
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Facts, Issues and Questions - GPUs for Dependability 65

Facts, Issues and Questions - GPUs for Dependability

Bernhard Fechner

X

Facts, Issues and Questions -

GPUs for Dependability

Bernhard Fechner
FernUniversität in Hagen

Parallel Computing and VLSI Group

1. Introduction

Graphics Processing Units (GPUs) offer massive parallelism, comprising many actual
paradigms like manycore, multithreading and SIMD. Today, nearly every computer is
equipped with at least one graphics card, containing one or more GPUs bringing massive
parallelism to the desktop. GPUs are usually used in their main function, that is, to compute
visibility, lightning, perspective, etc. in games. As this technology is widely used, it is low-
cost. In the majority of the cases, graphic cards do not spend their entire lives by executing
game code. Thus, such a massive parallel system is underchallenged most of the time.
Shortly after the availability of comfortable programming environments, based on CUDA
(Compute Unified Device Architecture) or HLSL (high-level shader language), researchers
have become interested in using this power for general-purpose computing (GPGPU,
General-Purpose computing on the GPU). Thus, different applications originated, e.g.
physics, cryptography 0, DNA sequencing 0 and medical imaging. For further examples and
overview, see 0 and 0.
The trend to compute such workloads with GPUs will go on as the DirectX 11 (compute) or
the OpenCL 0 standards show. The fault-tolerant execution of (sensible) workloads on GPUs
was – to the knowledge of the author – never proposed. Sensible computations should be
carried out in a reliable way. What is the sense of a computation to find a private key if the
program is correct but the hardware is subjected to faults and the program never finds the
key? E.g. transient faults can be caused from fluctuations in the main current, radiation or
RAMs not running within their specification etc. What if an encryption is faulty due to
temporal faults or how can we detect a faulty medical diagnosis? The need to do
computations precisely has led to the development of more sophisticated and sometimes
expensive graphics processing units 0, needed by CAD applications. Larrabee 0 is a many-
core visual computing architecture. It uses multiple in-order x86 CPU cores that are
augmented by a wide vector processor unit, as well as some fixed function logic blocks. This
provides much higher performance per watt and per unit of area than out-of-order CPUs on
highly parallel workloads. Vision4ce 0 launched a new line of General-purpose Rugged
Image Processing (GRIP) products at the recent SPIE Defense and Security Symposium. The
GRIP-Beta showed GPGPU-based image processing demonstrations, analog and Gigabit

4

www.intechopen.com

Parallel and Distributed Computing66

Ethernet video streams and the functionality in the Gripworkx image processing
framework. Vision4ce addresses rugged embedded computing challenges that might
normally be served by more expensive FPGA approaches.
This work presents fundamental research, answering the question of how a system,
equipped with multiple graphics cards can be harnessed to detect, predict, prevent and
tolerate faults. Naturally, we do not restrict ourselves to computations running on the GPUs
alone and also consider the outsourcing of application parts from the CPU to the GPU. We
are aware of the fact that this evaluation can only be exemplary – but it can serve as a
starting point and a priming of future work. All mechanisms are fully implementable in
software and do not require special or modified hardware.
This work is structured as follows: we first present examples of current GPU
implementations in Section 2. Section 0 shows how the massive parallelism of modern GPUs
can be exploited for dependability. Section 0 summarizes and concludes the chapter.

2. Case Study and Programming Model

2.1 Case Study: The NVidia GeForce 8800 GTX
In this Section, we describe the basic architecture of the G80 GPU family from NVidia as this
will help to understand the possibilities for dependability. The GeForce 8800 GTX is divided
into 16 streaming multiprocessors (SMs), each containing eight streaming processors (SPs),
making a total of 128 SPs. Each SM has 8,192 registers that are shared among all threads
assigned to the SM. The threads on a SM core execute in SIMD (single-instruction, multiple-
data) fashion, with the instruction unit (IU) broadcasting the current instruction to the eight
SPs. Each SP has one arithmetic unit that performs single-precision floating point arithmetic
and 32-bit integer operations. Fig. 1 shows an overview of the GeForce 8800 GTX.

Fig. 1. The NVidia GeForce 8800 GTX

Each SM has two special functional units (SFUs), which perform more complex FP operations
such as transcendental functions. The arithmetic units and the SFUs are fully pipelined.
Each FP instruction is operating on up to 8 bytes of data. An important factor that affects
both performance and quality is the precision for operations and registers. The GeForce
Series support 32 bit and 16 bit floating point formats (called float and half, respectively) 0.
The float data type resembles IEEE754 (s23e8), half has an s10e5 format. Some models, e.g.
the G200 also support double precision in IEEE754R-format (one double-precision unit per
SM). The processors support gathering and scattering. Thus, they are capable of reading and
writing anywhere in local memory on the graphics card or in other parts of the system. The
G80 has several on-chip memories that can exploit data locality and data sharing, e.g. a
64 KB off-chip constant memory and an 8 KB single-ported constant memory cache in each
SM. If multiple threads access the same address during the same cycle, the cache broadcasts
the address to those threads with the same latency as a register access. In addition to the
constant memory cache, each SM has a 16 KB shared (data) memory that is either written and
reused or shared among threads. Finally, for read-only data that is shared by threads but not
necessarily to be accessed simultaneously, the off-chip texture memory and the on-chip
texture caches exploit 2D data locality.

2.2 The CUDA Programming Model
The CUDA programming model consists of ANSI C supported by several keywords and
constructs. CUDA treats the GPU as a coprocessor that executes data-parallel kernel
functions. The developer supplies a single source program encompassing both host (CPU, c)
and kernel (GPU, cu) code. The host code transfers data and code to and from the GPU's
global memory via API calls and initiates the kernel. At the highest level, each kernel creates
a single grid, which consists of many thread blocks. Each thread block is assigned to a single
SM for the duration of its execution. A thread block consists of a limited number of threads
which can cooperate. The maximum number of threads per block is 512. Threads from
different blocks cannot cooperate. Each thread can read/write from/to thread registers,
thread-local memory, shared memory in a block, the global memory and read from constant
memory or the texture memory in a grid. The host has read/write access on the constant,
global and texture memory. Threads in the same block can share data through the shared
memory and can perform barrier synchronization. Threads are otherwise independent, and
synchronization across thread blocks is safely accomplished only by terminating the kernel.
The IU manages things in groups of parallel threads, called warps. SMs can perform zero-
overhead scheduling to interleave warps on an instruction-by-instruction basis to hide the
latency of global memory accesses and long-latency arithmetic operations. When one warp
stalls, the SM can switch to a ready warp in the same or different thread block assigned to
the SM. Each warp executes in SIMD fashion, with the IU broadcasting the same instruction
to the eight cores on a SM on four consecutive clock cycles. Since one pixel equals one
thread, and since the SPs are scalar, the compiler schedules pixel elements for execution
sequentially: red, then green, then blue, and then alpha.
Fig. 2 shows a Thread Processing Cluster (TPC) used on the G200 series with 10 TPCs in
total. As depicted, a TPC comprises multiple IUs, SPs and local memory.

www.intechopen.com

Facts, Issues and Questions - GPUs for Dependability 67

Ethernet video streams and the functionality in the Gripworkx image processing
framework. Vision4ce addresses rugged embedded computing challenges that might
normally be served by more expensive FPGA approaches.
This work presents fundamental research, answering the question of how a system,
equipped with multiple graphics cards can be harnessed to detect, predict, prevent and
tolerate faults. Naturally, we do not restrict ourselves to computations running on the GPUs
alone and also consider the outsourcing of application parts from the CPU to the GPU. We
are aware of the fact that this evaluation can only be exemplary – but it can serve as a
starting point and a priming of future work. All mechanisms are fully implementable in
software and do not require special or modified hardware.
This work is structured as follows: we first present examples of current GPU
implementations in Section 2. Section 0 shows how the massive parallelism of modern GPUs
can be exploited for dependability. Section 0 summarizes and concludes the chapter.

2. Case Study and Programming Model

2.1 Case Study: The NVidia GeForce 8800 GTX
In this Section, we describe the basic architecture of the G80 GPU family from NVidia as this
will help to understand the possibilities for dependability. The GeForce 8800 GTX is divided
into 16 streaming multiprocessors (SMs), each containing eight streaming processors (SPs),
making a total of 128 SPs. Each SM has 8,192 registers that are shared among all threads
assigned to the SM. The threads on a SM core execute in SIMD (single-instruction, multiple-
data) fashion, with the instruction unit (IU) broadcasting the current instruction to the eight
SPs. Each SP has one arithmetic unit that performs single-precision floating point arithmetic
and 32-bit integer operations. Fig. 1 shows an overview of the GeForce 8800 GTX.

Fig. 1. The NVidia GeForce 8800 GTX

Each SM has two special functional units (SFUs), which perform more complex FP operations
such as transcendental functions. The arithmetic units and the SFUs are fully pipelined.
Each FP instruction is operating on up to 8 bytes of data. An important factor that affects
both performance and quality is the precision for operations and registers. The GeForce
Series support 32 bit and 16 bit floating point formats (called float and half, respectively) 0.
The float data type resembles IEEE754 (s23e8), half has an s10e5 format. Some models, e.g.
the G200 also support double precision in IEEE754R-format (one double-precision unit per
SM). The processors support gathering and scattering. Thus, they are capable of reading and
writing anywhere in local memory on the graphics card or in other parts of the system. The
G80 has several on-chip memories that can exploit data locality and data sharing, e.g. a
64 KB off-chip constant memory and an 8 KB single-ported constant memory cache in each
SM. If multiple threads access the same address during the same cycle, the cache broadcasts
the address to those threads with the same latency as a register access. In addition to the
constant memory cache, each SM has a 16 KB shared (data) memory that is either written and
reused or shared among threads. Finally, for read-only data that is shared by threads but not
necessarily to be accessed simultaneously, the off-chip texture memory and the on-chip
texture caches exploit 2D data locality.

2.2 The CUDA Programming Model
The CUDA programming model consists of ANSI C supported by several keywords and
constructs. CUDA treats the GPU as a coprocessor that executes data-parallel kernel
functions. The developer supplies a single source program encompassing both host (CPU, c)
and kernel (GPU, cu) code. The host code transfers data and code to and from the GPU's
global memory via API calls and initiates the kernel. At the highest level, each kernel creates
a single grid, which consists of many thread blocks. Each thread block is assigned to a single
SM for the duration of its execution. A thread block consists of a limited number of threads
which can cooperate. The maximum number of threads per block is 512. Threads from
different blocks cannot cooperate. Each thread can read/write from/to thread registers,
thread-local memory, shared memory in a block, the global memory and read from constant
memory or the texture memory in a grid. The host has read/write access on the constant,
global and texture memory. Threads in the same block can share data through the shared
memory and can perform barrier synchronization. Threads are otherwise independent, and
synchronization across thread blocks is safely accomplished only by terminating the kernel.
The IU manages things in groups of parallel threads, called warps. SMs can perform zero-
overhead scheduling to interleave warps on an instruction-by-instruction basis to hide the
latency of global memory accesses and long-latency arithmetic operations. When one warp
stalls, the SM can switch to a ready warp in the same or different thread block assigned to
the SM. Each warp executes in SIMD fashion, with the IU broadcasting the same instruction
to the eight cores on a SM on four consecutive clock cycles. Since one pixel equals one
thread, and since the SPs are scalar, the compiler schedules pixel elements for execution
sequentially: red, then green, then blue, and then alpha.
Fig. 2 shows a Thread Processing Cluster (TPC) used on the G200 series with 10 TPCs in
total. As depicted, a TPC comprises multiple IUs, SPs and local memory.

www.intechopen.com

Parallel and Distributed Computing68

Fig. 2. A Thread Processing Cluster (TPC)

2.3 Experimental Setup and Clock Variation
In this Section we present the results from a first experimental evaluation by clock variation,
since we wanted to artificially increase the fault rate, observe the system behavior
concerning reliability and depict basic performance figures.
Our experimental setup consists of a 6 GB main memory Core i7 system, configured with
two NVidia GTX260 cards (PCIe 2.0 x16). The two hard disks (500 GB) are in RAID 0 mode.
In the first experiment with SLI, we adjusted the engine, shader and memory clock
frequency. A SLI-system is constructed on hardware level and must be configured on
software level. Either the GPUs work independently in non-SLI mode to support multi-view
displays or all GPUs in a SLI configuration appear as a single unit, mainly used to speed up
3D applications and computations. For the CUDA programming environment, a non-SLI
system appears as a set of graphics cards, a SLI system as one graphics card. Multiple GPUs
appear as multiple host threads. The clock rate adjustment in SLI mode is done for both
cards simultaneously, in non-SLI mode, both cards have to be configured separately. The
maximum clock rate of (engine=800, shader=1650, memory=2700) MHz sometimes resulted
in execution faults of a kernel in non-SLI mode and complete system failures in SLI mode.
Therefore, we applied less aggressive settings and varied the clock frequency between
(engine=500, shader=1150, memory=1900) and (700, 1400, 2500) MHz. The workload
consisted of a computation of the blackscholes formula for 512 iterations. The same
workload was also computed on the CPU. Besides precision issues (see Section 0) no
deviation except for the highest clock settings occurred. Fig. 3 shows the influence of the
variation of the clock frequencies of the engine, shader and memory on performance (SLI).
Note that the bandwidth is the internal card bandwidth and not the bandwidth of the
external interface (PCIe). From the experiments two simple but important conclusions can
be derived:

1) a system in SLI mode is less reliable than one in non-SLI mode. Reliable
calculations should be carried out on a non-SLI system. A SLI system has more
advantage in computing-intensive applications. For bandwidth-intensive
applications a non-SLI system should be preferred.

2) Within the overclocking experiments, the GPU rather tended to completely reject
the execution of a kernel instead of doing faulty computations (overclocking
applied at the beginning of the execution).

We are aware of the fact that these figures are only exemplary, but the results can serve as
an orientation.

Fig. 3. System performance while varying clock frequencies

2.4 Bandwidth Experiments
The question in this Section is to determine the bandwidth in Mbytes per second for
different transfer sizes and different configurations of a SLI and non-SLI system. The
bandwidth is important e.g. when the results of a redundant computation must be
transferred back to the CPU for a comparison. The basic bandwidths of PCIe 2.0 interfaces
are depicted in Table 1.

PCIe-Slot Lanes/ Direction Bandwidth Clock

x1 1 0.5 GByte/s 2.5 GHz

x4 4 2 GByte/s 2.5 GHz

x8 8 4 GByte/s 2.5 GHz

x16 16 8 GByte/s 2.5 GHz

x32 32 16 GByte/s 2.5 GHz

Table 1. Basic bandwidths of PCIe 2.0

Blocks with a certain size were either transferred from the host to the device, from the
device to the host and from device to device. The maximum bandwidth for each device
within the experiments is 8 GBytes/s. Fig. 4 shows the bandwidths for pageable and pinned
memory. Pinned memory allows the compute kernels to access and share the host’s
memory. We applied the lowest clock settings (engine=500, shader=1150, memory=1900) to

7

70

10
92

50

13
69

14

18
62

00

19
60

00

20
58

00

21
56

00

22
54

00

23
52

00

24
50

00

25
48

00

Engine * Shader * Memory (MHz)

Time (s)

GB/s

GOps/s

www.intechopen.com

Facts, Issues and Questions - GPUs for Dependability 69

Fig. 2. A Thread Processing Cluster (TPC)

2.3 Experimental Setup and Clock Variation
In this Section we present the results from a first experimental evaluation by clock variation,
since we wanted to artificially increase the fault rate, observe the system behavior
concerning reliability and depict basic performance figures.
Our experimental setup consists of a 6 GB main memory Core i7 system, configured with
two NVidia GTX260 cards (PCIe 2.0 x16). The two hard disks (500 GB) are in RAID 0 mode.
In the first experiment with SLI, we adjusted the engine, shader and memory clock
frequency. A SLI-system is constructed on hardware level and must be configured on
software level. Either the GPUs work independently in non-SLI mode to support multi-view
displays or all GPUs in a SLI configuration appear as a single unit, mainly used to speed up
3D applications and computations. For the CUDA programming environment, a non-SLI
system appears as a set of graphics cards, a SLI system as one graphics card. Multiple GPUs
appear as multiple host threads. The clock rate adjustment in SLI mode is done for both
cards simultaneously, in non-SLI mode, both cards have to be configured separately. The
maximum clock rate of (engine=800, shader=1650, memory=2700) MHz sometimes resulted
in execution faults of a kernel in non-SLI mode and complete system failures in SLI mode.
Therefore, we applied less aggressive settings and varied the clock frequency between
(engine=500, shader=1150, memory=1900) and (700, 1400, 2500) MHz. The workload
consisted of a computation of the blackscholes formula for 512 iterations. The same
workload was also computed on the CPU. Besides precision issues (see Section 0) no
deviation except for the highest clock settings occurred. Fig. 3 shows the influence of the
variation of the clock frequencies of the engine, shader and memory on performance (SLI).
Note that the bandwidth is the internal card bandwidth and not the bandwidth of the
external interface (PCIe). From the experiments two simple but important conclusions can
be derived:

1) a system in SLI mode is less reliable than one in non-SLI mode. Reliable
calculations should be carried out on a non-SLI system. A SLI system has more
advantage in computing-intensive applications. For bandwidth-intensive
applications a non-SLI system should be preferred.

2) Within the overclocking experiments, the GPU rather tended to completely reject
the execution of a kernel instead of doing faulty computations (overclocking
applied at the beginning of the execution).

We are aware of the fact that these figures are only exemplary, but the results can serve as
an orientation.

Fig. 3. System performance while varying clock frequencies

2.4 Bandwidth Experiments
The question in this Section is to determine the bandwidth in Mbytes per second for
different transfer sizes and different configurations of a SLI and non-SLI system. The
bandwidth is important e.g. when the results of a redundant computation must be
transferred back to the CPU for a comparison. The basic bandwidths of PCIe 2.0 interfaces
are depicted in Table 1.

PCIe-Slot Lanes/ Direction Bandwidth Clock

x1 1 0.5 GByte/s 2.5 GHz

x4 4 2 GByte/s 2.5 GHz

x8 8 4 GByte/s 2.5 GHz

x16 16 8 GByte/s 2.5 GHz

x32 32 16 GByte/s 2.5 GHz

Table 1. Basic bandwidths of PCIe 2.0

Blocks with a certain size were either transferred from the host to the device, from the
device to the host and from device to device. The maximum bandwidth for each device
within the experiments is 8 GBytes/s. Fig. 4 shows the bandwidths for pageable and pinned
memory. Pinned memory allows the compute kernels to access and share the host’s
memory. We applied the lowest clock settings (engine=500, shader=1150, memory=1900) to

7

70

10
92

50

13
69

14

18
62

00

19
60

00

20
58

00

21
56

00

22
54

00

23
52

00

24
50

00

25
48

00
Engine * Shader * Memory (MHz)

Time (s)

GB/s

GOps/s

www.intechopen.com

Parallel and Distributed Computing70

determine a lower bandwith bound. From the results, we see that the host to device transfer
(pinned memory) is the slowest form to transfer data, followed by the device to host
(pageable) communication. Starting from block sizes greater than 65536 bytes, the device to
device communication is the fastest way to transfer data.

Fig. 4. Bandwidth for different block transfer sizes

We note that the experimental bandwidth for the device to device communication is well
above the limit of the PCIe 2.0 x16 specification. The reason for this is that transfers are done
on the graphics card and do not pass the external PCIe bus.

2.5Precision Experiments
The realm of (COTS) GPUs is not precision, it is speed. Thus, applications running on GPUs
must be questioned in general. Most GPUs use IEEE754R as floating-point format. In
comparison to IEEE754 rounding occurs, leading to imprecision. But there are several work-
arounds, including mixed-precision 0.
In this Section, we do not focus on rounding errors. We prefer an empirical analysis, since
we do not know the implementation of the floating-point algorithms within the GPU.
Especially the implementation of transcendental functions implies approximation
algorithms, which we cannot know if we do not have a disclosure of the GPU
implementation, which is not available to the public due to commercial reasons. To the
knowledge of the author, this approach to examine the precision of GPUs is a novelty.
We present benchmarks to compute the deviation of GPU operations in comparison to a
CPU implementation and regard three different data types: integer, float and double. Half-
floats are supported by shaders and thus are not directly accessible by CUDA. As the half-
float is inspired by IEEE754, infinity exists if all bits of the exponent are one and the

1

10

100

1000

10000

100000

10
24

51
20

92
16

13
31

2

17
40

8

21
50

4

25
60

0

29
69

6

33
79

2

37
88

8

41
98

4

46
08

0

50
17

6

54
27

2

58
36

8

62
46

4

66
56

0

70
65

6

74
75

2

78
84

8

82
94

4

87
04

0

91
13

6

95
23

2

99
32

8

Ba
nd

w
id
th
 in

 M
by

te
s/
s

Block size in Bytes

Device to Host Pinned memory

Host to Device Pinned memory

Device to Host Pageable
memory

mantissa is zero. A half-float is a NaN if all exponent bits are one and the mantissa is not
zero. The set of precision benchmarks can be downloaded from 0.
The benchmarks implement vector operations in dim(224) with different data types and
operations, listed in Table 2. The vector data is randomized in each run. Each cell in Table 2
contains the maximum unsigned deviation from the CPU implementation. For
computations which could cause overflows, such as the exponential function, the size of the
numbers within the randomized vectors was limited.

Type Single Double INT32
Add 0 0 0
Sub 0 0 0
Mul 0 0 0
Div 0.125 0 0
Sqrt 0.0000152588 0 0
Sin 0.000000119209 1*10-16 0
Cos 0.000000119209 1*10-16 0
Log 0.000000953674 9*10-16 0
Exp 0.00195313 4*10-16 0

Table 2. Maximum absolute deviation from CPU implementation

Astonishingly, basic arithmetic operations such as add and sub or mul and all integer
operations do not lead to imprecision. From this, we can conclude that a scaling of small
floats to integers can improve the precision in such a way that the CPU and the GPU results
will not differ.

2.6Timing and mid-term Experiments
In this Section, we present the results of mid-term experiments to determine the timing
variance and reliability/ stability of results. By a mid-term evaluation, we mean an
observation interval of one week. A longer observation interval, e.g. over more than one
month would be appreciated, but was not feasible due to the timely restrictions of this work.
The precision benchmarks from subsection 0 were calculated 185 times. Additionally, we
calculated the workload on the CPU with one core and a parallelized version on the 8
available cores. We measured the time for each calculation, GPU and CPU and calculated
the average arithmetic mean. The graphics cards were configured in non-SLI mode. The
results are depicted in Fig. 5. For some cases (INT operations), the OpenMP implementation
was even faster than the GPU.

www.intechopen.com

Facts, Issues and Questions - GPUs for Dependability 71

determine a lower bandwith bound. From the results, we see that the host to device transfer
(pinned memory) is the slowest form to transfer data, followed by the device to host
(pageable) communication. Starting from block sizes greater than 65536 bytes, the device to
device communication is the fastest way to transfer data.

Fig. 4. Bandwidth for different block transfer sizes

We note that the experimental bandwidth for the device to device communication is well
above the limit of the PCIe 2.0 x16 specification. The reason for this is that transfers are done
on the graphics card and do not pass the external PCIe bus.

2.5Precision Experiments
The realm of (COTS) GPUs is not precision, it is speed. Thus, applications running on GPUs
must be questioned in general. Most GPUs use IEEE754R as floating-point format. In
comparison to IEEE754 rounding occurs, leading to imprecision. But there are several work-
arounds, including mixed-precision 0.
In this Section, we do not focus on rounding errors. We prefer an empirical analysis, since
we do not know the implementation of the floating-point algorithms within the GPU.
Especially the implementation of transcendental functions implies approximation
algorithms, which we cannot know if we do not have a disclosure of the GPU
implementation, which is not available to the public due to commercial reasons. To the
knowledge of the author, this approach to examine the precision of GPUs is a novelty.
We present benchmarks to compute the deviation of GPU operations in comparison to a
CPU implementation and regard three different data types: integer, float and double. Half-
floats are supported by shaders and thus are not directly accessible by CUDA. As the half-
float is inspired by IEEE754, infinity exists if all bits of the exponent are one and the

1

10

100

1000

10000

100000

10
24

51
20

92
16

13
31

2

17
40

8

21
50

4

25
60

0

29
69

6

33
79

2

37
88

8

41
98

4

46
08

0

50
17

6

54
27

2

58
36

8

62
46

4

66
56

0

70
65

6

74
75

2

78
84

8

82
94

4

87
04

0

91
13

6

95
23

2

99
32

8

Ba
nd

w
id
th
 in

 M
by

te
s/
s

Block size in Bytes

Device to Host Pinned memory

Host to Device Pinned memory

Device to Host Pageable
memory

mantissa is zero. A half-float is a NaN if all exponent bits are one and the mantissa is not
zero. The set of precision benchmarks can be downloaded from 0.
The benchmarks implement vector operations in dim(224) with different data types and
operations, listed in Table 2. The vector data is randomized in each run. Each cell in Table 2
contains the maximum unsigned deviation from the CPU implementation. For
computations which could cause overflows, such as the exponential function, the size of the
numbers within the randomized vectors was limited.

Type Single Double INT32
Add 0 0 0
Sub 0 0 0
Mul 0 0 0
Div 0.125 0 0
Sqrt 0.0000152588 0 0
Sin 0.000000119209 1*10-16 0
Cos 0.000000119209 1*10-16 0
Log 0.000000953674 9*10-16 0
Exp 0.00195313 4*10-16 0

Table 2. Maximum absolute deviation from CPU implementation

Astonishingly, basic arithmetic operations such as add and sub or mul and all integer
operations do not lead to imprecision. From this, we can conclude that a scaling of small
floats to integers can improve the precision in such a way that the CPU and the GPU results
will not differ.

2.6Timing and mid-term Experiments
In this Section, we present the results of mid-term experiments to determine the timing
variance and reliability/ stability of results. By a mid-term evaluation, we mean an
observation interval of one week. A longer observation interval, e.g. over more than one
month would be appreciated, but was not feasible due to the timely restrictions of this work.
The precision benchmarks from subsection 0 were calculated 185 times. Additionally, we
calculated the workload on the CPU with one core and a parallelized version on the 8
available cores. We measured the time for each calculation, GPU and CPU and calculated
the average arithmetic mean. The graphics cards were configured in non-SLI mode. The
results are depicted in Fig. 5. For some cases (INT operations), the OpenMP implementation
was even faster than the GPU.

www.intechopen.com

Parallel and Distributed Computing72

Fig

Fro
mo
ap
tha
GP
bo

Fig

g. 5. Timing Resu

om the results, w
ore time – which
proximately need
an integers (in a
PU and CPU. Thu
th implementatio

g. 6. Benchmark t

1

10

100

1000

10000

Ti
m
e
in
 m

s

GPU

CPU 1

CPU 8

0

50

100

150

200

250

Ti
m
e
in
 m

s

ults

we first see that
h is not surprisin
d twice the same
verage). We noti

us, we calculated
ons, GPU and mu

timing, variation,

1 Core

8 Cores

A
dd Su
b

M
ul

complex operati
ng, since there ar
e time than floats
iced that the tim
 the maximum, m

ulticore (even colu

 lowest, highest,

Bench

M
ul D
iv Si
n

Benchm

ons and transcen
re only two SFU

s, doubles approx
mings varied for
minimum and ave
umns), depicted i

average

hmark

Co
s

Ex
p

Lo
g

mark

ndental functions
Us on one SM. In
ximately twice th
both implement
erage timing valu
in Fig. 6. (floats).

g

Sq
rt

s need
ntegers
he time
ations,
ues for

The variations are e.g. caused by normal user interactions. We conclude that results cannot
be expected at a certain time. Thus, computations on graphics cards may not be currently
suitable for realtime applications. Interesting is that the timings from CPU and GPU have a
connection, i.e. if the timing for the GPU was large, the timing of the corresponding CPU
implementation was also higher. The deviation resulted in each run and the results seem to
correlate. This is surprising, since we implemented an asynchronous version for the GPU
which ran independently from the CPU. During the experiments, no unusual deviation
(except precision) between CPU and GPU occurred. The results were stable during the
whole observation period.

3. Opportunities for Dependability

In this Section, we will discuss the opportunities for dependability offered by graphics
cards. Note, that our terminology is based on 0. We will first have a look at the section means
from the dependability tree (from 0) in Fig. 7. Then we will discuss the means fault
prevention, fault-tolerance, fault removal and fault forecasting in the following subsections.
We do not specify the exact nature (e.g. bit-flip faults, transmission faults, permanent) of
faults within a model, since we do not want to restrict our horizon by regarding at a special
set of fault types but we are aware of the fact, that a fault model has to be developed later
on.

Fig. 7: A section from the dependability tree

We distinguish different levels on which different dependability means can be applied.
Therefore, we depict the notational conventions in Table 3 and note the level, where zero (0)
means the top level.

www.intechopen.com

Facts, Issues and Questions - GPUs for Dependability 73

Fig

Fro
mo
ap
tha
GP
bo

Fig

g. 5. Timing Resu

om the results, w
ore time – which
proximately need
an integers (in a
PU and CPU. Thu
th implementatio

g. 6. Benchmark t

1

10

100

1000

10000

Ti
m
e
in
 m

s

GPU

CPU 1

CPU 8

0

50

100

150

200

250

Ti
m
e
in
 m

s

ults

we first see that
h is not surprisin
d twice the same
verage). We noti

us, we calculated
ons, GPU and mu

timing, variation,

1 Core

8 Cores

A
dd Su
b

M
ul

complex operati
ng, since there ar
e time than floats
iced that the tim
 the maximum, m

ulticore (even colu

 lowest, highest,

Bench

M
ul D
iv Si
n

Benchm

ons and transcen
re only two SFU

s, doubles approx
mings varied for
minimum and ave
umns), depicted i

average

hmark

Co
s

Ex
p

Lo
g

mark

ndental functions
Us on one SM. In
ximately twice th
both implement
erage timing valu
in Fig. 6. (floats).

g

Sq
rt

s need
ntegers
he time
ations,
ues for

The variations are e.g. caused by normal user interactions. We conclude that results cannot
be expected at a certain time. Thus, computations on graphics cards may not be currently
suitable for realtime applications. Interesting is that the timings from CPU and GPU have a
connection, i.e. if the timing for the GPU was large, the timing of the corresponding CPU
implementation was also higher. The deviation resulted in each run and the results seem to
correlate. This is surprising, since we implemented an asynchronous version for the GPU
which ran independently from the CPU. During the experiments, no unusual deviation
(except precision) between CPU and GPU occurred. The results were stable during the
whole observation period.

3. Opportunities for Dependability

In this Section, we will discuss the opportunities for dependability offered by graphics
cards. Note, that our terminology is based on 0. We will first have a look at the section means
from the dependability tree (from 0) in Fig. 7. Then we will discuss the means fault
prevention, fault-tolerance, fault removal and fault forecasting in the following subsections.
We do not specify the exact nature (e.g. bit-flip faults, transmission faults, permanent) of
faults within a model, since we do not want to restrict our horizon by regarding at a special
set of fault types but we are aware of the fact, that a fault model has to be developed later
on.

Fig. 7: A section from the dependability tree

We distinguish different levels on which different dependability means can be applied.
Therefore, we depict the notational conventions in Table 3 and note the level, where zero (0)
means the top level.

www.intechopen.com

Parallel and Distributed Computing74

Level Name Meaning
0 Host The host or the system;

a computing system containing one or more CPUs and
graphics hardware

Integrated Computing Hardware
1 CPU The central processing unit
2 Processing core A core within a CPU
3 Thread A hardware thread, consisting of registers etc.

Graphics Hardware
1 Device A single graphics card
2 GPU A graphics processing unit
3 GP core A core within a GPU
4 Grid A set of thread blocks
5 Thread Block (TB) A thread block consists of multiple threads

Table 3. Notational Conventions

3.1 Fault Prevention
We note that the development of an additional GPU kernel, doing the same task as the CPU
at the same time, automatically involves diversity in hardware, software and design, since
through different implementations and by using different compilers, we have diversity,
considering the fact that we have only one system, but multiple versions of a program and
multiple hardware realizations. Note, that the forecast of faults can also be seen as essential
part of fault prevention (see Section 0 for details).

3.2 Fault-Tolerance
Basic means of fault-tolerance are structural, temporal, informational and functional
redundancy. Naturally, all codes involving informational redundancy can be computed by
graphics cards. An interesting idea is to speed up the calculation of Reed-Solomon-Codes by
GPUs 0. Functional redundancy can be easily achieved by either computing a calculation on
the CPU and the GPU, involving diversity in software or by programming a set of functions
again for the GPU. When voting between the results, we can use the inherent voting
capability supported by CUDA.

3.2.1 Structural Redundancy
Structural redundancy can be achieved by integrating multiple graphics cards into a single
computing system. The result is massive redundancy, e.g. via dual, triple, quadruple
configurations. Naturally, we are not able to tolerate permanent CPU faults, but permanent
GPU faults. Note, that it is also possible to combine mainboard GPUs and external graphics
cards. One should be aware of the fact that multiple (PCIe) graphics cards can be installed
simultaneously, deriving diversity in hardware. The multiprocessing-paradigm has also
arrived for GPUs. NVidia's GeForce 9800 GX2 contains a pair of 65 nm G92 graphics

processors running at 600 MHz. The ATI Radeon™ HD 4870 X2 has two 55 nm GPUs, a 512-
bit GDDR3 memory interface and the option to construct a dual-mode CrossfireX
configuration, resulting in a total of four GPUs. To lower physical dependencies, one should
carry out redundant computations on different cards, then on different GPUs, then on
different grids. The program/ operating system can additionally implement a scheduler,
issuing different redundant computations to different parts of the graphics subsystem. The
redundant computations can be called from the main program and run in parallel to the
CPU calculation. A comparison can be done by the CPU or the GPU. However, the
production of results must be synchronized. Fig. 8 shows the integration. Disadvantages
besides synchronization are that the user must decide which code should be verified by the
GPU and the source code of the application must be modified. Additionally, only system
relevant routines could be modified.

Fig. 8. CPU/ GPU redundant computations

From Fig. 8 we see that the combination of multiple host thread callers and GPU threads is
possible. To do a synchronization without waiting times for the CPU and/ or the GPU, the
results could be written into a buffer, where each calculation receives its very own
identification. Thus, we do not have to wait for the results to arrive. A disadvantage is that
in case of a rollback, already calculated results must be discarded. The synchronization of
host and GPU threads offers a new perspective for research.

3.2.2 Temporal Redundancy
Temporal redundancy is an essential property of a multithreaded system, thus also for
graphics cards comprising hundreds or thousands of threads. A temporal redundant
computation can be done on every accessible element of the graphics card by redoing the
calculation on the same or (better) on a different component. The only point where
structural or temporal redundant threads are dependent is at the checking of results. The
implementation in software is difficult, since CUDA does not differ between physical and

www.intechopen.com

Facts, Issues and Questions - GPUs for Dependability 75

Level Name Meaning
0 Host The host or the system;

a computing system containing one or more CPUs and
graphics hardware

Integrated Computing Hardware
1 CPU The central processing unit
2 Processing core A core within a CPU
3 Thread A hardware thread, consisting of registers etc.

Graphics Hardware
1 Device A single graphics card
2 GPU A graphics processing unit
3 GP core A core within a GPU
4 Grid A set of thread blocks
5 Thread Block (TB) A thread block consists of multiple threads

Table 3. Notational Conventions

3.1 Fault Prevention
We note that the development of an additional GPU kernel, doing the same task as the CPU
at the same time, automatically involves diversity in hardware, software and design, since
through different implementations and by using different compilers, we have diversity,
considering the fact that we have only one system, but multiple versions of a program and
multiple hardware realizations. Note, that the forecast of faults can also be seen as essential
part of fault prevention (see Section 0 for details).

3.2 Fault-Tolerance
Basic means of fault-tolerance are structural, temporal, informational and functional
redundancy. Naturally, all codes involving informational redundancy can be computed by
graphics cards. An interesting idea is to speed up the calculation of Reed-Solomon-Codes by
GPUs 0. Functional redundancy can be easily achieved by either computing a calculation on
the CPU and the GPU, involving diversity in software or by programming a set of functions
again for the GPU. When voting between the results, we can use the inherent voting
capability supported by CUDA.

3.2.1 Structural Redundancy
Structural redundancy can be achieved by integrating multiple graphics cards into a single
computing system. The result is massive redundancy, e.g. via dual, triple, quadruple
configurations. Naturally, we are not able to tolerate permanent CPU faults, but permanent
GPU faults. Note, that it is also possible to combine mainboard GPUs and external graphics
cards. One should be aware of the fact that multiple (PCIe) graphics cards can be installed
simultaneously, deriving diversity in hardware. The multiprocessing-paradigm has also
arrived for GPUs. NVidia's GeForce 9800 GX2 contains a pair of 65 nm G92 graphics

processors running at 600 MHz. The ATI Radeon™ HD 4870 X2 has two 55 nm GPUs, a 512-
bit GDDR3 memory interface and the option to construct a dual-mode CrossfireX
configuration, resulting in a total of four GPUs. To lower physical dependencies, one should
carry out redundant computations on different cards, then on different GPUs, then on
different grids. The program/ operating system can additionally implement a scheduler,
issuing different redundant computations to different parts of the graphics subsystem. The
redundant computations can be called from the main program and run in parallel to the
CPU calculation. A comparison can be done by the CPU or the GPU. However, the
production of results must be synchronized. Fig. 8 shows the integration. Disadvantages
besides synchronization are that the user must decide which code should be verified by the
GPU and the source code of the application must be modified. Additionally, only system
relevant routines could be modified.

Fig. 8. CPU/ GPU redundant computations

From Fig. 8 we see that the combination of multiple host thread callers and GPU threads is
possible. To do a synchronization without waiting times for the CPU and/ or the GPU, the
results could be written into a buffer, where each calculation receives its very own
identification. Thus, we do not have to wait for the results to arrive. A disadvantage is that
in case of a rollback, already calculated results must be discarded. The synchronization of
host and GPU threads offers a new perspective for research.

3.2.2 Temporal Redundancy
Temporal redundancy is an essential property of a multithreaded system, thus also for
graphics cards comprising hundreds or thousands of threads. A temporal redundant
computation can be done on every accessible element of the graphics card by redoing the
calculation on the same or (better) on a different component. The only point where
structural or temporal redundant threads are dependent is at the checking of results. The
implementation in software is difficult, since CUDA does not differ between physical and

www.intechopen.com

Parallel and Distributed Computing76

virtual threads. Here, data dependencies have to be regarded. Fig. 9 illustrates two possible
forms of temporal redundancy.

Independent Data Dependent Data
Fig. 9. Temporal Redundancy, Data Dependencies

Temporal redundancy on GPUs leads again to synchronization problems.

3.3 Fault Removal
Apart from the ECC fault removal within the GPU memory 0, fault removal is a hard thing
to implement by using GPUs, because the faulty unit must be located and a prior and sane
state must be restored. On a fault-free computation we must store a checkpoint. Here, we
can fallback to classical schemes storing the checkpoint on hard disks or to store the
checkpoint on the cards. The first thing is to use a triple card configuration to detect, locate
and remove the fault within the graphics configuration. Here, the graphics cards ought to
execute the same code, not strictly synchronously, but in a way that faults cannot propagate
between cards. We do not discuss the removal of faults initiated from the CPU to the GPU
(CPU GPU) here, since our aim is to assist CPU calculations.

3.3.1 Watchdogs
A GPU can be periodically triggered by an external timer to monitor activities. The timer
routine must be able to directly access the memory of the graphics card. The external timer
is needed, because GPUs do not possess such a capability at the moment. The activities are
e.g. CPU or fixed disk functionalities. Any activity and the current time are e.g. written to
the texture memory. On a write of the current time, the last time will be copied to a different
location within memory. If the new timer value does not differ from the last one, a fault is
signaled. Furthermore, the GPU checks the activities. If no activities are recorded in the
timer interval (no value has been written to memory) a wakeup signal can be issued. Fig. 10
shows the algorithm.

Startup: E={} // Empty event list E in mem
On timer: // Compare new timestamp N with previous P in mem

If N>P: write P to previous timestamp in mem (P=>PP)
Else Signal “Timer Fault”

 If E={}:Signal “Event List Empty - Wakeup”

On event: Write event to E // Note that timer is also an event
Fig. 10. Watchdog Algorithm

The wakeup signal can be issued by writing to a dedicated memory location within the
host’s memory. If no OS restrictions apply, the GPU could write the recovery entry address
to the CPU program counter.

3.3.2 Fault Removal GPU GPU
We can imagine something like a RAIGx configuration (Redundant Array of Independent
Graphics cards, according to a RAIDx – Redundant Array of Independent Disks). As we
have not hardware controller to support RAIG, we only support Software-RAIG. As RAIG,
we can consider the usual modes, listed in Table 4.

Mode Meaning, Configuration
0 Two or more graphics cards doing independent calculations
1 Two of more graphics cards doing the same calculations in parallel
5 Two graphics cards doing the same calculations in parallel,

securing the operands and the results in memory by a checksum, e.g. parity
Table 4. RAIG Modes

On the detection of a fault, we can vote among the results. If we include the CPU in the
calculations, we have a TMR configuration and therefore can locate the faulty unit, if two
results are equal. If the kernels are data independent, we can simply continue. If we have
dependencies among the calculations, we have the option to either copy all memory
contents and processing states of an assumed fault-free card to other all cards or copy the
modified parts (see subsection 0).

3.3.3 Removal GPU CPU
Fault removal within a CPU from a GPU is possible but far more difficult. CPU states must
be written into the memory of the graphics card, also updated memory locations. We
suggest checkpoint intervals between 106 (~4 MBytes written) and 107 (~40 MBytes written)
memory writes. The checkpoint interval is restricted by the main memory of the graphics
card, expected reliability and system performance. The CPU state is also stored in the main
memory of the card. On a fault, the memory and CPU state must be transferred back. In Fig.
4 it is shown what bandwidth can be achieved. Since we cannot usually map the whole main
memory of the host to the device memory, since it is smaller than that of the host’s memory,
we must either do every memory write of the CPU simultaneously on the card, significantly
decreasing performance or do a fault removal for a single (system relevant) application
running on the CPU such as a daemon. For CPU states, there is no problem, because the

www.intechopen.com

Facts, Issues and Questions - GPUs for Dependability 77

virtual threads. Here, data dependencies have to be regarded. Fig. 9 illustrates two possible
forms of temporal redundancy.

Independent Data Dependent Data
Fig. 9. Temporal Redundancy, Data Dependencies

Temporal redundancy on GPUs leads again to synchronization problems.

3.3 Fault Removal
Apart from the ECC fault removal within the GPU memory 0, fault removal is a hard thing
to implement by using GPUs, because the faulty unit must be located and a prior and sane
state must be restored. On a fault-free computation we must store a checkpoint. Here, we
can fallback to classical schemes storing the checkpoint on hard disks or to store the
checkpoint on the cards. The first thing is to use a triple card configuration to detect, locate
and remove the fault within the graphics configuration. Here, the graphics cards ought to
execute the same code, not strictly synchronously, but in a way that faults cannot propagate
between cards. We do not discuss the removal of faults initiated from the CPU to the GPU
(CPU GPU) here, since our aim is to assist CPU calculations.

3.3.1 Watchdogs
A GPU can be periodically triggered by an external timer to monitor activities. The timer
routine must be able to directly access the memory of the graphics card. The external timer
is needed, because GPUs do not possess such a capability at the moment. The activities are
e.g. CPU or fixed disk functionalities. Any activity and the current time are e.g. written to
the texture memory. On a write of the current time, the last time will be copied to a different
location within memory. If the new timer value does not differ from the last one, a fault is
signaled. Furthermore, the GPU checks the activities. If no activities are recorded in the
timer interval (no value has been written to memory) a wakeup signal can be issued. Fig. 10
shows the algorithm.

Startup: E={} // Empty event list E in mem
On timer: // Compare new timestamp N with previous P in mem

If N>P: write P to previous timestamp in mem (P=>PP)
Else Signal “Timer Fault”

 If E={}:Signal “Event List Empty - Wakeup”

On event: Write event to E // Note that timer is also an event
Fig. 10. Watchdog Algorithm

The wakeup signal can be issued by writing to a dedicated memory location within the
host’s memory. If no OS restrictions apply, the GPU could write the recovery entry address
to the CPU program counter.

3.3.2 Fault Removal GPU GPU
We can imagine something like a RAIGx configuration (Redundant Array of Independent
Graphics cards, according to a RAIDx – Redundant Array of Independent Disks). As we
have not hardware controller to support RAIG, we only support Software-RAIG. As RAIG,
we can consider the usual modes, listed in Table 4.

Mode Meaning, Configuration
0 Two or more graphics cards doing independent calculations
1 Two of more graphics cards doing the same calculations in parallel
5 Two graphics cards doing the same calculations in parallel,

securing the operands and the results in memory by a checksum, e.g. parity
Table 4. RAIG Modes

On the detection of a fault, we can vote among the results. If we include the CPU in the
calculations, we have a TMR configuration and therefore can locate the faulty unit, if two
results are equal. If the kernels are data independent, we can simply continue. If we have
dependencies among the calculations, we have the option to either copy all memory
contents and processing states of an assumed fault-free card to other all cards or copy the
modified parts (see subsection 0).

3.3.3 Removal GPU CPU
Fault removal within a CPU from a GPU is possible but far more difficult. CPU states must
be written into the memory of the graphics card, also updated memory locations. We
suggest checkpoint intervals between 106 (~4 MBytes written) and 107 (~40 MBytes written)
memory writes. The checkpoint interval is restricted by the main memory of the graphics
card, expected reliability and system performance. The CPU state is also stored in the main
memory of the card. On a fault, the memory and CPU state must be transferred back. In Fig.
4 it is shown what bandwidth can be achieved. Since we cannot usually map the whole main
memory of the host to the device memory, since it is smaller than that of the host’s memory,
we must either do every memory write of the CPU simultaneously on the card, significantly
decreasing performance or do a fault removal for a single (system relevant) application
running on the CPU such as a daemon. For CPU states, there is no problem, because the

www.intechopen.com

Parallel and Distributed Computing78

amount of data to transfer is very small. Difficult is the injection of a previous state in the
CPU. Here we can imagine a state memory for each CPU which can be written from the
GPU and read by the CPU. Within a multicore system another (healthy) CPU can inject the
state into the faulty CPU.

3.4 Fault Forecasting (with GPUs)
For the prediction of faults, a history of faults must be stored in the graphics card memory,
because without knowledge of the past, we cannot predict future faults. The prediction can
be done with various methods, e.g. causal Bayesian networks, Hidden Markov Models
(HMMs) and the forward algorithm, etc. We propose to use the MCE (machine check
exception) of modern processors to enter a special routine to compute the prediction. We
assume the history to be organized as simple ring buffer of length N. The algorithm in Fig.
11 briefly sketches the method without going into details.

Startup: History (h2) location h=0;

CPU:

On_MCE: Write MCE-Flag, time to GPU memory, location h2
 h=h+1 % N
 Call prediction on GPU

GPU:
 On_Call: Do prediction using h2

Fig. 11. Basic (abstract) prediction of faults

Note, that the forecast with HMMs implies very small numbers and hence precision
problems. A small deviation can lead to faulty results. The scaling to big integers can limit
these effects.

4. Summary and Outlook

This work presents a first step and innovative approach to use GPUs for dependability. We
are aware of the fact that this work is rudimentary – but it can serve as a starting point and a
priming of future work. It has been shown how the existing parallelism of GPUs can be
exploited for dependability. Although we did not specify the exact nature of faults, since we
did not want to restrict our horizon by regarding at a special set of fault types, the results
and the physical context of the experimental setup strongly suggest to model transient
faults. To lower physical dependencies, one should carry out redundant computations on
different cards, then on different GPUs, then on different grids. From the experimental
results some conclusions can be derived: a system in SLI mode is less reliable than one in
non-SLI mode. Reliable calculations should be carried out on a non-SLI system. A system
configured in SLI has more (proven) advantage in computing-intensive applications. For
bandwidth-intensive applications a non-SLI system should be preferred. During the mid-
term experiments, no unusual deviation (except precision) between CPU and GPU results
occurred. The results were stable during the whole observation period.
Not everything is golden in this new world of opportunities. There are a few critical points
which must be regarded by future research:

 The precision of results: fortunately all basic arithmetic operations such as add, sub
and mul and all integer operations do not lead to imprecise results. A scaling of
small floats to integers can improve the precision in such a way that the CPU and
the GPU results will not differ.

 The synchronization of host and GPU threads offers a whole new perspective for
research. The varying timings from CPU and GPU have a connection per
computation, i.e. if the timing for the GPU was large, the timing of the
corresponding CPU implementation was also higher. This is surprising, since we
implemented an asynchronous version for the GPU which ought to run
independently on the CPU. In their current implementation, graphics cards are not
suitable for realtime applications.

Future work will include the implementation and analysis of the discussed dependability
means and a long-term reliability evaluation.

5. References

[1]ACM Queue, GPUs Not Just for Graphics, Vol. 6, No. 2, March/ April 2008, ISSN: 1542-7730.
[2]J.-S. Huang et al. (NVidia corporation), United States Patent 7053901, System and method

for accelerating a special purpose processor
[3]GPGPU. General-Purpose Computation Using Graphics Hardware, http://gpgpu.org,

checked 05/15/2008.
[4]NVidia. Technical Brief. NVidia GeForce 8800 GPU Architecture Overview, Nov. 2006.

http://www.NVidia.com/object/IO_37100.html, checked 05/15/2008.
[5]Larrabee: A Many-Core x86 Architecture for Visual Computing. Seiler, L., Carmean, D.,

Sprangle, D., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake, A., Sugerman, J.,
Cavin, R., Espasa, R., Grochowski, E., Juan, T., Hanrahan, P. Proceedings of
SIGGRAPH 2008.

[6]www.vision4ce.com, checked 06/16/2009.
[7]Schatz, M.C., Trapnell, C., Delcher, A.L., Varshney, A. (2007). "High-throughput sequence

alignment using Graphics Processing Units". BMC Bioinformatics 8:474: 474.
doi:10.1186/1471-2105-8-474

[8]J.C. Laprie, Dependability: Basic Concepts and Terminology Springer-Verlag, 1992. ISBN
0387822968

[9]I. Pharr, Matt. II. Fernando, Randima. GPU gems 2: programming techniques for high-
performance graphics and general-purpose computation, edited by Matt Pharr;
Randima Fernando, series editor. ISBN 0-321-33559-7.

[10]John D. Owens et al. A Survey of General-Purpose Computation on Graphics Hardware,
Computer Graphics Forum", 2007, http://www.blackwell-
synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x , pp. 80-113, vol. 26 , no. 1

[11]Khronos OpenCL Working Group. The OpenCL Specification. Version: 1.0, Revision: 33,
Aaftab Munshi (ed.), http://www.khronos.org/registry/cl/specs/opencl-
1.0.33.pdf

[12]http://pv.fernuni-hagen.de/~fechner/GPU.html, checked 06/03/2009
[13]http://www.NVidia.de/page/tesla_computing_solutions.html, checked, 06/03/2009.

www.intechopen.com

Facts, Issues and Questions - GPUs for Dependability 79

amount of data to transfer is very small. Difficult is the injection of a previous state in the
CPU. Here we can imagine a state memory for each CPU which can be written from the
GPU and read by the CPU. Within a multicore system another (healthy) CPU can inject the
state into the faulty CPU.

3.4 Fault Forecasting (with GPUs)
For the prediction of faults, a history of faults must be stored in the graphics card memory,
because without knowledge of the past, we cannot predict future faults. The prediction can
be done with various methods, e.g. causal Bayesian networks, Hidden Markov Models
(HMMs) and the forward algorithm, etc. We propose to use the MCE (machine check
exception) of modern processors to enter a special routine to compute the prediction. We
assume the history to be organized as simple ring buffer of length N. The algorithm in Fig.
11 briefly sketches the method without going into details.

Startup: History (h2) location h=0;

CPU:

On_MCE: Write MCE-Flag, time to GPU memory, location h2
 h=h+1 % N
 Call prediction on GPU

GPU:
 On_Call: Do prediction using h2

Fig. 11. Basic (abstract) prediction of faults

Note, that the forecast with HMMs implies very small numbers and hence precision
problems. A small deviation can lead to faulty results. The scaling to big integers can limit
these effects.

4. Summary and Outlook

This work presents a first step and innovative approach to use GPUs for dependability. We
are aware of the fact that this work is rudimentary – but it can serve as a starting point and a
priming of future work. It has been shown how the existing parallelism of GPUs can be
exploited for dependability. Although we did not specify the exact nature of faults, since we
did not want to restrict our horizon by regarding at a special set of fault types, the results
and the physical context of the experimental setup strongly suggest to model transient
faults. To lower physical dependencies, one should carry out redundant computations on
different cards, then on different GPUs, then on different grids. From the experimental
results some conclusions can be derived: a system in SLI mode is less reliable than one in
non-SLI mode. Reliable calculations should be carried out on a non-SLI system. A system
configured in SLI has more (proven) advantage in computing-intensive applications. For
bandwidth-intensive applications a non-SLI system should be preferred. During the mid-
term experiments, no unusual deviation (except precision) between CPU and GPU results
occurred. The results were stable during the whole observation period.
Not everything is golden in this new world of opportunities. There are a few critical points
which must be regarded by future research:

 The precision of results: fortunately all basic arithmetic operations such as add, sub
and mul and all integer operations do not lead to imprecise results. A scaling of
small floats to integers can improve the precision in such a way that the CPU and
the GPU results will not differ.

 The synchronization of host and GPU threads offers a whole new perspective for
research. The varying timings from CPU and GPU have a connection per
computation, i.e. if the timing for the GPU was large, the timing of the
corresponding CPU implementation was also higher. This is surprising, since we
implemented an asynchronous version for the GPU which ought to run
independently on the CPU. In their current implementation, graphics cards are not
suitable for realtime applications.

Future work will include the implementation and analysis of the discussed dependability
means and a long-term reliability evaluation.

5. References

[1]ACM Queue, GPUs Not Just for Graphics, Vol. 6, No. 2, March/ April 2008, ISSN: 1542-7730.
[2]J.-S. Huang et al. (NVidia corporation), United States Patent 7053901, System and method

for accelerating a special purpose processor
[3]GPGPU. General-Purpose Computation Using Graphics Hardware, http://gpgpu.org,

checked 05/15/2008.
[4]NVidia. Technical Brief. NVidia GeForce 8800 GPU Architecture Overview, Nov. 2006.

http://www.NVidia.com/object/IO_37100.html, checked 05/15/2008.
[5]Larrabee: A Many-Core x86 Architecture for Visual Computing. Seiler, L., Carmean, D.,

Sprangle, D., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake, A., Sugerman, J.,
Cavin, R., Espasa, R., Grochowski, E., Juan, T., Hanrahan, P. Proceedings of
SIGGRAPH 2008.

[6]www.vision4ce.com, checked 06/16/2009.
[7]Schatz, M.C., Trapnell, C., Delcher, A.L., Varshney, A. (2007). "High-throughput sequence

alignment using Graphics Processing Units". BMC Bioinformatics 8:474: 474.
doi:10.1186/1471-2105-8-474

[8]J.C. Laprie, Dependability: Basic Concepts and Terminology Springer-Verlag, 1992. ISBN
0387822968

[9]I. Pharr, Matt. II. Fernando, Randima. GPU gems 2: programming techniques for high-
performance graphics and general-purpose computation, edited by Matt Pharr;
Randima Fernando, series editor. ISBN 0-321-33559-7.

[10]John D. Owens et al. A Survey of General-Purpose Computation on Graphics Hardware,
Computer Graphics Forum", 2007, http://www.blackwell-
synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x , pp. 80-113, vol. 26 , no. 1

[11]Khronos OpenCL Working Group. The OpenCL Specification. Version: 1.0, Revision: 33,
Aaftab Munshi (ed.), http://www.khronos.org/registry/cl/specs/opencl-
1.0.33.pdf

[12]http://pv.fernuni-hagen.de/~fechner/GPU.html, checked 06/03/2009
[13]http://www.NVidia.de/page/tesla_computing_solutions.html, checked, 06/03/2009.

www.intechopen.com

Parallel and Distributed Computing80

[14]Curry, M.L.; Skjellum, A.; Ward, H.L.; Brightwell, R. Accelerating Reed-Solomon coding in
RAID systems with GPUs. In Proc. Of the IEEE International Symposium on Parallel
and Distributed Processing, pp. 1 – 6, 2008.

[15]R. Strzodka, D. Göddeke. Mixed precision methods for convergent iterative schemes. In Proc.
of the 2006 Workshop on Edge Computing Using New Commodity Architectures,
pp. D–59–60, 2006.

[16]A. Moss, D. Page, N. Smart, Toward Acceleration of RSA Using 3D Graphics Hardware.
Cryptography and Coding, pp. 369–388. December 2007.

[17]N. Maruyama, A. Nukada, S. Matsuoka, Software-Based ECC for GPUs, Symp. on
Application Accelerators in High Performance Computing, 2009.

www.intechopen.com

Parallel and Distributed Computing

Edited by Alberto Ros

ISBN 978-953-307-057-5

Hard cover, 290 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware

design to application development. Particularly, the topics that are addressed are programmable and

reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies,

cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale

network simulation, and parallel routines and algorithms. In this way, the articles included in this book

constitute an excellent reference for engineers and researchers who have particular interests in each of these

topics in parallel and distributed computing.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Bernhard Fechner (2010). Facts, Issues and Questions - GPUs for Dependability, Parallel and Distributed

Computing, Alberto Ros (Ed.), ISBN: 978-953-307-057-5, InTech, Available from:

http://www.intechopen.com/books/parallel-and-distributed-computing/facts-issues-and-questions-gpus-for-

dependability

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

