2,802 research outputs found

    A review of High Performance Computing foundations for scientists

    Full text link
    The increase of existing computational capabilities has made simulation emerge as a third discipline of Science, lying midway between experimental and purely theoretical branches [1, 2]. Simulation enables the evaluation of quantities which otherwise would not be accessible, helps to improve experiments and provides new insights on systems which are analysed [3-6]. Knowing the fundamentals of computation can be very useful for scientists, for it can help them to improve the performance of their theoretical models and simulations. This review includes some technical essentials that can be useful to this end, and it is devised as a complement for researchers whose education is focused on scientific issues and not on technological respects. In this document we attempt to discuss the fundamentals of High Performance Computing (HPC) [7] in a way which is easy to understand without much previous background. We sketch the way standard computers and supercomputers work, as well as discuss distributed computing and discuss essential aspects to take into account when running scientific calculations in computers.Comment: 33 page

    Communication-Efficient Jaccard Similarity for High-Performance Distributed Genome Comparisons

    Full text link
    The Jaccard similarity index is an important measure of the overlap of two sets, widely used in machine learning, computational genomics, information retrieval, and many other areas. We design and implement SimilarityAtScale, the first communication-efficient distributed algorithm for computing the Jaccard similarity among pairs of large datasets. Our algorithm provides an efficient encoding of this problem into a multiplication of sparse matrices. Both the encoding and sparse matrix product are performed in a way that minimizes data movement in terms of communication and synchronization costs. We apply our algorithm to obtain similarity among all pairs of a set of large samples of genomes. This task is a key part of modern metagenomics analysis and an evergrowing need due to the increasing availability of high-throughput DNA sequencing data. The resulting scheme is the first to enable accurate Jaccard distance derivations for massive datasets, using largescale distributed-memory systems. We package our routines in a tool, called GenomeAtScale, that combines the proposed algorithm with tools for processing input sequences. Our evaluation on real data illustrates that one can use GenomeAtScale to effectively employ tens of thousands of processors to reach new frontiers in large-scale genomic and metagenomic analysis. While GenomeAtScale can be used to foster DNA research, the more general underlying SimilarityAtScale algorithm may be used for high-performance distributed similarity computations in other data analytics application domains

    Facts, Issues and Questions - GPUs for Dependability

    Get PDF

    Ianus: an Adpative FPGA Computer

    Full text link
    Dedicated machines designed for specific computational algorithms can outperform conventional computers by several orders of magnitude. In this note we describe {\it Ianus}, a new generation FPGA based machine and its basic features: hardware integration and wide reprogrammability. Our goal is to build a machine that can fully exploit the performance potential of new generation FPGA devices. We also plan a software platform which simplifies its programming, in order to extend its intended range of application to a wide class of interesting and computationally demanding problems. The decision to develop a dedicated processor is a complex one, involving careful assessment of its performance lead, during its expected lifetime, over traditional computers, taking into account their performance increase, as predicted by Moore's law. We discuss this point in detail

    Algorithms and architectures for MCMC acceleration in FPGAs

    Get PDF
    Markov Chain Monte Carlo (MCMC) is a family of stochastic algorithms which are used to draw random samples from arbitrary probability distributions. This task is necessary to solve a variety of problems in Bayesian modelling, e.g. prediction and model comparison, making MCMC a fundamental tool in modern statistics. Nevertheless, due to the increasing complexity of Bayesian models, the explosion in the amount of data they need to handle and the computational intensity of many MCMC algorithms, performing MCMC-based inference is often impractical in real applications. This thesis tackles this computational problem by proposing Field Programmable Gate Array (FPGA) architectures for accelerating MCMC and by designing novel MCMC algorithms and optimization methodologies which are tailored for FPGA implementation. The contributions of this work include: 1) An FPGA architecture for the Population-based MCMC algorithm, along with two modified versions of the algorithm which use custom arithmetic precision in large parts of the implementation without introducing error in the output. Mapping the two modified versions to an FPGA allows for more parallel modules to be instantiated in the same chip area. 2) An FPGA architecture for the Particle MCMC algorithm, along with a novel algorithm which combines Particle MCMC and Population-based MCMC to tackle multi-modal distributions. A proposed FPGA architecture for the new algorithm achieves higher datapath utilization than the Particle MCMC architecture. 3) A generic method to optimize the arithmetic precision of any MCMC algorithm that is implemented on FPGAs. The method selects the minimum precision among a given set of precisions, while guaranteeing a user-defined bound on the output error. By applying the above techniques to large-scale Bayesian problems, it is shown that significant speedups (one or two orders of magnitude) are possible compared to state-of-the-art MCMC algorithms implemented on CPUs and GPUs, opening the way for handling complex statistical analyses in the era of ubiquitous, ever-increasing data.Open Acces
    • 

    corecore