.gov)  LBNL

Figure 2.18 Details of the data transfer path from ORNL to LBNL.

Solution and Result In this experiment, we have 4 zones, namely, end host (both

sender and receiver), edge network, and backbone network. In the backbone network,

our method selects the dedicated channel with bandwidth guarantee within ESnet

using OSCARS over the default IP path. At the end host, our method selects Globus
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Toolkit over GridFTP. In the edge network, we choose ESCPS to set up the data

transfer path. The resultant transport-support workflow we construct in this case is

GridFTP→ ESCPS → OSCARS → GridFTP. The reserved bandwidths and physical

paths using the workflow selected by our method are shown in Figure 2.18.

2.8.2 Case Study 2: Data Transfer from Lawrence Livermore National
Laboratory to University of Chicago

In this experiment, we consider a data transfer request from Lawrence Livermore

National Laboratory (LLNL) to University of Chicago (UChicago).

User Request The source and destination hosts are located at LLNL, CA and

University of Chicago, IL, respectively. Other requirements are the same with the

Case Study 1 in Section 2.8.1.
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Figure 2.19 Network segments from LLNL to University of Chicago.

Resource Discovery Based on the locations of the hosts, the network segments

between them are visualized in Figure 2.19. The available data transfer protocols are

the same with those in Section 2.8.1, as listed in Table 2.7. LLNL is connected to the
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ESnet with OSCARS service and UChicago is connected to the Internet2 with ION

service. ESCPS and DYNES are available in the regional/edge network, respectively.

Solution and Result In this case, our model considers 6 zones, namely, two end

hosts (both sender and receiver), two regional or edge networks, Internet2 backbone,

and ESnet backbone. Our model selects corresponding services to establish dedicated

paths in each network segment to achieve a reliable data transfer path with guaranteed

bandwidth. Within each zone, NADMA discovers all available services from the

database. To gain successful data transfer and better performance, our model only

considers those modules the user has access to with needed credentials.

Module selection highly depends on the estimation of profit vector p, some of

which are empirically obtained through historical log data, and a larger collection of

the log/profile data could help refine the model. In this case, the resultant transport-

support workflow we construct is GridFTP→ ESCPS→OSCARS→ ION→ DYNES

→ GridFTP, as shown in Figure 2.20, which exhibits the best performance among

all possible route combinations.

End Host 

(Receiver)
GridFTP HTTP FTP

DYNES IP Routing
Edge 

Network

ION IP Routing
Internet2 

Backbone

OSCARS IP Routing
ESnet

Backbone

ESCPS IP Routing
Regional 

Network

GridFTP HTTP FTP
End Host 

(Sender)

Figure 2.20 Transport-support workflow for the data transfer request from LLNL
to University of Chicago.
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CHAPTER 3

TRANSPORT PROFILE GENERATION

3.1 Introduction

High-performance Networks (HPNs) featuring high bandwidth and advance reser-

vation as exemplified by ESnet [6], Internet2 [13], and Google’s B4 [55] have

emerged to be a promising solution to support large-scale data- and network-intensive

applications. However, even if a dedicated channel is provisioned, the end-to-end data

transfer performance still largely depends on the transport protocol being used at the

end hosts. Along with the emergence and proliferation of HPNs, high-performance

data transfer methods are being rapidly developed and deployed, but maximizing their

application-level throughput over complex high-speed connections is still challenging:

i) their optimal operational zone is affected by many factors including complex

configurations and dynamics of network segments, end hosts, and protocol itself; ii)

different parameter settings may lead to very different performances and oftentimes

the default parameter setting does not yield the best performance; iii) application

users, who are domain experts, typically do not have the necessary knowledge to

choose which transport protocol to use and decide which parameter value to set; iv)

due to the lack of accurate performance models for high-performance data transfer

protocols such as UDT [48] and the complex dynamics of network environments,

it is generally difficult to derive the optimal operational zone using an analytical

approach. Consequently, application users have not seen the corresponding increase

in transport performance at application level despite the bandwidth upgrades in the

backbones of HPNs. Choosing an appropriate set of parameter values for a given data

transfer protocol in many cases would result in a significant performance improvement

over default settings. As a motivating example, we vary the block size of UDT [48]
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Figure 3.1 Instantaneous performance measurements of UDT over a 10Gb/s back-
to-back connection with different block sizes.

running over a local 10Gb/s back-to-back connection, and plot the corresponding

instantaneous throughput performance measurements in Figure 3.1, which shows

more than three times improvement on average due to a simple change of block size.

More performance improvements are expected if other parameters such as buffer size

and block size are properly tuned as well.

Transport profiling, which sweeps through the combinations of parameter

settings such as socket options, application-specific parameters, and protocol-specific

configurations, enables users to determine the “best” set of parameter values for the

optimal data transfer performance. Bandwidth estimation tools such as iperf3 [8]

could be utilized to conduct such transport profiling. iperf3 uses continuous data

transfers to estimate the performance along an end-to-end path and provides users

with various functions and options for tuning TCP, UDP and SCTP, but it does

not incorporates UDT [48], a widely adopted data transfer protocol in the HPN

community, and does not provides an option to run parallel data streams over multiple

NIC-to-NIC connections. A survey of bandwidth estimation tools can be found in [72].

We study the profiling approach to characterize and enhance the end-to-end

performance of transport protocols in support of big data transfer over dedicated

channels. We design and implement a Transport Profile Generator (TPG) toolkit

to provide users with a light-weight and easy-to-use toolkit for conducting “one-time
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profiling” to tune various control parameters for optimal performance. TPG supports

profiling over multiple parallel data streams and multiple NIC-to-NIC connections.

To instantiate the design of TPG, we use UDT protocol [48] as an example in the

implementation and conduct extensive data transfer experiments over local- and wide-

area network connections to illustrate how existing transport protocols benefit from

TPG in optimizing their end-to-end performance.

We present extensive experimental results to show the properties of big data

transfer over various high-speed network connections, including: i) a local 10Gb/s

back-to-back connection at University of Memphis (Section 3.4); ii) dual 10Gb/s NIC-

to-NIC connections at New Jersey Institute of Technology (Section 3.5); iii) 10Gb/s

emulated connections with various RTT delays ranging from 0ms to 366ms at Oak

Ridge National Laboratory (Section 3.6); and iv) 10Gb/s long-haul (380ms) physical

connection from Argonne National Laboratory to University of Chicago (Section 3.7).

The extensive experimental results show that TPG-tuned UDT is able to outperform

not only the default UDT but also TCP and its variants over high-speed long-haul

dedicated connections with a certain delay.

3.2 Transport Profiling

3.2.1 Performance-related Components

The end-to-end data transfer is a complex process that involves both network and

end-host components. Table 3.1 lists various software/hardware components together

with their parameters that may affect the end-to-end transport performance in a

typical data transfer process using protocols such as SABUL/UDT [47, 48]. Any

of these components could become the bottleneck and hence limit the throughput

performance, some of which can be accessed and controlled by the application, such
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Table 3.1 Factors and Components Related to Data Transfer Performance
System Parameters Connection
CPU frequency Packet size RTT
Internal conn. Payload size Link bandwidth
IRQ balance Block size Path MTU
IRQ coalescence Number of streams Loss rate
CPU affinity UDT send buffer size · · ·
Memory size UDT recv buffer size
Disk r/w speed UDP send buffer size
Bus speed UDP recv buffer size
NIC speed Other protocol options
Ring buffer size · · ·
OS proc. sched.
· · ·

as packet size, block size1, buffer size, frame size, and number of streams; while others

are mainly determined by hardware configurations and network infrastructures, such

as CPU frequency, memory size, memory bandwidth, bus speed, disk I/O speed, path

MTU size, round trip time, and connection bandwidth and loss rate.

3.2.2 Transport Profile

A transport profile TPt(〈hs, hr〉, e, θ) is a control-response plot illustrating how a set θ

of control parameters affect the transport performance (mainly throughput/goodput)

of a transport protocol t over a network connection e between a sender host hs and

a receiver host hr. Such profiles indicate the qualitative behavior of each component

involved in the data transfer process and provide useful information for maximizing

the overall transport performance. The transport profile of a given protocol t is

obtained by varying 〈hs, hr〉, e, and θ to exhaust the combination of parameter

values over different network connections and collecting the corresponding average

throughput measurements denoted by G(θ). We use a 2–tuple e = 〈B,Q〉 to represent

1In our design, TPG calls its send and receive functions to transfer a data block, which may
in turn call the underlying transport protocol APIs several times to completely deliver an
entire block. We use the term “block size” to denote the size specified in TPG’s send and
receive functions, and use “packet size” to denote the size of a transfer unit in the protocol.
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a network connection e including the properties of its bandwidth (B, in Gb/s) and

round trip delay (Q, in milliseconds), and use a generic 5–tuple θ = 〈m, l, f, p, d〉

to represent the control parameter set including packet size (m, in bytes), block

size (l, in bytes), buffer size (f , in megabytes), number of data streams (p, an

integer), and data transfer time (d, in seconds). In a specific profiling where t,

〈hs, hr〉, and e are given, we vary the values of parameters in θ within certain ranges

and collect the corresponding performance measurements to build a transport profile

TPt(〈hs, hr〉, e, θ). While profiling, we calculate the average throughput performance

ui of data stream i during time interval [0,∆T ] as

ui(θ) =

∫ ∆T

0

Si(x, θ) dx

∆T
, (3.1)

where Si(x, θ) is the sending rate of data stream i at time point x with parameter

setting θ. The corresponding aggregate average throughput G(θ) is defined as

G(θ) =

p
∑

i=1

ui(θ), (3.2)

where p is the number of data streams. We calculate G(θ) in unit of Gb/s in this

dissertation unless indicated otherwise.

3.3 Design and Implementation of Transport Profile Generator

3.3.1 Design Overview

Transport Profile Generator (TPG) consists of a pair of sender and receiver. The

sender (client or source node) generates and delivers a certain amount of test data

to the receiver (server or destination node) via a specific data transfer protocol being

profiled. The sender also informs the receiver the initialization and termination of a

data transfer process (one-time profiling) through an independent TCP-based control
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Figure 3.2 Control flow charts of Transport Profile Generator.

channel. The client drives the entire profiling process and terminates after a one-time

profiling is completed, while the server is always reset for the next cycle of profiling. In

such a way, user-specific profiling strategies (e.g., the stochastic approximation-based

transport profiler FastProf as detailed in [91] and Chapter 4) can be automatically

applied by repeatedly running the client with different parameter settings.

The flowcharts of TPG client and server are shown in Figure 3.2(a) and

Figure 3.2(b), respectively. A typical TPG profiling carries out the following steps:

1) the server listens on the control channel; 2) the client parses the user input (if

any), initializes, and then connects to the server through the control channel; 3) the

server accepts the connection request, and then sends back an acknowledgement to

the client; 4) the client and server exchange control parameters; 5) the server listens

on protocol-specific data channels and then informs the client; 6) the client connects
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Figure 3.3 Control channel and data channel of TPG.

to the server on the data channel(s); 7) the server accepts the connection(s) on data

channel(s); 8) the client and server start transferring data blocks; 9) the client and

server exchange profiling results once the profiling is completed; 10) the client exits,

and the server cleans up and waits for next profiling. During these steps, if an error

or a failure occurs, the client or server sends an error message to the other through

control channel before it exits or aborts.

3.3.2 Support of Multiple Data Streams and Multiple NIC-to-NIC
Connections

In TPG, a TCP-based control channel is created for exchanging control message and a

protocol-oriented data channel is created for the actual profiling. The main thread of

TPG entity creates the control channel at initialization stage and then keeps polling

it to see if there are newly arrived control packets. Most of the control packets include

just one-byte data to inform the other end the state change. As shown in Figure 3.3,

when multiple streams are specified by user, TPG creates an independent pair of

sending and receiving threads to conduct the profiling task for each data stream.

We define several terms used in the transport profiling on multiple NIC-to-NIC

connections: i) a NIC-to-NIC connection is identified by a source-and-destination IP

pair; ii) a UDT flow is a logical channel between two UDP entities (IP and port) [46];

iii) a UDT connection is a distinct transfer entity between a pair of UDT sockets [46];

iv) a TPG data stream is defined based on a socket-oriented connection.
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As shown in Figure 3.4, a TPG data stream is associated with a socket-oriented

connection. As for the UDT case, it is created by assigning connection-related infor-

mation of UDT to the TPG data stream after a UDT connection is established [46].

Meanwhile, TPG also maintains other information such as instantaneous performance

measurements and statistics for each stream.

Multiple data streams may be created over one or multiple NIC-to-NIC

connections based on the hardware configurations and user input specifications. In

the multiple NIC-to-NIC connections case, a configuration file needs to be provided

by user, and TPG includes a simple text parser to extract source and destination

IP addresses from the configuration file. Multiple data streams may also be created

over one or multiple UDT flows. A UDT flow is differentiated by a 5–tuple, i.e.,

〈source IP, source UDP port, destination IP, destination UDP port, congestion control

algorithm〉, and the UDT congestion control algorithm is applied to a distinct UDT

flow, which is transparent to applications [46]. Since TPG data streams are created

based on the socket-oriented connections, different TPG data streams may or may

not share the same instance of UDT’s DAIMD [50] congestion control algorithm. If

they do not share the same 5–tuple mentioned above, different data streams stay in

different UDT flows and each of them is controlled by an independent instance of

UDT congestion control algorithm. Otherwise, the packets transferred in different
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streams (i.e., UDT connections) are uniformly handled by the same instance of UDT

congestion control algorithm and distinguished by UDT sockets.

TPG creates an independent working thread at both sender and receiver for

each data stream without considering if the streams are over the same or different

NIC-to-NIC connections, or the same or different UDT flows. Each working thread

takes a stream as input and blindly sends/receives data blocks over the socket-oriented

connection in its own independent space without interferences between each other.

The sending thread keeps sending data blocks for a time duration or a fixed data size

in a blocking mode, and then cleans up its stream and returns to the main thread.

The main thread of the client waits for all sending threads to finish and then informs

the server. The receiving thread at the server side works in a non-blocking manner

and keeps checking if there are newly arrived data blocks in the data stream and

then returns to the main thread of the server when: i) there are no more data blocks

arriving and a timeout happens; ii) the final data block sent from the client is received;

or iii) an interrupt signal is caught.

3.3.3 Support of Other Data Transfer Protocols

TPG features a flexible structure for an easy extension of other protocols, where a

protocol is defined by its callback functions with a set of tunable control parameters.

UDT and TCP are both supported in current version. For different protocols, TPG

invokes the same procedure to control the profiling process as shown in Figures 3.2(a)

and 3.2(b). To set up a data channel in TPG, the following callback functions need

to be called accordingly: i) tpg init, initializes a data channel; ii) tpg listen, the

server listens on the channel; iii) tpg connect, the client connects to the server on

the channel; iv) tpg accept, the server accepts the connection request; v) tpg send,

the client sends data; vi) tpg recv, the server receives data; and vii) tpg close, both

the server and the client close and clean up. TPG defines the prototype functions and
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other related parameters in the structure tpg protocol, which is loaded at runtime

based on the user-specified transport protocol (e.g., -t option for UDT protocol, by

default TCP is specified). To extend TPG with a protocol, one needs to: i) implement

the corresponding protocol-specific callback functions; and ii) optionally, add an

option parameter for the protocol. As for a specific profiling, the user can explicitly

specify a protocol either with a command-line option or in a profiling function.

Table 3.2 Command Line Options of TPG and FastProf
Options Comments
-s Run as a server
-c Run as a client
-t Select UDT for profiling (default is TCP)
-B Set maximal bandwidth a UDT connection can use
-M Set UDT packet size
-l Set data block size
-w Set TCP socket buffer size
-f Set UDT send buffer size
-F Set UDP send buffer size
-r Set UDT receive buffer size
-R Set UDP receive buffer size
-P Set number of parallel data streams
-d Set profiling time duration
-p Set port number for control channel
-i Set time interval of performance report
-b Bind server with an IP address (port)
-j Enable interval performance report
-q Enable server performance report
-m Enable multiple NIC-to-NIC profiling
-a Enable load balancing
-x Trigger FastProf to do fast profiling
-y Set bandwidth for FastProf
-Q Set RTT delay
-C Set performance gain ratio
-L Set limit of consecutive iterations without improvement
-N Set limit of total number of iterations

3.3.4 Implementation of TPG

TPG is implemented in C/C++ on Linux platform and is publicly available at [21].

The command-line options included in the current version is listed in Table 3.2.
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3.4 Profiling Over a Local Back-to-back Connection

We present profiling results of UDT collected over a local 10Gb/s back-to-back

connection between two regular Linux workstations at University of Memphis. Please

refer to Section 3.2.2 and Table 3.3 for parameter notations, some of which are used

in the captions of the performance figures in the sections hereafter.

Table 3.3 Notations Used in the Design and Evaluation of TPG and FastProf
Notations Definitions
hs Sender host
hr Receiver host
e Network connection
θ Control parameter set
B Connection bandwidth
Q Round Trip Time (RTT)
m Packet size
l Block size
l′ Iterative block size
f Buffer size
f ′ Iterative buffer size
fts UDT send buffer size
ftr UDT receive buffer size
fps UDP send buffer size
fpr UDP receive buffer size
p Number of parallel streams
d Data transfer duration
ui Average throughput of stream i
G Aggregate average throughput

R
Limit of the number of consecutive iterations without
performance improvement

M Limit of the total number of one-time profilings
C Performance gain ratio
A Bandwidth delay product rule

3.4.1 Testbed Configuration

We set up a local network testbed by back-to-back connecting two Dell workstations.

The average round trip time (RTT) between these two hosts through the direct

10Gb/s link is around 0.04 milliseconds, resulting in a bandwidth delay product

(BDP) of 50KB. The Internet connection between them, which is used for remote
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control, has an RTT of 0.25 milliseconds and a bandwidth of 95Mb/s, resulting in a

BDP of around 3KB. Both of the client (i.e., the sender, dragon.cs.memphis.edu)

and the server (i.e., the receiver, rabbit.cs.memphis.edu) are equipped with a

2.93GHz Intel Core(TM) 2Duo E7500 CPU, 2.9GB RAM, and Fedora 17 Linux

Operating System updated with 3.9.10-100 kernel. The default (i.e., the values

of net.core.rmem default and net.core.wmem default) and maximum (i.e., the

values of net.core.rmem max and net.core.wmem max) memory space allowed for

UDP socket buffer size is configured to be 32MB and 64MB, respectively.
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Figure 3.5 UDT profiling on packet size over a 10Gb/s back-to-back connection.
B = 10, Q = 0.04, d = 120, l = 10 · (m−16)−1, f ∈ {0.5, 1, 2, 4, 8, 16, 32} and p = 1.

3.4.2 UDT Profiling on Packet Size

Generally, the throughput can be improved by using a larger packet size to reduce

per-packet overhead. Many high-speed ethernet NICs support “jumbo” frame with

a packet size up to 9000 bytes and beyond. In the protocol stack of modern OS,

the largest MTU supported along the network connection is automatically discovered

and used [33,69]. UDT provides a UDT socket option UDT MSS to configure its packet

size. The profiling results across different packet sizes are plotted in Figure 3.5, which

shows that the UDT throughput performance is improved by using larger packet sizes

and setting the UDT option UDT MSS to be the maximal allowable MTU size along
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the path significantly improves the end-to-end data transfer performance. Note that

in this experiment, both UDT and UDP are configured with sufficient socket buffer

space to maintain the link speed.
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Figure 3.6 UDT profiling on block size over a 10Gb/s back-to-back connection.
B = 10, Q = 0.04, d = 120, m = 8, 972, l = k · (m− 16)− 1, and p = 1.

3.4.3 UDT Profiling on Block Size

We plot the profiling results on the block size in Figure 3.6, where the x-axis uses

a multiple (k) of the payload size2 (i.e., m − 16) to represent the block size. We

observe that when the buffer size is limited, increasing the block size does not improve

throughput too much, especially when the block size is comparable with the buffer

size; when there is sufficient buffer space, increasing the data block size significantly

improves the UDT throughput performance, but the improvement becomes less

obvious as the data block size increases.

Particularly, in Figure 3.6(a), when the buffer size is set to be 128KB, which

is larger than B ·Q, the peak throughput we observe is less 7Gb/s over the 10Gb/s

link; when the block size is further increased from 107,471 bytes to 179,119 bytes

(i.e., k from 12 to 20, since ⌈
107, 471

8, 956
⌉ = 12 and ⌈

179, 119

8, 956
⌉ = 20), the performance

drastically decreases. If we increase the buffer size to 0.5MB or 1.0MB, then UDT

2UDT payload size is equal to the UDT packet size minus UDT packet header length (16
bytes). If UDT MSS is 9,000, then UDT payload size is 9,000 − 20− 8− 16 = 8,956 bytes.
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achieves the peak throughput around 8.5Gb/s. If we further increase the buffer

size to 2MB or 4MB, the throughput performance decreases slightly, as shown in

Figure 3.6(b). When we continue to increase the buffer size from 8MB to 64MB,

the peak throughput further decreases, as shown in Figure 3.6(c). Our profiling

results on the data block size show that a larger block size generally leads to a

better performance, and an appropriately sufficient buffer is also necessary to ensure

a satisfactory throughput performance. In this test case, a buffer size of 0.5MB or

1.0MB seems to be appropriate.

We also observe that if the block size is exactly an integer multiple of the

UDT payload size, UDT exhibits very poor performance. As shown in Table 3.4,

when the link layer MTU is 9000 bytes, if we set the block size to be an integer

times of the payload size (i.e., k × 8956), the observed average throughput is just

around 0.08Gb/s. However, if we set the block size to be slightly different values,

e.g., l = k × payload size + ∆l, as shown in Table 3.4, where k is from 1 up to

24 and ∆l ∈ {−1,+1, 0}, we observe much better performance up to 7.0+Gb/s.

A conjecture about the reason causes this phenomena is as follows: UDT employs

timer-based selective acknowledgment and generates an acknowledgment at a fixed

interval (0.01 second). On the receiver side, an irregular sized packet indicates the end

of a message (block) and triggers an acknowledgement immediately. If the block size is

exactly an integer multiple of the payload size, UDT completely depends on the timer-

based acknowledging. Since the time interval is a fixed 10 milliseconds, there may not

be enough ACK packets for sender to adjust its sending rate accordingly in a timely

manner when the RTT is quite short (e.g., 0.04milliseconds in our case); if the block

size is not exactly an integer multiple of the payload size, more ACKs are generated

and delivered (triggered by the last irregular packet in each block), in which case the

sender receives more frequent ACKs and has more information to synchronize that

in turn results in better throughput performance. We use Equation 3.3 to calculate

56



Table 3.4 A Special Case of UDT Profiling on Block Size Over a 10Gb/s Back-to-
back Connection (B = 10, Q = 0.04, m = 8, 972, l = k × (m − 16) + ∆l, f = 1.0,
p = 1, and d = 300)

∆l

Times of Payload Size (k)
1 4 8 12 16 20 24

–1 2.785 5.547 6.398 6.842 6.649 7.371 7.400
+1 1.994 5.911 6.680 7.027 7.268 7.368 7.380
0 0.080 0.080 0.080 0.080 0.080 0.080 0.080

an appropriate block size, avoid wasting the space in a transmission unit, and trigger

more ACKs for sender’s responsiveness and potentially for better performance,

l = k × (m− 16)±∆l, (3.3)

where m is the packet size and k ∈ {1, 2, · · · } is a positive integer, and ∆l is also a

positive integer value within the range [1, m− 16].

3.4.4 UDT Profiling on Buffer Size

We plot the performance measurements in response to various send/receive buffer

sizes3 in Figure 3.7, where the x-axis takes the logarithm of the actual send/receive

buffer size (e.g., 7 = log2 128 represents 128KB). A rule of thumb for obtaining good

transport performance is that both the send buffer and the receive buffer should be

no less than the BDP, which is also true in our experiments with UDT.

In Figures 3.7(a), 3.7(b), and 3.7(c), as the send buffer size increases

from 128KB (27KB) to 1024KB (210KB), we observe a significant throughput

improvement. In the case of a small receive buffer size, e.g., 128KB or 256KB in

Figure 3.7(a), increasing the send buffer from 1.0MB (210KB) to 64MB (216KB)

drastically decreases the throughput. It is probably due to the fact that a larger send

3We use f to denote UDT/UDP send/receive buffer sizes in general, and use subscripts to
differentiate between different protocols, e.g., UDT send/receive buffer size (fts and ftr)
and UDP send/receive buffer size (fps and fpr), see Table 3.3 for references.
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buffer results in a longer RTT and in turn a larger BDP [48], which requires an even

larger receive buffer to maintain the transfer speed; in the case of a large buffer size,

e.g., from 1.0MB (210KB) to 64MB (216KB), we observe that the throughput first

decreases, and then stabilizes around 6Gb/s.
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Figure 3.7 UDT profiling on buffer size over a 10Gb/s back-to-back connection.
B = 10, Q = 0.04, d = 120, m = 8, 972, l = 89, 559, and p = 1. (a)–(c) different
curves correspond to different UDT/UDP receive buffer sizes; (d)–(f) different curves
correspond to different UDT/UDP send buffer sizes.

As shown in Figures 3.7(d), 3.7(e), and 3.7(f), a larger receiver buffer also

generally leads to a better performance, but the improvement becomes less obvious as

the receive buffer increases. In the case of a small send buffer (128KB and 256KB),

increasing the receive buffer does not have an obvious positive effect as shown in

Figure 3.7(d); and in the case of a large send buffer size, increasing the receive buffer

greatly improves the performance, as shown in Figures 3.7(e) and 3.7(f). The profiling

results on the buffer size show that to maintain a high transfer speed, a large receive
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buffer is needed, and an appropriate send buffer is also necessary. A larger send buffer

may incur a longer RTT and may not yield the best performance, in this test case, a

send buffer of 0.5MB or 1.0MB turns out to be appropriate, which is consistent with

the results in Section 3.4.3.

UDT Buffer and UDP Buffer Since UDT is implemented on top of UDP, both

UDT and UDP buffer sizes may affect the end-to-end throughput performance. To

send data packets, the UDT::send() function retrieves data from the application

buffer, puts them in the UDT send buffer, and then returns (if in non-blocking mode).

The data packets are sent to the receiver through the UDP channel by a data sending

thread. Similarly, on the receive side, data packets are received through the UDP

channel, and stored in the UDT receive buffer temporarily. When the UDT::recv()

function is called at receiver site, it pulls data packets from the UDT receive buffer

and delivers them to applications.

We next study the effects of different UDT buffer sizes and the UDP buffer

sizes on the end-to-end throughput performance. We first investigate the relationship

between the UDT send buffer (fts) and the UDP send buffer (ftr), and their effects

on the performance. Note that in this experiment both UDT/UDP receive buffer

sizes are configured to be 16MB to match the link speed. With a fixed UDP send

socket buffer, we vary the UDT send buffer from 128KB to 16MB, collect throughput

measurements, and plot them in Figure 3.8(a). Then, with a fixed UDT send buffer,

we vary the UDP send buffer from 128KB to 16MB and plot the corresponding

results in Figure 3.8(b).

The profiling results in Figure 3.8(a) show that when the receive buffer is

sufficiently large, the UDT send buffer plays a critical role on the throughput

performance. All the curves follow a similar pattern as the UDT buffer increases,

which is insensitive to the UDP send buffer as long as it is set to be a reasonably
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Figure 3.8 UDT profiling on UDT send buffer size and UDP send buffer size over a
10Gb/s back-to-back connection. B = 10, Q = 0.04, d = 180, m = 8, 972, l = 89, 559,
ftr = fpr = 16, and p = 1. (a) different curves correspond to different UDP send
buffer sizes; (b) different curves correspond to different UDT send buffer sizes.

large value that does not limit the sending rate, which may depend on the network

environment, e.g., larger than 256KB in our case. We obtain the peak throughput

when the UDT send buffer is 512KB or 1MB, and afterwards the throughput slightly

decreases, which is consistent with the results shown in Figure 3.7.

As shown in Figure 3.8(b), with a fixed UDT send buffer size, varying the

UDP send buffer does not affect the throughput too much, but different UDT send

buffer sizes result in significantly different average throughput, i.e., when it is 512KB

or 1MB, the average throughput is near 8Gb/s; when it is increased further from

1MB to 16MB or even larger, the average throughput decreases to around 6Gb/s.

Similarly, we also investigate the relationship between the UDT receive buffer

(fps) and UDP receive buffer (fpr) and their effects on the throughput performance.

We set both the UDT/UDP send socket buffer sizes to be 1MB based on the previous

profiling results. With a fixed UDP receive buffer size, we vary the UDT receive buffer

size and collect the corresponding throughput measurements shown in Figure 3.9(a).

Also, with a fixed UDT receive buffer size, we vary the UDP receive buffer size

and collect the corresponding throughput measurements shown in Figure 3.9(b).
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Figure 3.9 UDT profiling on UDT receive buffer size and UDP receive buffer size
over a 10Gb/s back-to-back connection. B = 10, Q = 0.04, d = 180, m = 8, 972,
l = 89, 559, fts = fps = 1, and p = 1. (a) different curves correspond to different
UDP receive buffer sizes; (b) different curves correspond to different UDT receive
buffer sizes.

Figure 3.9(a) show that a small UDP receive buffer limits the throughput even when

the UDT receive buffer is large; when the UDP receive buffer is sufficiently large,

the performance improves first but then reaches a plateau as the UDT receive buffer

increases. As shown in Figure 3.9(b), with a small UDT receive buffer, increasing the

UDP receive buffer does not improve the performance; but with a large UDT buffer,

increasing the UDP receive buffer improves the performance, which is still limited by

the UDT receive buffer though.

3.4.5 UDT Profiling on Parallel Streams

We vary the number of parallel streams and plot the corresponding aggregate

throughput performance in Figure 3.10. We observe that with two parallel data

streams, we achieve a throughput of 8Gb/s, and a larger number of parallel

streams may not necessarily lead to a better performance as shown in Figure 3.10,

which is mainly due to the significant overhead incurred by memory copying,

context switching, and multi-threaded implementation. On the hosts with sufficient

computing resources, running multiple parallel data streams generally improves the
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Figure 3.10 UDT profiling on parallel stream number over a 10Gb/s back-to-back
connection. B = 10, Q = 0.04, d = 120, m = 8, 972, l = 89, 559, and f = 1.0.

Table 3.5 Performance Comparison of Default UDT and TPG-tuned UDT Over a
10Gb/s Back-to-back Connection (B = 10, Q = 0.04, d = 120, and p = 1)

Index m l fts fps ftr fpr Gb/s
1 1472 1455 10 1 10 1 0.450
2 1472 8955 10 1 10 1 1.762
3 1472 65536 10 1 10 1 2.487
4 1472 89559 10 1 10 1 2.584
5 1472 89559 1 1 1 1 2.810
6 1472 179119 1 1 1 1 2.847
7 8972 89559 1 1 1 1 7.216
8 8972 179119 1 1 1 1 8.713
9 8972 179119 16 16 16 16 6.300
10 8972 179119 32 32 32 32 6.536

throughput performance, although the protocol itself may not be able to fully utilize

the link bandwidth. Determining the optimal number of parallel streams is not

straightforward as it highly depends on the configurations of end hosts and networks.

3.4.6 Comparison of Default UDT and TPG-tuned UDT

To illustrate how TPG improves the performance of UDT, we run 10 sets of data

transfer experiments using default UDT and TPG-tuned UDT. The performance

results are tabulated in Table 3.5 and further plotted in Figure 3.11 for a visual

comparison. Note that the italic and bold numbers in Table 3.5 indicate that they
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Figure 3.11 Performance comparison between default UDT and TPG-tuned UDT
over a 10Gb/s back-to-back connection. B = 10, Q = 0.04, d = 120, p = 1, and 1.0
second sampling interval. (a) average throughput; (b) instantaneous measurements
in experiments 1 to 5; (c) instantaneous measurements in experiments 6 to 10.

are default values in UDT. We observe that the TPG-tuned UDT in experiment 8

achieves a significant performance improvement over any other parameter settings.

3.5 Profiling Over Dual NIC-to-NIC Connections

We present UDT profiling results in a local testbed with dual 10Gb/s NIC-to-NIC

connections at New Jersey Institute of Technology. Please also refer to Section 3.2.2

and Table 3.3 for notations.

3.5.1 Testbed Configuration

The testbed is established by connecting two high end servers tiger.arcs.njit.edu

and rabbit.arcs.njit.edu that are both equipped with two 10Gb/s NICs. The

average round-trip delays of the two direct 10Gb/s links between these two servers are

both around 0.10 milliseconds, resulting in a BDP of 125KB. The client and server

hosts are both equipped with a 12 Cores Intel Xeon 2.40GHz CPU, 16GB RAM,

and Red Hat 7 Linux Operating System updated with 3.10.0 kernel. The system’s

default and maximum memory space allowed for UDP socket buffer is configured to

be 32MB and 64MB, respectively.
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3.5.2 Profiling Results

We use TPG to create two UDT socket-based connections and bind each of them on

one of the 10Gb/s NIC-to-NIC connections to transfer data blocks for 180 seconds.

The throughput performance over each of the two connections as well as their

aggregations are measured and plotted in Figure 3.12.

As shown in Figure 3.12(a), corresponding to the packet size, the behaviors

of UDT on both connections are quite similar. The throughput performance linearly

increases as the UDT packet size increases linearly when two UDT connections are

transferring data blocks simultaneously and independently.

We plot the throughput performance measurements correspond to various

block sizes in Figure 3.12(b), which shows that larger block size brings higher

performance and the improvement becomes less obvious as the block size keeps

increasing. As the block size is linearly increased from 1 up to 24 times of the

UDT payload size, the performance first linearly and significantly increases from

2.5Gb/s to 8.0+Gb/s and then stabilizes around 8.0Gb/s for each of the NIC-to-NIC

connections. The results shown in Figure 3.12(b) are different from the profiling

results over the 10Gb/s connection between two regular workstations shown in

Figure 3.6, where the performance keeps increasing slightly when the block size

approaches to 20 times of payload size; while in Figure 3.12(b), the throughput reaches

the peak when block size is 10 times of payload size and the stabilizes around there

as block size keeps increasing. The reason could be that a more powerful machine is

more responsive and can handle more data blocks in the same period of time, so data

blocks are transferred without staying in the buffer for longer time during which they

may get lost. Therefore, the data transfer speed quickly reaches the peak performance

given a relatively large block size (e.g., 10 times of payload size in this test case), and

after which the overhead of the context switch between the protocol itself and the

data transfer application (i.e., TPG) become less significant corresponding to the
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capability of the end host, which makes the effects of further increased block size

become marginal.
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Figure 3.12 UDT profiling over dual 10Gb/s back-to-back connections. B = 20,
Q = 0.1, d = 180, and p = 2. (a) profiling on packet size, l = 10 × (m − 16) − 1,
and f = 1; (b) profiling on block size, m = 8, 972, l = k × (m− 16)− 1, and f = 1;
(c) profiling on buffer size, m = 8, 972, and l = 179, 119; (d) profiling on buffer size
(fine-grained), m = 8, 972, and l ∈ {44779, 89559, 134339, 179119, 223399}.

In Figure 3.12(c), we set the block size to be a fixed 179119 bytes, vary the

buffer size from 0.5MB (2−1MB) to 512MB (210MB), and measure the throughput

performance. Over a back-to-back connection with a 0.1 millisecond of RTT delay,

increasing buffer may hurt the performance, and in our test case, a 0.5MB buffer or

a 1MB buffer produces the best performance. In Figure 3.12(c), we get the optimal

performance with a 1MB (20MB) buffer size and a given block size of 179,119 bytes.

65



In Figure 3.12(d) we stick around the buffer size at which we get the best

performance in Figure 3.12(c) and conduct more tests with more fine-grained buffer

size values, i.e., from 0.25MB to 1MB with a 0.25MB interval. When the block size

is relatively smaller, e.g., 44,779 bytes, a 0.5MB of buffer is better than a smaller

one (i.e., 0.25MB), if the buffer size keeps increaseing, the aggregate performance

decreases and stabilizes around 10Gb/s from 18Gb/s; when the block size is a

moderately large value, e.g., 89,559 bytes, 134,339 bytes, or 179,119 bytes, the

performance curves follow similar patterns, i.e., they significantly increase first, then

slightly decrease after reaching the peak with a buffer size of 0.5MB, and then stabilize

as the buffer size increases. Larger buffer size makes the performance stabilize at a

slightly higher performance (i.e., 12Gb/s, 13Gb/s, and 15Gb/s, respectively); when

the block size is aggressively large in comparison with buffer size, e.g., 223,899 bytes in

this test case, UDT needs a relatively larger buffer (i.e., 1.25MB) to achieve its peak

performance (i.e., 16Gb/s) that is slightly lower than the overall peak performance,

18Gb/s, which is achieved when block size is 44,779 bytes and buffer size is 0.5MB.

To sum up, the profiling results over the dual 10Gb/s back-to-back NIC-to-

NIC connections imply that UDT could behave well simultaneously and independently

over different physical connections as long as the end hosts are powerful enough. The

aggregate performance of UDT over dual physical NIC-to-NIC connections is simply

the sum of the throughput over each connection without major interferences.

3.6 Profiling Over Long-haul Emulated Connections

We present UDT profiling results over emulated connections with different round trip

times ranging from 0ms to 366ms at Oak Ridge National Laboratory (ORNL).
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3.6.1 Emulated Testbed

For memory-to-memory data transfers, throughput measurements are collected

between multi-core Linux host systems over a suite of emulated dedicated 10Gb/s

connections. The testbed consists of multiple Linux hosts of two types, 32-core and

48-core HP ProLiant servers, each with Broadcom 10GigE NICs, running Linux 2.6

kernel (CentOS release 6.6). It also consists of ANUE OC192 and IXIA 10GigE

hardware connection emulators, and 10Gb/s Force10 E300 WAN-LAN switch. These

hardware connection emulators transport the physical packets between hosts, delaying

them during the transit by the specified amount. We utilize these emulators to

collect throughput measurements for a suite of dedicated connections with RTT Q ∈

{0, 11.8, 22.6.45.6, 91.6, 183, 366} milliseconds. The lower RTTs match the physical

back-to-back connections, the ones in the mid range represent U.S. cross-country

connections, e.g., ones between DOE sites provisioned by OSCARS [7], and the higher

RTTs represent trans-continental connections.

3.6.2 Profiling Results

We plot the UDT profiling results on packet size, block size, buffer size, and number

of data streams over emulated connections with different RTT delays in Figure 3.13.

As shown in Figure 3.13(a), increasing packet size results in an almost linear

increase on throughput performance across different RTT delays. With a sufficiently

large buffer (e.g., larger than 256MB in our test cases), UDT achieves similar

performance with different delays. The longest delay of 366ms results in the lowest

performance comparing with other shorter delays.

The profiling results on block size in Figure 3.13(b) are consistent with our

observations in Section 3.4.3, i.e., a larger block size generally leads to a higher

performance across different RTT delays given sufficiently large buffer. Similarly, the

connection with the longest delay of 366ms has a lower performance than others.
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Figure 3.13 UDT profiling over 10Gb/s emulated connections with different delays
at ORNL. (a) l = (m− 16)× 10 − 1, f = 256, p = 1, and d = 600; (b) m = 8, 972,
f = 256, p = 1, and d = 600; (c) m = 8, 972, l = 89, 559, p = 1, and d = 600; (d)
m = 8, 972, l = 89, 559, f = 128, and d = 600.

Figure 3.13(c) also shows consistent profiling results on buffer size with the

observations in Section 3.4.4 in terms of curve patterns. In view of the measurements

across different RTTs, an appropriately sufficient buffer is necessary and larger ones

may lead to lower performance, but determining an appropriate buffer size is not

straightforward for connections with different delays. As shown in Figure 3.13(c), the

buffer space required to achieve the peak throughput moves rightwards (increases) as

the delay increases. Specifically, we have the following observations: i) on the back-to-

back connection4, the throughput decreases as buffer size increases from 2MB and the

4The delay of the back-to-back connection is less than 1ms, we simply denote it as 0ms.
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turning point is around 8MB; ii) for delays of 11.8ms and 22.6ms, the performance

significantly increases and reaches the peak as the buffer size increases from 2MB, and

then decreases and stabilizes at around 6.5Gb/s to 7Gb/s. A longer delay (22.6ms)

requires a larger buffer size (32MB) to reach the peak throughput than a shorter

one (11.8ms), which requires a relatively smaller buffer size (16MB); iii) for further

longer delays, i.e., 45.6ms, 91.6ms, 183ms, and 366ms, their performance curves

follow a similar pattern, i.e., first increase and reach the peak, and then stabilize;

and iv) generally, connection with longer delay needs larger buffer to reach the peak

throughput, and both the peak and stabilized throughput decrease as RTT increases.

It is confirmed again in Figure 3.13(d) that the optimal number of data streams

is not straightforward to determine. UDT does not seem to be best-suited for multiple

parallel data streams. There are not any clear patterns about the performance change

as the number of parallel stream changes over connections with different delays.
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Figure 3.14 Maximal observed performance comparison between default UDT and
TPG-tuned UDT without packet loss over ORNL 10Gb/s emulated connections with
various delays.

3.6.3 Comparison with Default UDT

We plot in Figure 3.14 the performance comparison between default UDT and TPG-

tuned UDT for both single and multiple streams over connections with different RTT

delay values. It shows that the tuned parameter settings using the profiling approach
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enabled by TPG greatly improve the UDT performance in comparison with its default

settings. It is also confirmed again that using multiple UDT data streams does not

make significant performance improvement on the average throughput in comparison

with single UDT data stream.
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Figure 3.15 Maximal observed performance comparison between Cubic TCP,
Scalable TCP, default UDT, and TPG-tuned UDT over ORNL 10Gb/s emulated
connections with various delays and zero packet loss.

3.6.4 Comparison with TCP

We compare the the maximum throughput achieved by TCP variants (Cubic TCP [52]

and Scalable TCP [58]), default UDT, and TPG-tuned UDT using both single

and multiple data streams over the emulated connections. Figure 3.15 shows the

performance comparison when the emulated connection generates zero packet loss,

and Figure 3.16 shows the performance comparison when the emulated connection

generates 0.1% packet loss that follows four different distributions including gaussian,

periodic, poisson, and uniform.

Both Figure 3.15 and Figure 3.16 show that TPG-tuned UDT produces

more stable performance over connections with various RTT delays. UDT has the

capabilities (after tuned by TPG) to outperform both itself with the default settings

and various TCP variants on the connections over a certain delay. We also notice that

in Figure 3.16 with such a level (0.1%) of loss rate, multiple data streams greatly help

70



RTT (ms)

0 11.8 22.6 45.6 91.6 183 366

G
b
/
s

0

2

4

6

8

10
bohr04 – ANUE – bohr05 (Gaussian 0.1%, Single)

Default UDT
TPG-tuned UDT
Cubic TCP
Scalable TCP

(a)

RTT (ms)

0 11.8 22.6 45.6 91.6 183 366

G
b
/
s

0

2

4

6

8

10
bohr04 – ANUE – bohr05 (Gaussian 0.1%, Multiple)

Default UDT
TPG-tuned UDT
Cubic TCP
Scalable TCP

(b)

RTT (ms)

0 11.8 22.6 45.6 91.6 183 366

G
b
/s

0

2

4

6

8

10
bohr04 – ANUE – bohr05 (Periodic 0.1%, Single)

Default UDT
TPG-tuned UDT
Cubic TCP
Scalable TCP

(c)

RTT (ms)

0 11.8 22.6 45.6 91.6 183 366

G
b
/s

0

2

4

6

8

10
bohr04 – ANUE – bohr05 (Periodic 0.1%, Multiple)

Default UDT
TPG-tuned UDT
Cubic TCP
Scalable TCP

(d)

RTT (ms)

0 11.8 22.6 45.6 91.6 183 366

G
b
/s

0

2

4

6

8

10
bohr04 – ANUE – bohr05 (Poisson 0.1%, Single)

Default UDT
TPG-tuned UDT
Cubic TCP
Scalable TCP

(e)

RTT (ms)

0 11.8 22.6 45.6 91.6 183 366

G
b
/s

0

2

4

6

8

10
bohr04 – ANUE – bohr05 (Poisson 0.1%, Multiple)

Default UDT
TPG-tuned UDT
Cubic TCP
Scalable TCP

(f)

RTT (ms)

0 11.8 22.6 45.6 91.6 183 366

G
b
/s

0

2

4

6

8

10
bohr04 – ANUE – bohr05 (Uniform 0.1%, Single)

Default UDT
TPG-tuned UDT
Cubic TCP
Scalable TCP

(g)

RTT (ms)

0 11.8 22.6 45.6 91.6 183 366

G
b
/s

0

2

4

6

8

10
bohr04 – ANUE – bohr05 (Uniform 0.1%, Multiple)

Default UDT
TPG-tuned UDT
Cubic TCP
Scalable TCP

(h)

Figure 3.16 Maximal observed performance comparison between Cubic TCP,
Scalable TCP, default UDT, and TPG-tuned UDT over ORNL 10Gb/s emulated
connections with various delays and 0.1% packet loss.
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improving the end-to-end aggregate throughput of both TCP and UDT for all four

types of loss distributions. TCP outperforms UDT for short delays, but UDT is not

as sensitive to delays as TCP, which indicates that UDT seems to be more suitable

for big data transfer over long-hual high-speed connections. TPG-tuned UDT is able

to outperform TCP with a certain delay for both single and multiple data streams.

3.7 Profiling Over Long-haul Physical Connections

We conduct extremely extensive (it includes 12,825 one-time profilings and totally

takes around 18 days to finish) UDT data transfer experiments using TPG over

the 10Gb/s physical connection between a sender (tubes.ftm.alcf.anl.gov) at

Argonne National Laboratory (ANL) and a receiver (midway.rcc.uchicago.edu)

at University of Chicago (UChicago). We present the complete profile in this section.

3.7.1 Profiling Results

This long-hual (380ms) physical connection is engineered to have such a long RTT

delay through layer 2 circuit within ESnet that from ANL hits the west coast and

back before it gets to University of Chicago.

We conduct UDT-based data transfer tests using TPG and build a complete

profile (a 2D table, see Chapter 4) that will be used in Chapter 4 by exhausting 12,825

combinations of the values of buffer size and block size. The profiling resolutions of

the block size and the buffer size are set to be one payload size and 2MB, respectively.

Every “one-time profiling” is set to take 120 seconds5.

Figure 3.17 shows the complete UDT transport profile over the 380ms physical

connection corresponds to block size and block size, where the UDT packet size is

5Longer time for a “one-time profiling” may improve the profiling accuracy. A two minutes
profiling time for each test seems to be a good trade-off between accuracy and efficiency
based on our experiences of conducting transport profiling over this physical connection.
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Figure 3.17 Complete UDT transport profile over the 10Gb/s 380ms physical
connection from Argonne National Laboratory to University of Chicago.

8,972 bytes, the block size changes from 1 UDT payload (i.e., 8, 972 − 16 = 8, 956

bytes) to 25 UDT payloads, the buffer size changes from 1MB to 1GB with a 2MB

interval, and the stream number is set to be one (p = 1). Over such a 380ms 10Gb/s

connection, as shown in Figure 3.17, both block size and buffer size may limit the

end-to-end performance. As for the buffer size, the BDP rule is still valid: if the buffer

size is less than 500MB, the maximal achieved throughput is less than 6Gb/s (the

connection has a BDP of 475MB); if the buffer size is larger than 500MB and up to

1GB, UDT has a chance to obtain performance comparable to the connection speed,

but occasionally, the achieved throughput is still only 6Gb/s. As for the block size,

larger block size seems to be necessary to achieve optimal performance because when

the block size is small (e.g., 1 to 4 times of UDT payload), the achieved throughput

is mostly less than 7Gb/s, and when the block size is large (e.g., more than 5 times

of UDT payload), UDT could achieve higher throughput and reach the connection

speed given sufficient buffer. Figure 3.17 implies that both large block sizes and large

buffer sizes are necessary but not sufficient conditions for UDT to achieve optimal

performance over high-speed long-haul connections. It is not straightforward to derive

the best parameter values (at least for block size and buffer size) using an analytical

approach especially when the network environment is subject to frequent changes.
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CHAPTER 4

TRANSPORT PROFILING OPTIMIZATION

4.1 Introduction

The exhaustive search-based profiling approach as detailed in Chapter 3 is prohibitively

time consuming when there exists a large parameter space, which is almost always the

case in most transport scenarios. In general, users may not be in favor of performing

transport profiling if the profiling overhead is comparable with the time needed for

their actual data transfer.

To improve the efficiency of transport profiling, we propose a stochastic

approximation-based profiling method, referred to as FastProf, to quickly determine

the optimal operational zone of a given data transfer method in high-performance

network environments. FastProf employs the Simultaneous Perturbation Stochastic

Approximation (SPSA) algorithm [77] to accelerate the exploration of the control

parameter space.

We implement the proposed method by leveraging the existing Transport

Profile Generator (TPG) [92], and test it using both emulations with real-life

performance measurements and experiments over physical connections with short

(2ms) and long (380ms) delays. Both the emulation and experimental results

show that FastProf significantly reduces the profiling overhead while achieving

a comparable level of end-to-end throughput performance with the exhaustive

search-based approach. FastProf makes it possible to conduct “on-line” profiling

to support time-critical data transfer, and provides an additional level of intelligence

to existing profiling-oriented toolkits such as iperf3 [8] and xddprof [20].

74



4.2 Profiling Overhead

The goal of transport profiling is to find the parameter values θ∗, at which the

throughput G(θ∗) reaches its global maximum. An exhaustive search-based transport

profiling is able to find the optima, but is very time consuming, and therefore is

particularly unsuitable for network environments that are subject to frequent changes

(e.g., configurations of end hosts, connection delay, connection bandwidth, etc.).

As a numerical example, in the Transport Profile Generator (see Chapter 3),

the selected UDT [48] transport method includes several commonly accessible

parameters including packet size (m ∈ {m1,m2, · · · ,mNm
}), block size (l ∈

{l1, l2, · · · , lNl
}), buffer size (f ∈ {f1, f2, · · · , fNf

}), and number of parallel data

streams (p ∈ {p1, p2, · · · , pNp
}). If a one-time profiling takes ∆t (typically on the

order of several minutes) to finish, it takes a total of ∆t ·Nm ·Nl ·Nf ·Np to generate

a complete profile before the actual data transfer. In the emulations in Section 4.5,

we fix the packet size m (i.e., Nm = 1) and the number p of parallel data streams

(i.e., Np = 1), and vary the block size from 1 to 25 times of the UDT payload size

(i.e., Nl = 25) and the buffer size from 1.0MB to 1.0GB with a 2.0MB step (i.e.,

Nf = 513). If a one-time profiling takes ∆t = 2 minutes, the exhaustive search

would take 25,650 minutes (around 18 days) in total, and hence is impractical in

real-life applications. As both the number of control parameters and the profiling

resolution increase, the time to obtain a complete profile rapidly increases, making

the exhaustive search-based approach practically infeasible.

4.3 Fast Profiling Based on Stochastic Approximation

To obviate the need of conducting an exhaustive profiling [92], we propose a fast

profiling method based on the Simultaneous Perturbation Stochastic Approximation
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Figure 4.1 The “black-box” data movement system.

algorithm [77], referred to as FastProf, to quickly determine the “best” parameter

values prior to actual data transfer.

4.3.1 Rationale on the Use of Stochastic Approximation Methods

Figure 4.1 shows a typical data transfer scenario where a user request, which specifies

a sender host and a receiver host, is processed for data transfer in a certain network

environment. Since we mainly focus on transport profiling at the application layer

rather than system tuning at lower layers, the whole data transfer process could be

treated as a “black box” system, where the input is the set of control parameter

values θ and the output is the corresponding throughput measurement G(θ). Based

on this model, the SPSA algorithm is appropriate to be used for quickly determining

the optimal parameter values because: i) it does not require an explicit formula

of G(θ) but only its “noise corrupted” measurements y = G(θ) + ξ, which can be

obtained by running a “one-time profiling” using existing tools such as iperf3 [8] and

TPG [92] with a set of specified parameter values; ii) it does not require any additional

information about system dynamics or input distribution. These are highly desirable

features as they account for the dynamics and randomness in: i) data transfer process;

ii) end host and network environments, and iii) performance measurements.
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For a given data transfer, if the jumbo frame is supported along the path, it

is desirable to enable it to minimize per-packet overhead [33]. Thus, the packet

size m can be decided by exploring the Path MTU (PMTU) without profiling.

Although multiple parallel data streams may improve performance, they typically

introduce inter-stream competition that may lead to complex transfer dynamics even

over dedicated connections. Furthermore, since many high-performance transport

methods including UDT are not best suited for environments with a high level of

concurrency [49], we focus our study on one single data stream (i.e., p = 1). Similar

to TPG (see Chapter 3 and [92]), where UDT is used in the implementation as a use

case, in this Chapter, we also use UDT as an example transport method and consider

block size l and buffer size f as its control parameters (or the input of the black box

system in Figure 4.1), i.e., θ = [l, f ]T .

f

l

(lmax, fmax)

( l*, f *)

(l1, f1)

acceptable area

,k l k kl c+ D,k l k kl c-D

,k f k kf c+ D

,k f k kf c-D

y+

y-

kl

kf

Figure 4.2 Visualized profiling process of FastProf.

In the exhaustive search, we need to construct a complete 2D table of

performance measurements by running (Nl · Nf) times of one-time profiling, as

visualized in Figure 4.2, where the l-axis and f -axis represent block size and buffer

size, respectively. Note that each data point in Figure 4.2 is actually a 3-tuple

(l, f ,G(l, f)), where G(l, f) is the corresponding observed throughput. The proposed
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FastProf method attempts to explore a path of profiling data points in this 2D table

to reach the global optimum within an “acceptable area”.

4.3.2 Stochastic Approximation Methods

Based on the model shown in Figure 4.1, we assume that the average throughput

performance is a function G(θ) of control parameters θ. The goal is to find the

control parameters θ∗ that maximize G(θ) within the feasible space Θ, i.e., max
θ∈Θ

G(θ).

Following the standard Kiefer-Wolfowitz Stochastic Algorithm (KWSA) [59], we have

θ̂k+1 = θ̂k + ak · ĝk(θ̂k), (4.1)

where ak > 0 is a scalar gain coefficient, g(θ) ≡
∂G(θ)

∂θ
is the gradient of G(θ), and

ĝ(θ̂k) is an approximation of g(θk).

We assume that the “noise corrupted” observation, denoted as y(θ), is available

at any value of θ ∈ Θ, given by

y(θ) = G(θ) + ξ, (4.2)

where ξ is the noise incurred by the randomness in the network connection and end-

host system dynamics. In fact, y(θ) is the observed average throughput performance

of a one-time profiling with a specific set of parameter values θ during a specific time

duration [0,∆T ]. Given θ = [l, f ]T , the solution based on the classical KWSA method

is a multi-variable recursive optimization procedure, defined as
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The gradient g(θ) of the function G(θ) is approximated by a “two-sided” finite

difference given by
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, (4.4)

where ck is a small positive number. The coefficients ak and ck in the above equations

satisfy the following conditions to guarantee the convergence

lim
k→∞

ak = 0, lim
k→∞

ck = 0,
∞
∑

k=1

ak = ∞,
∞
∑

k=1

(
ak

ck
)2 < ∞. (4.5)

We further explore the Simultaneous Perturbation Stochastic Approximation

(SPSA) [77, 78] algorithm to further reduce the profiling overhead. Instead of

collecting observations along all dimensions of the gradient, SPSA randomly perturbs

the control parameter set in two separate directions and collect two corresponding

measurements. The gradient approximation of the throughput function based on

SPSA is given by
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lk

fk












=

y+ − y−

2∆l, kck
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, (4.7)

where the coefficient sequence {∆i, k} (i = 1, · · · , d for d dimensional vector, and in

this work d = 2) are independent and symmetrically distributed around 0 with finite

inverse E|∆−1
i, k| over all parameter components i and time steps k. A simple and

effective way to decide each component of {∆i, k} is to use symmetric Bernoulli ±1

distribution with a probability of 0.5 for each outcome of either +1 or –1 [78].

4.3.3 Convergence of SPSA-based FastProf

The convergence of SPSA-based FastProf is important as it affects the quality of the

profiling results as well as the efficiency of the profiler. To explore the applicability of

SPSA in the profiling optimization problem and investigate its convergence property,

we justify the conditions that lead to the convergence in the context of FastProf.

As pointed out by Spall in [79] (pp. 161), the conditions for convergence can

hardly be all checked and verified in practice due to the lack of knowledge onG(θ). We

provide some intuitive arguments based on the problem nature, and some empirical

verifications based on the extensive experiments to justify the appropriateness of

SPSA in the profiling optimization problem. According to the Theorem 7.1 in [79]

(pp. 186), if Conditions B.1′′ −B.6′′ hold and θ∗ is a unique maximum of G(θ), then

for SPSA, θ̂k almost surely converges to θ∗ as k → ∞.

The coefficient sequences ak and ck we choose and the distribution we follow to

generate the simultaneous perturbations {∆i, k} easily validate Conditions B.1′′ and

B.6′′ (see Section 4.4.1 and [78] for more details).
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The main concern of Conditions B.2′′ and B.3′′ is to ensure that θ̂k is close

enough to θ∗ such that θ̂k has a tendency to converge to θ∗. These two conditions

are valid in our problem scenario because: i) the requirement for Condition B.3′′,

i.e., supk≥0

∥

∥

∥
θ̂k

∥

∥

∥
< ∞, can be verified since the control parameter values of block

size and buffer size are both finite positive numbers; ii) since the feasible regions of

the control parameters of FastProf are finite and mapped to a limited range (e.g.,

[1.0, 25.0] in our test cases in Section 4.5 and Section 4.6) of the iterative variables,

θ̂k (including the starting point) is sufficiently close to θ∗; iii) θ∗ is not a single point

but an “acceptable area” including a set of adjacent points (see Figure 4.2); iv) from

a practical point of view, FastProf attempts to move θ̂k to the nearest point within

the feasible space if it deviates from the feasible space, and then adjust the step size

accordingly to avoid such situations; and v) our extensive emulations and experiments

in Section 4.5 and Section 4.6 confirm the closeness and natural tendency even if the

starting point is randomly selected.

The way we generate the simultaneous perturbations {∆i, k} (see Section 4.4.1)

ensures that {∆i, k} is a mutually independent sequence, which is independent

of θ̂0, θ̂1, · · · , θ̂k. The observed noise during data transfer is mainly caused by

the dynamics of end-hosts and network segments. Since we measure the average

throughput in time duration [0,∆T ] (see Equation 3.1), which captures both the

positive noise and negative noise, the long-term conditional expectation of the

observed noise is considered to be zero, i.e., E[(ξ(+)−ξ(−))|{θ̂0, θ̂1, · · · , θ̂k},∆k] = 0. In

addition, since {∆i, k} is generated following the symmetric Bernoulli ±1 distribution

with a probability of 0.5 for each outcome of either +1 or –1, E|∆−1
i, k| is uniformly

bounded. The observations y(θ̂k ± ck∆k) are also bounded by the link capacity, so

the ratio of measurement to perturbation E

[(

y(θ̂k ± ck∆k)

∆i, k

)2]

is uniformly bounded

over i and k. Hence, Condition B.4′′ holds.
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As for Condition B.5′′, it is theoretically unverifiable whether G(θ) is three-

times continuously differentiable and bounded since G(θ) is practically unknown.

However, the smoothness of G(θ) can be intuitively verified based on the nature of the

problem being studied since the throughput G(θ) as well as the gradient g(θ) ≡
∂G(θ)

∂θ

are at least bounded by the connection capacity and the finite feasible region of θ.

In addition to the above justification, we also would like to point out that

although the throughput performance should have a unique theoretical peak over the

feasible control parameter space given a specific snapshot of the status of end-hosts

and network environments, it has been observed in our experiments that different

runs with identical parameter values may yield different throughputs, which makes

the uniqueness of θ∗ unverifiable. But the observed performance y = G(θ) + ξ indeed

shows a peak property over the feasible parameter region. As shown in Figure 3.13(b),

increasing the block size improves the performance if the buffer is sufficient; otherwise,

increasing the block size decreases the performance especially when the block size is

comparable with the buffer size [92]. In Figure 3.13(c), it is more clearly shown that

larger buffer sizes may not always lead to better performance given a fixed block size,

and this trend is consistent for different RTTs only with different turning points.

4.4 Implementation of An SPSA-based Transport Profiler

4.4.1 An SPSA-based Profiling Process

We present our SPSA-based profiling process as follows.

1. Select an either fixed or random starting point within the feasible space of block
size (l) and buffer size (f).

2. Check the termination conditions (see Section 4.4.3 for details) to continue or
terminate the profiling process.

3. Calculate ak =
a

(A+ k + 1)α
and ck =

c

(k + 1)γ
, where we set α = 0.602,

γ = 0.101, and A = 0.0 (or other values much less than the expected/allowed
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number of iterations). The step sizes a and c are determined empirically based
on the size of the entire search space.

4. Generate a pair ∆{l, f} ∈ {+1, − 1} of perturbations following the symmetric
Bernoulli ±1 distribution with a probability of 0.5 for each outcome of either
+1 or –1.

5. Perform one-time profiling twice to collect two corresponding throughput
observations y±, see Equation 4.6.

6. Generate the simultaneous perturbation approximation to the unknown gradient
g(θk) using Equation 4.7.

7. Apply the standard stochastic approximation form (Equation 4.1) to update θk
to a new value θk+1, increase k by 1 (i.e., k = k + 1), and go back to Step 2.

4.4.2 Profiling Precision

We set the two elements of the control parameter set used in the stochastic

approximation model, denoted as θ′ = [l′, f ′]T , as positive numbers within a

reasonably selected range to ensure a comparable magnitude of each parameter.

We perform a rounding operation in calculating the actual values of the control

parameters l and f in the case of fractional results.

The profiling unit of block size, denoted by µl, is defined as one payload

size, and the block size l (l ≥ 1) is defined as a multiple of the payload size.

The profiling process transfers a data block of λl(l
′) · µl bytes each time by calling

the appsend()/apprecv() functions, which may in turn call the send()/recv() API

functions of the underlying transport protocol multiple times to completely deliver an

entire data block. If a UDP-based protocol such as SABUL [47] or UDT [48] is used,

it is recommended to set the block size to be a multiple of the protocol’s payload size

if possible to avoid UDP automatic segmentation. For example, UDT’s payload size

is UDT data packet size (m) minus UDT header length [47], i.e., the profiling unit of

block size µl is given by

µl = m− 16 = (MTU− 28)− 16 = MTU− 44, (4.8)
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where UDT header is of 16 bytes, and IP and UDP headers are of 20 and 8 bytes,

respectively (hence 28 bytes in total). For example, on our testbed in Section 4.5.1,

the jumbo frame is enabled and the MTU is 9,000 bytes, then µl is 8,956 bytes.

The profiling unit of buffer size, denoted by µf , is decided by the specific

profiling precision chosen by the end user in any unit within a feasible profiling range,

e.g., 1Byte, 512KB, 1.0MB, 2.0MB, or others.

Based on the above profiling units, we can calculate the actual values of block

size (l) and buffer size (f) for performance observations (i.e., the calculations of y+

and y− through one-time profilings) given by











l = round
(

λl(l
′) · µl

)

f = round
(

λf (f
′) · µf

)

, (4.9)

where λl and λf are scaling functions that may take different profiling patterns. For

example, with a function λf(f
′) = 2f

′

, the buffer size would exponentially increase as

the iterative value of buffer size f ′ increases.

4.4.3 Termination Conditions

Many efforts (e.g., [40, 82]) have been devoted to the termination conditions of SA

methods since the KWSA algorithm was first proposed [59]. In FastProf, we consider

the following three simple and practical conditions to guarantee the performance and

the termination of a profiling process.

Early Termination – the C rule The best throughput performance y∗ of a given

data transfer method over a given network connection is unknown until a complete

profile is obtained. We define the performance gain ratio of a one-time profiling as

ρ =
y

y∗
, (4.10)
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where y is the observed throughput of a one-time profiling. Over a dedicated

connection, we consider bandwidth B as a known constant since it is reserved in

advance through services such as OSCARS [7] and set y∗ = B. When FastProf

reaches an operational zone that produces a throughput y with a performance gain

ratio no less than C, i.e.,

ρ =
y

y∗
=

y

B
≥ C, (4.11)

FastProf terminates. Note that this condition may or may not be satisfied in a

certain one-time profiling.

Upper Bound – the M rule FastProf terminates when the number of one-time

profilings exceeds a threshold M, which is typically set as M ≪ (Nl ·Nf ). If M =

(Nl ·Nf), FastProf rolls back to the exhaustive search as in TPG [92].

Impeded Progress – the R rule If the number of consecutive iterations that do

not produce any performance improvement compared with the best one observed so

far exceeds an upper bound (R), FastProf terminates.

4.5 Emulation-based Performance Evaluation

We conduct profiling emulations using the profiling data collected on a real-life testbed

to gain insights into the behaviors of FastProf and also compare FastProf with other

search algorithms including random walk [61] and Tabu search [44].

4.5.1 Data Collection

We build a complete profile (the 2D table in Figure 4.2) by exhausting Nl·Nf = 12,825

combinations of block size and buffer size, whose profiling resolutions are set to be

one payload size and 2MB, respectively. These results are collected by running TPG
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tests over a 10Gb/s 380ms connection between a sender host at Argonne National

Laboratory (ANL) and a receiver host at University of Chicago (UChicago). We

conduct profiling emulations based on this complete profile.

4.5.2 Scaling Functions and Parameter Settings

We use Equation 4.12 to calculate the actual parameter values (θ = [l, f ]T ) based on

the iterative parameter values (θ′ = [l′, f ′]T ),






















































l = round
(

λl(l
′) · µl

)

=

round

{

(

(l′ − l′min) ·
(lmax − lmin)

(l′max − l′min)
+ lmin

)

· µl

}

f = round
(

λf (f
′) · µf

)

=

round

{

(

(f ′ − f ′
min) ·

(fmax − fmin)

(f ′
max − f ′

min)
+ fmin

)

· µf

}

. (4.12)

In particular, the profiling range for block size is from 1 payload to 25 payloads

(i.e., lmin = 1, lmax = 25, and µl = 8,956 bytes), and the profiling range for buffer size

is from 1MB to 1GB (i.e., fmin = 1, fmax = 1,024, and µf = 1,048,576 bytes). We

set the iterative variables for both block size and buffer size to be from 1.0 to 25.0

(i.e., l′min = 1.0, l′max = 25.0, f ′
min = 1.0, and f ′

max = 25.0) to ensure that they are of

comparable and consistent magnitudes.

4.5.3 Performance Measurements

We consider several different parameters in the profiling emulations: i) the starting

point (SP) (either fixed or randomly selected); ii) the A rule (either disabled or

enabled)1; iii) the value of M (either ∞ or 2R); iv) the value of C (selected from

{0.95, 0.90, 0.80}); and v) the value of R (integers from 1 to 50). We measure

four types of performance metrics in 5,000 runs: i) the average throughput; ii) the

1If A is enabled, FastProf only searches in the feasible space where the buffer size is larger
than BDP, i.e., f ≥ BDP; otherwise, it searches the entire feasible space.
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percentage that leads to a desired performance; iii) the average profiling time as

indicated by the average number of one-time profilings; and iv) the longest profiling

time as indicated by the maximum number of one-time profilings. The subfigures

in each figure in this section correspond to these four types of performance metrics

labeled by A, M, C, and starting point (SP), respectively.

Overall Performance We randomly select a starting point within the feasible

region of control parameters, disable the A rule, and plot the results in Figure 4.3,

which shows that FastProf is able to find a set of control parameter values that

result in satisfactory performance in a short time.
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Figure 4.3 Overall performance of FastProf.

The actual throughput obtained by FastProf is considered as the most

important performance metric. Figure 4.3(a) shows that a satisfactory throughput
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performance can be achieved as long as a reasonably large R is specified (e.g., >10).

As R increases, the average throughput performance explored by FastProf first

increases and then stabilizes at the desired level as specified by the value of C.

We measure and plot the percentage of cases that yield a user-desired

performance among all 5,000 runs in Figure 4.3(b). As R increases, the percentage

significantly increases up to 100% for C ∈ {0.80, 0.90}. Although the percentage does

not reach 100% as R approaches 50 when C = 0.95, we still achieve slightly higher

performance near or above 9.0Gb/s as R increases, as shown in Figure 4.3(a).

We measure the profiling speed by calculating the average number of one-time

profilings conducted by the profiler among all 5,000 runs. As expected, this average

number generally increases as R increases, as shown in Figure 4.3(c). For a relatively

smaller C value (e.g., 0.80 and 0.90 in our test cases), it does not always increase as R

increases since the percentage of yielding a desired performance reaches 100% quickly

and FastProf terminates the profiling process without consuming more profiling

time; while for a larger C value (e.g., 0.95 in our test cases), it takes longer to obtain

a higher percentage for a desired performance. As R increases, there is a higher

probability to obtain a desired performance by conducting more one-time profilings,

but the actual average throughput performance does not increase as significantly as

the percentage of obtaining desired performance does. This observation implies that

an appropriate R is needed: a larger value may lead to a longer profiling process

without perceivable performance improvement.

We measure and plot the maximum number of one-time profilings among all

5,000 runs in Figure 4.3(d), which reflects the longest profiling time that FastProf

may take. Since the number of one-time profilings is not limited (M = ∞), the

profiling process terminates only when either a desired performance is achieved or the

number of consecutive iterations without performance improvement reaches R. As

R increases, there is more space to be explored by FastProf for better performance,
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and the longest profiling time among all runs may either stop increasing (for smaller

C) or keep increasing (for larger C).

Effects of M As shown in Figure 4.3(d), as R increases, the maximum number of

one-time profilings resulted from a larger C = 0.95 is up to 250. Even if a one-time

profiling takes only 2 minutes, the profiler would take at most 10 hours to obtain a

desired performance with a relatively high probability. In practice, due to the complex

system and network dynamics, the profiler may run much longer without getting a

desired performance. We avoid this situation by setting the upper bound of the total

number of one-time profilings (M) to be a finite value.
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Figure 4.4 Effects of M on profiling performance.

The results in Figure 4.4 are based on C = 0.95, the upper bound M = 2R,

and the same other parameters as those in Figure 4.3. Setting such an upper bound
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provides a guarantee on the profiling time without significantly affecting the profiling

performance. Figure 4.4(c) shows that the average number of profilings is slightly

reduced with M = 2R, and Figure 4.4(d) shows the maximal number of one-time

profilings among all 5,000 runs is limited by the finiteM. Restricting the total number

of one-time profilings does not perceivably affect the average profiling performance, as

shown in Figures 4.4(a) and 4.4(b). As R increases, the actual average performance

increases and stabilizes between 8.0Gb/s and 9.5Gb/s, which is considered to be a

satisfactory performance over a 10Gb/s connection. This observation implies that

for one specific run of FastProf, if a desired performance could not be achieved in a

reasonable amount of time, simply extending the profiling process may not improve

the performance. Therefore, this upper bound M should be set for FastProf based

on the expectation of the tolerable amount of profiling time. In the experiments

in Section 4.6, we set this value to be M = 2R. Note that since the user-desired

performance tends to be achieved before the number of profilings reaches or exceeds

M when C is relatively small (e.g., 0.80), we choose a relatively larger C = 0.95 and

plot in Figure 4.4 the effects of M on the profiling performance. The measurements

in Figure 4.4 suggest that setting M to be a finite value is more useful and even

critical for an aggressive C.

Effects of A We plot in Figure 4.5 the comparisons between the cases where A

is disabled and enabled. When A is enabled in Figure 4.5, the profiling range for

buffer size is from fmin = 475MB to fmax = 1, 024MB since a delay of 380ms over

a connection of 10Gb/s bandwidth yields a BDP of 475MB. Since the ranges of

iterative variables l′ and f ′ are both from 1.0 to 25.0, the buffer size range mapped

to the range of iterative variable f ′ is actually [475, 1024], i.e., [475, 1024] is linearly

mapped to [1.0, 25.0]. We plot the effects of cutting the search space into nearly half

with larger buffer sizes in Figure 4.5. Firstly, for R < 10, the average performance
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when A is enabled is slightly higher than that when A is disabled, see Figure 4.5(a).

This is because the number of profilings is mainly limited by the value of R when it

is relatively small. The profiling process terminates before FastProf further explores

the space for improvement, and thus the performance mainly depends on the initial

starting point. As R increases, the differences made by A become less obvious, and

the average performance converges and stabilizes around 9Gb/s. Secondly, when

C is larger and hard to achieve (e.g., C = 0.95), enabling A results in a slightly

lower percentage of obtaining desired performance and a slightly longer profiling

time in comparison with the case where A is disabled, see Figures 4.5(b) and 4.5(c).

Figure 4.5(d) shows that enablingA does not make significant difference on the longest

profiling time. Note that in Figure 4.5(d) we set M = ∞ rather than M = 2R to

eliminate the effects of M and show only the effects of A on the profiling time.
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Figure 4.5 Effects of A on profiling performance.
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Effects of Starting Point (SP) To study the effects of the SP, we fix the starting

point of the profiling at the “left-bottom” (l1, f1) = (1, 1), i.e., one payload size for

block size and 1MB for buffer size (see Equation 4.12 and Figure 4.2) and re-run

the emulations using the same other parameter settings as those in Figures 4.3, 4.4,

and 4.5, and compare the results with those with randomly selected SPs in Figure 4.6.

We observe that randomly selected SP produces: i) either slightly higher (when R is

small) or the same (when R is large) average throughput performance, as shown in

Figure 4.6(a); ii) a consistently higher average probability (percentage) of obtaining a

user-desired performance, as shown in Figure 4.6(b); iii) a consistently shorter average

profiling time, as shown in Figure 4.6(c); and iv) a more stable status in the worst

case, as shown in Figure 4.6(d).
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Figure 4.6 Effects of starting point (SP) on profiling performance.
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4.5.4 Trace of the Profiling Process

To show the detailed profiling process of FastProf, we set R = 35 and C = 0.95,

disable A, and then keep track of each pair of parameter values (l, f) as the profiling

process progresses. We plot a trace of control parameter values profiled by FastProf

in Figure 4.7, where we use (green) circles to indicate the values of θ̂k, use triangles

to indicate the perturbations θ̂k ±∆k, i.e., the values used by FastProf to measure

y+ and y−, and use red circles (i.e., the last one on the path) to indicate the control

parameter values that produce a desired performance, i.e., the ones in the “acceptable

area” (user-desired) as shown in Figure 4.2. In this tracing experiment, we set a = 25

and c = 9.5, and fix the SP at (1, 1). Figure 4.7 shows that FastProf is able to

explore a path in the search space from the fixed starting point to an acceptable area.
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Figure 4.7 Profiling trace with R = 35, C = 0.95, and disabled A.

4.5.5 Comparison with Other Search Algorithms

We conduct profiling emulations using two existing heuristics, random walk [61] and

Tabu search [44], and compare their performances with FastProf. We measure

the same four performance metrics as in Section 4.5.3 and plot the results in

Figure 4.8. In comparison with random walk and Tabu search, FastProf consistently
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produces significantly better performance (Figure 4.8(a)), has a higher probability of

obtaining a user-desired performance (Figure 4.8(b)), takes much less profiling time

(Figure 4.8(c)), and has much better worst cases (Figure 4.8(d)) among all 5,000 runs.
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Figure 4.8 Profiling comparison among FastProf, random walk, and Tabu search.

4.6 Experiment-based Performance Evaluation

We implement FastProf based on TPG and conduct experiments over two physical

connections with 2ms and 380ms RTTs in real-life network environments.

4.6.1 Experimental Results on ANL Testbed

We run FastProf over 10Gb/s physical connections from ANL to University of

Chicago with 2ms and 380ms delays. In these experiments, we set y∗ to be the link
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capacity (i.e., y∗ = 10Gb/s), a = 30.0, c = 9.5, R = 30, and M = 60, and collect

experimental results in response to various profiling precision restrictions on buffer size

including 2.0MB, 1.0MB, 512KB, and 1Byte (i.e., without precision restriction)2.
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Figure 4.9 Experimental results of FastProf on a 10Gb/s 2ms physical connection
with 1Byte buffer resolution. (a) performance comparison of FastProf-tubed UDT,
TPG-tubed UDT, single/multiple stream(s) TCP, and default UDT; (b) profiling
time of FastProf.

We run each test for 10 times, measure the average performance and average

profiling time (as indicated by the number of profilings) together with their standard

deviations, and plot the experimental results with different profiling precisions on

buffer size in Figure 4.9 (2ms, 1Byte), Figure 4.10 (380ms, 2.0MB), Figure 4.11

(380ms, 1.0MB), Figure 4.12 (380ms, 512KB), and Figure 4.13 (380ms, 1Byte). In

each comparison, in addition to the average throughput achieved by FastProf-tuned

UDT, we also include: i) the maximal throughput achieved by single stream TCP;

ii) the maximal throughput achieved by multiple streams TCP; iii) the maximal

throughput achieved by TPG-tuned UDT using exhaustive search; and iv) the

performance achieved by default UDT. The results show that FastProf is able

2We perform rounding operations to ensure that an integer number of bytes are set for both
the block size and the buffer size.
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Figure 4.11 Experimental results of FastProf on a 10Gb/s 380ms physical
connection with 1.0MB buffer resolution. (a) performance comparison of FastProf-
tuned UDT, TPG-tuned UDT, single/multiple stream(s) TCP, and default UDT; (b)
profiling time of FastProf.

to consistently find a set of control parameter values that produce a satisfactory

throughput in a short period for both short (2ms) and long (380ms) RTT delays.
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Figure 4.10 Experimental results of FastProf on a 10Gb/s 380ms physical
connection with 2.0MB buffer resolution. (a) performance comparison of FastProf-
tubed UDT, TPG-tuned UDT, single/multiple stream(s) TCP, and default UDT; (b)
profiling time of FastProf.

For a RTT of 2ms, TCP is better as it can achieve the link speed performance

using a single stream. Tuned by TPG using exhaustive search, UDT produces a
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Figure 4.12 Experimental results of FastProf on a 10Gb/s 380ms physical
connection with 512KB buffer resolution. (a) performance comparison of FastProf-
tuned UDT, TPG-tuned UDT, single/multiple stream(s) TCP, and default UDT; (b)
profiling time of FastProf.

slightly lower performance than TCP, despite of which Figure 4.9 still shows the

effectiveness of FastProf in reducing the profiling overhead as well as achieving

a comparable level of performance. The performance explored by FastProf is

quite stable (> 8.0Gb/s): when C ∈ {0.80, 0.85}, FastProf achieves a user-desired

performance in all 10 runs with less than 30 one-time profilings on average; when

C ∈ {0.90, 0.95}, although the desired performance can only be occasionally achieved,

the actual performance produced by FastProf-tuned UDT is consistently higher than

8.0Gb/s, see Figure 4.9(a).

For a long RTT of 380ms, carefully tuned UDT is obvious a better choice to

conduct the data transfer. TPG-tuned (using exhaustive search) UDT gives us the

highest performance one can possibly expects, thus we use it as the comparison base.

As shown in Figures 4.10, 4.11, 4.12, and 4.13, no matter with or without profiling

precision restrictions on buffer size, FastProf is able to discover an appropriate set

of values for block size and buffer size that result in an average performance between

7.5Gb/s and 8.5Gb/s. The performance achieved by FastProf is comparable with

the results achieved by the exhaustive search-based approach that we manually
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Figure 4.13 Experimental results of FastProf on a 10Gb/s 380ms physical
connection with 1Byte buffer resolution. (a) performance comparison of FastProf-
tuned UDT, TPG-tuned UDT, single/multiple stream(s) TCP, and default UDT; (b)
profiling time of FastProf.

conducted for emulations in Section 4.5, while at the same time the profiling time

is significantly reduced from 18 days to several hours at most. On the other hand,

the performance achieved by single stream TCP, multiple streams TCP, and default

UDT are all far from satisfactory.

In above experiments, we observe that enabling the A rule does not necessarily

improve the performance, which implies that FastProf is not sensitive to the size of

the parameter search space. In particular, when the buffer size precision restriction

is removed, for a longer RTT, enabling A improves the performance in terms of

both average performance (Figure 4.13(a)) and average profiling time (Figure 4.13(b))

when C is set to be a relatively conservative value (e.g. 0.80, 0.85, and 0.90); when C is

set to be an aggressive value (e.g. 0.95), enabling A improves the average performance

but meanwhile consuming more profiling time (Figure 4.13(b)).
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CHAPTER 5

TRANSPORT PROTOCOL DESIGN

5.1 Introduction

Sustaining a high end-to-end data transfer performance over dedicated channels in

High-performance Networks (HPNs) by using TCP-like transport protocols requires

physical media with an extremely low loss rate (e.g., 10−11) that is not available in

today’s hardware [41,42,81]. Due to the performance limitation of the standard TCP,

many TCP enhancements have been proposed (see Section 5.6), which employ various

methods for the control of parameter increasing and deceasing in TCP’s Additive

Increase Multiplicative Decrease (AIMD) algorithm (e.g., Scalable TCP [58]). UDP-

based protocols also have been proposed and implemented typically with non-AIMD

algorithms. Some of them such as UDT [49] consider fairness as an important issue in

their design, which is not desirable for transport control over dedicated channels; and

others such as RBUDP [53] make an assumption that the receiver end host is not the

bottleneck, which oftentimes is not the case over high-speed dedicated connections.

In this Chapter, through analysis of the data packet receiving process on Linux

platform and performance modeling of the Tsunami UDP protocol [22,68], we propose

to use an approach based on adaptive rate and error threshold control to improve the

performance of big data transfer over high-speed dedicated connections.

5.2 Problem Statement

The transport control in HPNs is quite different from that in traditional shared-IP

networks such as Internet. Typically, the processing speed of end host cannot keep up

with the connection bandwidth reserved in advance in HPNs, and the bottleneck of
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data transfer as observed in the traditional Internet is shifted from network segments

to the end-hosts. In addition, even if the processing power of the end host is enough to

keep up with the connection speed, the end-to-end data transfer performance is still

limited by the specific transport protocol that is being used at end hosts. Transport

protocols that work well in traditional shared-IP networks such as TCP may not be

appropriate to perform big data transfer tasks over long-hual dedicated connections

in HPNs due to its conservative AIMD congestion control algorithm. For example,

Floyd shows in [41] that over a 10Gb/s connection with 100ms RTT delay, even if

there is no packet lost or corrupted, the “standard” TCP (i.e., TCP Reno) needs

around one hour to fully utilize the connection capacity. To maintain the connection

speed, it requires an extremely low loss rate (10−11) in the network segment, such

physical media is currently not available.

A nationwide or worldwide dedicated connection typically could be reserved

and established in advance by certain agents in HPNs, e.g., OSCARS [7] in ESnet [6]

and ION [14] in Internet2 [13]. Different from the shared network environment,

once a dedicated connection is established in HPNs, it is exclusively allocated to

the stakeholder end users. The ultimate goal of the end users is then to move their

data as quickly as possible without considering fairness and friendliness. Under such

conditions, we have the following given and assumptions for the problem of big data

transfer over dedicated connections in HPNs:

• A dedicated and “perfectly” reliable connection that typically has a fairly long
delay, (e.g., 300ms or longer) and a quite high bandwidth reserved in advance
(e.g., 10Gb/s or higher). The loss rate of the connection’s physical media is
quite small and thus could be ignored, and the available bandwidth of the
connection is known to be a constant;

• The bottleneck of data transfer exists at the receiver site, where the maximal
receiving rate is typically less or equal to the reserved bandwidth and is also
time-varying due to the dynamics and background load of the end system.
Therefore, to optimize the utilization of the reserved high-speed network
connection, the sending rate should neither overwhelm the time-varying capacity
of the receiver nor be too conservative;
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• The inter- and intra-protocol fairness and TCP friendliness are not concerns
since there are not any other data flows competing for the available bandwidth.

Based on such given and assumptions, our goal is to develop a data transfer

protocol that has the following features:

• The protocol should maximize the resource (mainly bandwidth) utilization;

• The protocol should be light-weight and cannot bring too much computational
control overhead to the end hosts;

• The protocol should not require any modifications of the network or the end
host system, and thus can be deployed and used easily.

5.3 Data Packet Receiving Process

We take Linux as an example operating system and review its data packet receiving

process. The end-to-end data transfer is a complex process that involves various

components. Table 3.1 shows the software and hardware entities together with their

parameters that may affect the performance in a typical data transfer using UDP-

based protocols such as UDT [49]. Other protocols such as TCP have similar processes

and related factors. Any of these components could become the bottleneck and hence

limit the end-to-end data transfer performance.

We briefly review the data packet receiving process in each layer followed by

an experimental study on the effects of resource utilization at receiver site. Wu et al.

provide a detailed analysis of packet receiving process of TCP in [88], and here we

focus on the packet receiving process of UDP or UDP-based protocols. The main

steps of packet receiving process is shown in Figure 5.1 and the arriving packets

could be dropped at any step as described in the following.

5.3.1 Link Layer

As shown in Figure 5.1, when the data packets arrive at the receiver site, they are

transformed from raw bit signal into datalink frames by Network Interface Card (NIC)
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Figure 5.1 Packet receiving process at receiver end host.

and stored in ring buffer by DMA [35]. The ring buffer is maintained and managed

by the device driver and comprised of a “ring” of packet descriptors of socket kernel

buffers (sk buff), and each of which holds a single data packet with size up to the

Maximum Transmission Unit (MTU). After a data packet is written into a sk buff,

its packet descriptor will be marked as “used” that needs to be refilled to hold other

further incoming packet. A data packet will be discarded if there is no “ready” packet

descriptor available when it arrives. Suppose the incoming packet rate is S(t), the

ring buffer size is RNIC . To avoid packet loss at the link layer, the ring buffer should

be refilled (i.e., sk buff is marked as “ready”) as soon as possible to make sure there

is sk buff available when a data packet arrives. Thus we have

ANIC(t0) +

∫ t0+∆t

t0

(

S(t)− f(t)
)

dt ≤ RNIC , when S(t) ≥ f(t), (5.1)

where ANIC(t0) is the available NIC buffer size at time point t0 and f(t) is the refill

rate of packet descriptor of the ring buffer. Two major factors that affect the refill

speed f(t) are: i) the sk buff consuming rate, and ii) the system memory allocation

status [88]. The sk buff consuming rate is actually the transport protocol service

rate r(t), or named as receiving rate at transport protocol layer (see Figure 5.1). The

102



r(t) is directly affected by CPU occupancy status and the corresponding scheduling

algorithm. When the receiving process runs out its CPU time slice and new packets

arrive when there are no sk buff available; or when the rate that CPU polls data

packets from the ring buffer is smaller than the packet arriving rate, i.e., r(t) < S(t),

the arrived packets will be dropped unless S(t) is adjusted appropriately. In addition,

when the system is in high memory pressure status, memory allocation for new packets

tends to fail, which also eventually limits the refill rate f(t).

5.3.2 IP Layer

After a packet is transferred into a sk buff of the ring buffer, it becomes accessible

to the Linux kernel. It is the NIC’s responsibility to generate an interrupt to let

CPU know that the data packet is ready for upper layer processing. CPU handles

the interrupt by calling the interrupt handler of the device driver and scheduling the

corresponding softirq. The interrupt handler places a reference to the device in the poll

queue of the interrupted CPU. Afterwards, when CPU serves the softirq, it first checks

its own poll queue, polls each device in the queue, and then calls the poll method of

the device driver to get the received packets from the ring buffer. After a received

packet is dequeued from its receive ring buffer for further upper layer processing, its

corresponding packet descriptor in the receive ring buffer would be re-initialized and

refilled. The IP protocol processing function is called within the service of the softirq,

which verifies the integrity of the packet, applies the firewall rules, and delivers the

packet for forwarding or local delivery to a higher layer protocol.

5.3.3 Transport Layer

When a packet is passed upwards for transport layer processing, a specific handler

function will be called, e.g., tcp v4 rcv() for TCP, and udp rcv() for UDP. Since

our protocol is designed and developed based on UDP, we will not cover the processing
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details of TCP, and detailed modeling and analysis of TCP processing can be found

in [88] and other numerous literatures such as [70]. UDP provides the simplest

transport services: i) process-to-process communication channel, and ii) per-segment

error control. The udp rcv() verifies the integrity of the UDP packet and queues

one or more copies for further delivery. When the receive queue of the corresponding

socket queues the received packets, if there is not enough buffer space in the UDP

receive socket buffer, the packets are dropped. The packets stored in the UDP socket

receive buffer are ready for delivery to the user space where our protocol is developed.

5.3.4 Effects of Resource Utilization

Based on the above discussion, when the memory is not in high allocation pressure

status, the potential bottleneck at the receiver site is essentially caused by the shortage

of CPU cycles. Although there are methods and models to predict and estimate

the available CPU cycles such as [28], it is difficult to make such estimation and

prediction accurate enough for the transport control in high-speed networks, which

typically is on the order of milliseconds or microseconds. When the receiver system

is heavily loaded, a single misleading transport control decision may cause severe

packet loss and bad performance. To show how resource utilization at the receiver

affects the data transfer performance, we use SABUL1 [47] to transfer 100GB data

over a local 10Gb/s back-to-back connection with different number of background

competing processes and measure the corresponding goodput performance.

The main scheduling process of this experiment first runs the data transfer

program using SABUL, and once the data transfer starts, it simultaneously starts

to run several background competing processes at the receiver site to compete for

CPU time. An infinite for loop is executed in the competing process until the data

receiving process is finished. In each for loop, the program first performs some

1SABUL is the early version of UDT [45] that has simpler implementation than later ones,
which also handle other UDT socket-related issues besides data transfer performance.
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CPU-intensive and memory-limited computation, e.g., division, and then sleeps for

several milliseconds. We use shared memory for interprocess communication: when

the data receiving process is finished, the scheduling process modifies the value of

corresponding shared memory. By checking the value of the share memory, the

competing process decides to either keep running or terminate. When the data

transfer is finished, the competing process calculates the CPU time used by itself,

terminates its for loop, and then writes the value of consumed CPU time into

the corresponding shared memory. This information is read by the main scheduling

process for performance measurements.
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Figure 5.2 Effects of background competing processes.

In this experimental study, we bind all processes and threads on the same CPU

core through setting CPU affinities. By varying the number of competing processes

and the sleep interval, we measure the goodput performance and the CPU time

consumed by the data receiving process, and plot the normalized comparisons between
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goodput performance and CPU share percentage in Figure 5.2. The results show that

as the number of competing processes increases, the transfer performance and the

CPU cycles spent on data receiving process both gradually and consistently decrease.

The CPU share percentage (denoted as q) of the data receiving process during time

duration ∆t is defined as Equation 5.2

q =
Trecv

Twall

, (5.2)

where Trecv is the CPU time spent on the data receiving process during ∆t and Twall

is the wall-clock time, i.e., Twall = ∆t.

5.4 Technical Approach

In this section, we present out technical approach to improve the data transfer

performance over dedicated connections based on the Tsunami UDP protocol [22].

Please refer to Table 5.1 for notations used in the performance modeling and analysis.

Table 5.1 Notations Used in the Protocol Design

Notations Definitions

B Bandwidth of the dedicated connection

ǫi Error rate of the ith interval

Si Sending rate in the ith interval

S(t) Sending rate at time point t

Smax Target sending rate

ρ Percentage of historical data used in error rate calculation

Li Number of blocks retransmitted in the ith interval

Ni Number of original blocks transmitted in the ith interval

θi Retransmission percentage of the ith interval

Rused Number of used data slots in the ring buffer

R Capacity of the ring buffer

λi Occupancy rate of the ring buffer in the ith interval

ξi Error rate threshold in the ith interval
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5.4.1 Overview

Two major components are necessary for a data transfer protocol over dedicated

connections: i) transmission rate control, which intends to avoid either overwhelming

the available capability of network and end host or wasting them; ii) acknowledgement

control, which is mainly concerned with the reliability of the transmission and is also

potentially concerned with more accurate and effective rate control.

The de facto standard transport protocol TCP and its variants such as Scalable

TCP [58] employ window-based Additive Increase Multiplicative Decrease (AIMD)

approaches to control the packet sending speed, which has been shown to be quite

successful within the shared Internet where friendliness and fairness are both critical

criterions. Such AIMD-based rate control treats a single packet loss as the direct

indicator of congestion along the entire transfer path, and conducts significant back off

to avoid further loss and to maintain fairness, which is too conservative to effectively

utilize the resources of dedicated connections that have been reserved in advance.

On one hand, to optimize the resource utilization of dedicated connections, a data

transfer method should be as aggressive as possible for increasing the sending speed to

occupy the bandwidth as much as possible, since fairness and friendliness are not the

concerns; on the other hand, the sending rate cannot be so aggressive to overwhelm

the end host (especially the receiver) and waste the resources, where many data

packets have arrived at the receiver got lost due to their overwhelmed arriving speed.

As verified by the transport profiles in [85], the optimal transport performance is

typically obtained when a small packet loss does exist.

As pointed out by [37], the decision making of rate control in the Internet is

difficult since the environments are complex. This is also true for the case of data

transfer over dedicated connections, because although the bandwidth is exclusively

allocated from the user’s perspective, the underlying physical links still essentially

operate on the hardware with diverse configurations. In addition, the reserved
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bandwidth might be realized based on various technologies that may introduce

significantly different levels of dynamics, randomness, and jitters. Assuming that

the receiver system is the source of data transfer bottleneck, the sending rate should

be adjusted based on the information collected at the receiver site and delivered to

the sender site. This decision making mechanism in TCP is based on the occurrence

of the packet loss event without considering where it happens. UDP-based protocols

such as UDT [49] use a similar control structure with TCP but employs a Decreasing

AIMD (DAIMD) algorithm [50] to increase the sending rate more aggressively based

on the positive acknowledgements and decrease the sending rate more conservatively

based on negative acknowledgements, both by tuning the inter-packet delay (IPD).

Over high-speed dedicated connections, the packet loss typically happens at

the end hosts rather than the network segments and thus is not a good indicator of

congestion. A packet loss event itself is not enough for the sender to cut its sending

rate by half or other significant amount to avoid further congestion and to gain

long-term good performance. A single packet loss is not enough for the adjustment

calculation of sending rate either, because it could be caused by various components

along the entire data transfer path and not all of them are correlated to the severe

congestions, which truly require for backing off. For example,

• The sending rate may be too high and makes the packets arrive at a speed that
the receiver can not handle due to its computing power limitation. In such case,
the sender should back off and reduce its sending rate;

• The packet loss may be caused by the specific CPU scheduling algorithm at
receiver site, i.e., when the data receiving process runs out its CPU time, the
data packets statistically happen to overflow the NIC or kernel buffer that are
not polled or drained out in time. In such case, it is enough for the sender to
back off just a little bit;

• The packet loss may be caused by the limitation of the physical connection
or the end host hardware error. Since this is a non-congestion packet loss,
the sender should not back off but just simply retransmit the lost packet and
maintain or even increase its sending rate in order to gain high utilization.
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There exists two similar UDP-based file transfer protocols, RBUDP [53]

and Tsunami [22, 68], which have shown promising performance over dedicated

connections. Both of them use a similar architecture that blasts or dumps data blocks

containing user payloads through UDP channel at a fixed target rate and retransmits

the lost ones after receiving error reports (acknowledgements) through TCP channel,

and then repeats this process until the entire file is delivered.

We first model the data transfer process of Tsunami and analyze its goodput

performance, and then following a similar strategy with Tsunami, we propose to use

the following approaches to improve the data transfer performance over dedicated

connections: i) similar to Tsunami, we directly control the sending rate by tuning the

inter-packet delay (IPD) rather than adjusting the window size, ii) unlike Tsunami,

we simply set the target rate to be the reserved bandwidth and let the protocol

itself figure out the optimal sending rate; iii) similar to Tsunami, we adjust the

sending rate according to the error rate that is calculated based on loss rate and buffer

occupancy; and iv) unlike Tsunami, we adaptively change the error rate threshold

for the sending rate control to eliminate unnecessary packet loss. We conduct data

transfer experiments over 10Gb/s connections with various RTT delays emulated by

netem [17] and present preliminary results in comparison with UDT.

5.4.2 Architecture of the Tsunami Protocol

As shown in Figure 5.3, both sender and receiver of Tsunami maintain a ring buffer

to hold sent or received data blocks that are un-acknowledged. Datagrams (or data

blocks as named in Tsunami [68]) are sent and received through a UDP data channel.

The control messages such as control parameter values, notifications of start and stop,

are all sent and received through a TCP channel. An independent thread is in charge

of reading/writing data blocks from/into the disk. We modify the source code of
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Figure 5.3 Data transfer process of the Tsunami protocol.

Tsunami and let the thread read/write data blocks from/into memory rather than

disk to test the memory-to-memory transfer performance of the protocol.

5.4.3 Rate Control and Flow Control of the Tsunami Protocol

In Tsunami, the sender sends data blocks (i.e., UDP datagrams) at a user-specified

target rate, and the receiver sends an acknowledgement back to the sender when every

50 data blocks are received. An acknowledgement includes a list of sequence numbers

of lost blocks and an error rate of the current iteration. The error rate in the ith

interval is calculated by

ǫi = ρ · ǫi−1 + (1− ρ) · (θi + λi), (5.3)

where θi and λi are the retransmission rate of data blocks and the occupancy of the

ring buffer in the ith iteration, respectively. The retransmission rate is given by

θi =
Li

Li +K
, (5.4)

where Li is the number of lost data blocks in the ith interval, which could be identified

based on the block sequence numbers; and K is the number of received data blocks
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when an error report is triggered, which is user-specified. The occupancy rate of the

ring buffer is calculated by

λi =
Rused

R
, (5.5)

where Rused is the number of used data slots in the ring buffer when λi is being

checked; and R is the maximum number of blocks in ring buffer (i.e., the capacity

of the ring buffer) and its default value specified by Tsunami is 4096, which can be

changed by users. In each interval, if the number of lost blocks exceeds the half of

the ring buffer capacity, Tsunami restarts from the first missing block. From a user

perspective, it is tolerable to allow the protocol to use a relatively large memory space

to achieve the optimal data transfer performance, and to simplify our analysis, we

assume that the ring buffer is large enough to prevent any restarts.

Tsunami starts sending data blocks at an initial target rate S1 and adjusts

its fixed sending rate for the next interval when an error report (i.e., an acknowl-

edgement) is received. If the error rate ǫi−1 is above the threshold ξ, Tsunami

decreases its fixed sending rate using factor β, otherwise Tsunami increases its sending

rate using factor α unless the target rate Smax is already reached, i.e.,

Si =











min {α · Si−1, Smax} , ǫi−1 ≤ ξ

β · Si−1, ǫi−1 > ξ
(5.6)

As indicated by Equation 5.6, the sending rate control in Tsunami and the

corresponding resulted goodput performance highly depend on the error rate ǫ and

threshold ξ. The error rate is mainly decided by the loss rate and the buffer occupancy,

and the threshold is user-specified and directly affects the adjustments of sending rate.

5.4.4 Performance Analysis of the Tsunami Protocol

In Tsunami, the target sending rate Smax is user-specified and serves as an upper

bound of the sending rate adjustment, and the acknowledgement (i.e., the error
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report) is interval-based and sent by the Tsunami receiver every time when it receives

a certain number of data blocks.

Interval      Send Rate    # of Received Block    # of Lost Blocks

1                S1 K L1

2                S2 K L2

3                S3 K L3

n Sn K Ln

n+1            Sn+1 Ln 0

… … … …

Figure 5.4 Statistics of data transfer using the Tsunami protocol.

As illustrated by Figure 5.4, suppose there are K data blocks received before

the first error report is received, and during which time duration T1 (i.e., in the first

interval) there are L1 blocks get lost, we can estimate T1 as

T1 =
K + L1

S1
. (5.7)

Similarly, suppose there are K blocks received at a fixed rate Si and Li blocks

get lost in the ith interval. If the (n + 1)th interval is the last one, then there are

total Ln ≤ K blocks received (i.e., the lost ones in the previous interval) at a fixed

rate Sn+1 and there are not data blocks get lost (otherwise it would not be the last

interval). We then have the total transmitted number of data blocks

n ·K + Ln = F +
n

∑

i=1

Li, (5.8)

where F is the total number of data blocks of the user payload.

This entire process to delivery the user payload F totally takes time

T =

n+1
∑

i=1

Ti =

n
∑

i=1

K + Li

Si

+
Ln

Sn+1
, (5.9)

112



and results in a goodput performance

G =
F

T
=

n ·K −
n−1
∑

i=1

Li

n
∑

i=1

K + Li

Si

+
Ln

Sn+1

. (5.10)

Suppose that the sending rate at the equilibrium status is S∗, the corre-

sponding number of lost blocks is L∗ and the corresponding loss rate is θ∗,

Equation 5.10 could be simplified and approximated as follows

G =
n ·K − n · L∗ + L∗

n ·

(

K + L∗

S∗

)

+
Ln

Sn+1

≈ S∗ ·
K − L∗

K + L∗
, (5.11)

in which the approximation is valid given the fact that data size of user payload F is

“big”, i.e., n is “big”, and thus we could eliminate the performance statistics in the

last interval since L∗ ≪ F ≈ n ·K − n · L∗ and
Ln

Sn+1
≪ n ·

(

K + L∗

S∗

)

.

By solving the loss rate equation in Equation 5.4, we have

θ∗ =
L∗

K + L∗
⇒ L∗ =

K · θ∗

1− θ∗
, (5.12)

and then the goodput G in Equation 5.10 could be further simplified as

G = S∗ ·
K − L∗

K + L∗
= S∗ ·

K −
K · θ∗

1− θ∗

K +
K · θ∗

1− θ∗

= S∗ · (1− 2θ∗). (5.13)

We consider the following three scenarios of the big data transfer over dedicated

connections and discuss their corresponding performance.

Low Target Rate If the target rate is low Smax = S ′ ≪ B, then packet losses are

mainly caused by physical media error and statistically bad luck of the packet being

processed at the end host. Such loss rate is quite marginal and could be ignored, i.e.,

θ′ ≈ 0. Assuming the ring buffer capacity is large enough and then the error rate
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is consistently below threshold and does not trigger any sending rate decreasing, the

sending rate would stay near or at the target rate and the transfer performance is

almost the same with the sending rate, i.e.,

G = S ′ · (1− 2θ′) ≈ S ′, Smax = S ′ ≪ B. (5.14)

Moderate Target Rate If the target rate is moderately high, i.e., Smax = S ′′ < B

and S ′ ≤ S ′′, then the packet losses may occasionally be caused by the pressure of

processing the quickly arriving packets at the receiver site. The loss rate in such case

is noticeable and could not be ignored, i.e., 0 ≈ θ′ < θ′′ < 1. If the loss rate together

with the ring buffer occupancy do not exceed the threshold ξ, we could analytically

derive the transfer performance as

G = S ′′ · (1− 2θ′′), S ′ < Smax = S ′′ < B. (5.15)

By combining the cases in Equation 5.14 and Equation 5.15, we have the

following partial guidelines for sending rate adjustment,















S ′

S ′′ · (1− 2θ′′)
≥ 1 ⇒

S ′

S ′′
≥ 1− 2θ′′

S ′

S ′′ · (1− 2θ′′)
< 1 ⇒

S ′

S ′′
< 1− 2θ′′

. (5.16)

High Target Rate If the target rate is aggressively high, i.e., Smax = S ′′′ ≈ B and

S ′′ < S ′′′, the loss rate is significant and may cause rate adjustment since it exceeds

the error rate threshold ξ. As shown in Equation 5.13, we use the equilibrium status

to approximate the transfer performance as

G = S∗ · (1− 2θ∗).

Over a high-speed dedicated connection, the retransmission rate or loss rate

θi is mainly decided by the sending rate Si, which in turn decides the error rate ǫi.
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Note that θi is dominating in the calculation of ǫi when the buffer occupancy is not a

concern (i.e., when the ring buffer is large enough). In such case, we could reasonably

assume that θi ≤ θj ⇒ ǫi ≤ ǫj and θi > θj ⇒ ǫi > ǫj .

S2S1 Sopt

Loss Rate

Sending

Rate
1
 

2
 

opt
 

Figure 5.5 Loss rate corresponds to sending rate.

Given the network connection, the sender host, and the receiver host, as shown

in Figure 5.5, higher sending rate results in high loss rate. There exists a certain

sending rate Sopt and corresponding loss rate θopt that result in the optimal transfer

performance Gopt = Sopt ·(1−2θopt). The sending rate Sopt has the following properties











S1 < Sopt ⇒ θ1 < θopt ⇒ G1 < Gopt

S2 > Sopt ⇒ θ2 > θopt ⇒ G2 < Gopt

, (5.17)

i.e., from sending rate Sopt, increased sending rate causes increased packet loss more

than the increased sent data; and decreased sending rate causes the decreased packet

loss less than the decreased sent data, both of which result in lower performance.

In Tsunami, the increasing speed of sending rate is faster than the decreasing

speed given that α =
6

5
and β =

24

25
, see Equation 5.6. Therefore, the sending rate

would be easily increased up to the upper limit Smax. Based on the above modeling

and analysis, we know that Smax is critical for the transfer performance. Given a

specific network environment, we do not have enough knowledge about setting the

optimal Smax unless we perform a complete transport profiling.
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As shown in Figure 5.6(a), if the target rate is “allowable” (e.g., 1Gb/s <

Smax < 8Gb/s in this test case), the target rate limits the sending rate and eventually

results in relatively lower performance comparing with the peak we could obtain;

while if the target rate is set to be near or higher than the connection bandwidth, the

performance dramatically decreases, which indicates that the overwhelmed sending

rate causes severe packet losses and significant amount of time is wasted on the

retransmission. In Figure 5.6(b), we “zoom in” and figure out the maximum allowable

sending rate with smaller sending rate intervals, in this test case, the maximal

allowable sending rate given the specific data transfer environment is around 9.7Gb/s.
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Figure 5.6 Performance corresponds to target sending rate.

5.4.5 Adaptive Rate and Error Threshold Control

Given parameter values of α, β, Smax, and ξ, the sending rate S∗ at equilibrium status

of a data transfer using Tsunami satisfies the following conditions,










S1 < S∗ ⇒ θ1 < θ∗ ⇒ ǫ1 < ξ

S2 ≥ S∗ ⇒ θ2 ≥ θ∗ ⇒ ǫ2 ≥ ξ
. (5.18)

If the sending rate is decreased from S∗ to S1 and the error rate ǫ1 is below

ξ, Tsunami would increase the sending rate in next interval; if the sending rate is

increased from S∗ to S2 and the corresponding error rate is above ξ, Tsunami would
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decrease the sending rate in next interval. Based on the performance analysis in

Section 5.4.4, to optimize the overall performance, we should stabilize the sending

rate at equilibrium status to be the optimal one, i.e., let S∗ = Sopt. Different host

configurations and connections may have different optimal target sending rates, and

Equation 5.18 tells us that S∗ is critically decided by the user-specified error rate

threshold ξ. In Tsunami, once the threshold is determined by the user, it is fixed for

the entire data transfer, which makes it uncertain to stabilize the sending rate around

the optimal value: i) if ξ is set to be too high, when the sending rate is increased up

to a level that causes severe packet loss, Tsunami is not able to reduce the sending

rate accordingly (due to the high value of ξ) and thus resources would be wasted

on retransmitting unnecessarily lost blocks; ii) if ξ is set to be too low that is easily

exceeded, the sending rate may keep decreasing and be limited within a small lower

range that results in lower loss and lower buffer occupancy. In such case, network and

end host power may be left unused, although it could be better utilized by allowing

higher error rate thresholds.

We propose an Adaptive Rate and Error Threshold (ARET) control approach

to improve the data transfer performance over dedicated connections. Suppose that

at the the ith interval, the sending rate is Si, the corresponding loss rate, error rate,

and goodput are θi, ǫi, and Gi, respectively. We adjust the error threshold ξ at a

specific interval based on the observations and analysis of its previous intervals.

Increased Sending Rate If the sending rate is increased from Si−1 to Si, Si−1 < Si,

we observe Gi, θi, and ǫi and then adjust ξ in each interval as follows:

• Gi−1 < Gi, θi−1 < θi ⇒ ξ ↑
Increased sending rate results in both higher performance and higher packet loss.
This may indicate that higher sending rate that leads to better performance may
be allowable. We increase ξ and let the protocol have a better chance to further
increase its sending rate for better performance;
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• Gi−1 < Gi, θi−1 ≥ θi ⇒ ξ →
Increased sending rate results in higher performance but lower packet loss. This
indicates that the observations may be statistically inaccurate due to dynamics
and randomness. We keep the current ξ and let the protocol accumulate more
information for further adjustment;

• Gi−1 ≥ Gi, θi−1 < θi ⇒ ξ ↓
Since increasing sending rate when the loss rate is θi−1 causes lower performance.
This may indicate that a loss rate of θi−1 is probably the upper limit that the
environment can handle. We decrease the current error threshold ξ accordingly;

• Gi−1 ≥ Gi, θi−1 ≥ θi ⇒ ξ →
Increased sending rate results in both lower performance and lower packet loss.
Such observations are in conflict and do not provide any meaningful suggestions
for adjustment of ξ. We keep the current ξ.

Decreased Sending Rate If the sending rate is decreased from Si−1 to Si, Si−1 >

Si, we similarly adjust ξ as follows:

• Gi−1 < Gi, θi−1 < θi ⇒ ξ →
Decreased sending rate results in higher performance and higher packet loss. We
keep the current ξ and accumulate more observations for further adjustment;

• Gi−1 < Gi, θi−1 ≥ θi ⇒ ξ ↓
Decreased sending rate results in higher performance but lower packet loss. We
further decrease ξ to limit the sending rate increase and trigger more decreases;

• Gi−1 ≥ Gi, θi−1 < θi ⇒ ξ →
Decreased sending rate results in lower performance and higher packet loss. We
keep the current ξ since such observations are in conflict;

• Gi−1 ≥ Gi, θi−1 ≥ θi ⇒ ξ ↑
Decreases sending rate results in lower performance and lower packet loss. We
increase ξ and let the protocol probe for higher performance.

5.5 Performance Evaluation

We conduct data transfer experiments over a local testbed with 10Gb/s connections

with various RTT delays ranging from 0ms to 300ms emulated by netem [17]. We

preliminarily observe in Figure 5.7 that the proposed approach makes the protocol

insensitive to the target rates across different RTTs. In addition, the performance
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produced by the proposed method seems to be insensitive to the RTT delays (at least

not in the same way with AIMD-family protocols) although longer delays do cause

higher performance variances.

RTT (ms)

0 50 100 150 200 250 300

G
o
o
d
p
u
t
(G

b
/s
)

0

2

4

6

8

10

ARET
UDT

Figure 5.7 Performance comparison over emulated connections with various delays.

5.6 Related Work

Existing work on protocol design to improve the data transfer performance mainly

falls into two categories: i) TCP enhancements; and ii) UDP-based transport typically

with non-AIMD control. We conduct a brief survey as follows.

5.6.1 TCP Enhancements

Transmission Control Protocol (TCP) [54] has shown its success in the past decades

on the Internet. Its AIMD algorithm has been proven to be effective and sufficient for

convergence when the network needs to be fairly shared among different users [34].

However, TCP is not well suited for big data transfer over long-haul dedicated

connections in HPNs due to its conservative AIMD congestion control. In recent years,

many changes to TCP have been introduced to improve its performance in high-speed

networks [41]. Scalable TCP [58], HSTCP [42], BIC-TCP [90], CUBIC TCP [52] use

packet loss as the only indication of congestion, but with different formulas to adjust
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the sending rate. TCP Vegas [30] and FAST TCP [83] use delay as a signal to detect

the network congestion. The Fast Active-Queue-Management Scalable TCP (FAST)

is based on a modification of TCP Vegas [30, 65]; it continuously measures RTT to

estimate the queuing delay for congestion detection and employs a linear segmented

congestion control mechanism. Sync-TCP [89] employs a synchronization approach

in its delay-based congestion algorithm to facilitate bandwidth-greedy but elastic

applications, while at the same time not hurting other competing flows. Compound

TCP [81] explores a hybrid approach that takes both delay and loss information

into consideration for rapidly increasing and gracefully retreating the sending rate.

Similarly, TCP-Illinois [64] uses both packet loss information and queuing delay

for rate control: packet loss is used to make a decision on whether the window

size needs to be changed or not, and delay information is used to calculate the

increment and decrement quantity. High-Speed TCP Low Priority (HSTCP-LP) is a

TCP-LP variant with aggressive window increase policy targeting high-bandwidth

and long-distance networks [60]. The Explicit Control Protocol (XCP) has a

congestion control mechanism designed for networks with a large BDP [56], and

requires the changes of routers in networks. The Rate Control Protocol (RCP) [19]

adds an end host congestion control layer between IP and TCP/UDP, and similar to

XCP, it also requires the participation of routers. The Stream Control Transmission

Protocol (SCTP) is a new standard for robust Internet data transport [80], whose

congestion control algorithms are derived from TCP with changes to allow for

multihoming. Another type of approaches uses multiple TCP streams, including

bbFTP [2], GridFTP [12], and MPTCP [27,73]. Although providing high bandwidth

utilization, multiple TCP streams have been observed to be unstable when an

excessive number of sockets are used, and it is not straightforward to determine an

appropriate number of sockets to use. Other efforts in this area are devoted to end

host tuning and optimization, which usually retains the core algorithms of TCP but
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adjusts the send or receive buffer sizes to enforce supplementary rate control [38,71,75]

or modifies the system configurations specifically for high-speed data transfer [33,63].

Tools such as iperf3 [8], Transport Profile Generator (TPG) [92], and FastProf [91]

are available to help tuning the parameters of data transfer protocols.

5.6.2 UDP-based Protocols

Transport protocols based on User Datagram Protocol (UDP) have been developed

by using various rate control algorithms. Although the underlying rate control

algorithms of these methods can be applied at the transport layer, they are typically

implemented over UDP as application-level programs. Such implementations enable

easy deployment by avoiding the modifications of operating system kernels, routers,

and other network infrastructures. RBUDP [53] uses a UDP blast channel to send

data blocks and a TCP channel to deliver control information and acknowledgements.

RBUDP asks the user to specify a desired data transfer target rate, and to obtain a

good performance, it requires the receiver not to be the bottleneck, which oftentimes

is not the case in HPNs. Tsunami [22] explores a similar approach to RBUDP,

but additionally adds a sending rate control mechanism based on a periodically

calculated error rate. Simple Available Bandwidth Utilization Library (SABUL) [47]

is a Multiplicative Increase Multiplicative Decrease (MIMD) rate-based protocol

designed for shared networks where the sender senses the available bandwidth and

adjusts its sending rate accordingly by tuning the inter-packet delay. SABUL uses

UDP to transfer data and TCP to exchange control information. Based on SABUL,

the UDP-based Data Transfer Protocol (UDT) [45, 48, 49] removes the TCP control

channel in SABUL and is purely built on the top of UDP. UDT incorporates an

AIMD with decreasing increases, namely DAIMD algorithm for rate control, and

also uses a bandwidth estimation technique to determine the increase parameter for

efficiency. RUNAT [86] explores a stochastic approximation method to achieve high
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throughput at the application level. It operates around a local maximum of the

throughput regression curve by dynamically adjusting the source rate in response

to acknowledgements and losses based on the statistical behavior of the network

connection. Hurricane [87] strategically selects and tunes hosts parameters to control

the sending rate and the retransmission process to achieve high channel utilization.

PA-UDP [39] is a file transfer protocol that explores a novel delay-based rate throttling

model to dynamically and autonomously maximize performance under different

systems without modifications of system kernels. RAPID+ is also an end system

aware protocol [36] developed based on RBUDP [53] and RAPID [26], which allows

multiple other applications to run simultaneously on the end system by monitoring

the performance of the receiver. RAPID+ uses the NIC buffer capacity to calculate

the initial sending rate, and the succeeding rate control depends on performance

parameters sampled on the receiver such as packet loss and incoming packet rate.

The measurement of incoming packet rate in RAPID+ requires kernel modification,

which limits its deployment [36].

In addition, a set of utility-based transport control methods such as PCC [37]

are also proposed. In these approaches, the sender constantly observes the correlations

between its rate control actions and corresponding performance changes, and then

conduct the rate control empirically based on historical experienced measurements.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

The objective of this dissertation is to provide end users of science domains with an

integrated and easy-to-use transport solution for host and network resource discovery

and selection, end-to-end data transfer path composition and establishment, transport

profile generation, and actual data movement in HPNs. The successful development

and deployment of our solution would untangle scientific users from complex data

transfer tasks as they only need to provide a data transfer request describing the

desired transport service and the corresponding performance requirement, so they

could focus on their own science missions.

We proposed a workflow-based transport solution to meet big data transfer

requirements of large-scale scientific applications, which integrates three major

components, i.e., i) transport-support workflow optimization; ii) transport profile

generation; and iii) transport protocol design, into a unified framework. Experimental

results showed that the proposed solution achieves a reasonable accuracy in modeling

the existing resources/services and improves the end-to-end data transfer performance

over dedicated connections in HPNs.

By leveraging the resource discovery capability of NADMA, we constructed

cost models for discovered resources and formulated path composition and module

selection as an optimization problem. We proved it to be NP-complete and designed

optimal pseudo-polynomial (i.e., practically efficient) algorithms. We evaluated the

proposed algorithms using simulations in comparison with a greedy approach, and

also conducted proof-of-concept experiments in wide-area networks to validate the

cost models and illustrate the efficacy of the proposed solution. The current HPN

environments only have a limited number of advanced networking services that are
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free of charge to authorized users, which makes it possible to employ a linear optimal

algorithm to choose transport-support workflow modules and compose the optimal

end-to-end network path. With new services and technologies rapidly emerging,

more sophisticated approaches are needed to tackle this optimization problem. The

framework of the proposed solution has been proven to be flexible to accommodate

the increase on the number of modules in the workflow up to tens of thousands with

quite high edge densities. We plan to integrate this workflow solution to the NADMA

system and further test it extensively in various network environments.

We designed and implemented a Transport Profile Generator (TPG) to

characterize and enhance the transport performance of the selected transport method

by tuning the control parameters using an exhaustive approach. We used UDT as an

example in the implementation and conducted extensive data transfer experiments

over local- and wide-area network connections to illustrate how existing transport

protocols benefit from TPG in optimizing their performance. It is of our interest to

extend TPG with more transport protocols such as UDP and SCTP [80] and conduct

more experiments to understand and exploit the properties of big data transfer over

high-speed dedicated connections.

We further designed a stochastic approximation-based transport profiler,

namely, FastProf, to accelerate the profiling process for big data transfer in HPNs.

We implemented FastProf based on TPG, and conducted both extensive profiling

emulations in comparison with other search algorithms and profiling experiments on

physical connections with short (2ms) and long (380ms) delays. The emulation and

experimental results showed that FastProf significantly reduces the profiling time

while achieving a comparable level of data transfer performance, which makes it

feasible to conduct “on-line” profiling. It is worthy to investigate various aspects of

the applications of the SA-based method such as gradient approximation averaging,

step size adaption, intelligent termination conditions to further improve the profiling
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performance and accuracy of FastProf. Since the end-to-end data transfer is a

complex process that involves both network and end hosts, the parameter selection

for each part of the entire process would affect the application level performance

observed by end users. Naturally, it is also of our interest to explore the possibility of

applying such SA-based approaches to storage profiling on end hosts based on tools

such as XDD [76].

Extensive experimental studies have shown the insufficiencies of traditional

transport control methods over high-speed dedicated connections. We conducted

data transfer experiments using various existing methods, among which the Tsunami

protocol has shown promising performance gain over high-speed dedicated connections.

We constructed performance model of Tsunami and proposed several approaches

to improve the resource utilization of dedicated connections, and the preliminary

experimental results showed promising performance along this research direction.
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