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1. Introduction 
 

Graphics Processing Units (GPUs) offer massive parallelism, comprising many actual 
paradigms like manycore, multithreading and SIMD. Today, nearly every computer is 
equipped with at least one graphics card, containing one or more GPUs bringing massive 
parallelism to the desktop. GPUs are usually used in their main function, that is, to compute 
visibility, lightning, perspective, etc. in games. As this technology is widely used, it is low-
cost. In the majority of the cases, graphic cards do not spend their entire lives by executing 
game code. Thus, such a massive parallel system is underchallenged most of the time. 
Shortly after the availability of comfortable programming environments, based on CUDA 
(Compute Unified Device Architecture) or HLSL (high-level shader language), researchers 
have become interested in using this power for general-purpose computing (GPGPU, 
General-Purpose computing on the GPU). Thus, different applications originated, e.g. 
physics, cryptography 0, DNA sequencing 0 and medical imaging. For further examples and 
overview, see 0 and 0.  
The trend to compute such workloads with GPUs will go on as the DirectX 11 (compute) or 
the OpenCL 0 standards show. The fault-tolerant execution of (sensible) workloads on GPUs 
was – to the knowledge of the author – never proposed. Sensible computations should be 
carried out in a reliable way. What is the sense of a computation to find a private key if the 
program is correct but the hardware is subjected to faults and the program never finds the 
key? E.g. transient faults can be caused from fluctuations in the main current, radiation or 
RAMs not running within their specification etc. What if an encryption is faulty due to 
temporal faults or how can we detect a faulty medical diagnosis? The need to do 
computations precisely has led to the development of more sophisticated and sometimes 
expensive graphics processing units 0, needed by CAD applications. Larrabee 0 is a many-
core visual computing architecture. It uses multiple in-order x86 CPU cores that are 
augmented by a wide vector processor unit, as well as some fixed function logic blocks. This 
provides much higher performance per watt and per unit of area than out-of-order CPUs on 
highly parallel workloads. Vision4ce 0 launched a new line of General-purpose Rugged 
Image Processing (GRIP) products at the recent SPIE Defense and Security Symposium. The 
GRIP-Beta showed GPGPU-based image processing demonstrations, analog and Gigabit 
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Ethernet video streams and the functionality in the Gripworkx image processing 
framework. Vision4ce addresses rugged embedded computing challenges that might 
normally be served by more expensive FPGA approaches. 
This work presents fundamental research, answering the question of how a system, 
equipped with multiple graphics cards can be harnessed to detect, predict, prevent and 
tolerate faults. Naturally, we do not restrict ourselves to computations running on the GPUs 
alone and also consider the outsourcing of application parts from the CPU to the GPU. We 
are aware of the fact that this evaluation can only be exemplary – but it can serve as a 
starting point and a priming of future work. All mechanisms are fully implementable in 
software and do not require special or modified hardware. 
This work is structured as follows: we first present examples of current GPU 
implementations in Section 2. Section 0 shows how the massive parallelism of modern GPUs 
can be exploited for dependability. Section 0 summarizes and concludes the chapter. 

 
2. Case Study and Programming Model  
 

2.1 Case Study: The NVidia GeForce 8800 GTX 
In this Section, we describe the basic architecture of the G80 GPU family from NVidia as this 
will help to understand the possibilities for dependability. The GeForce 8800 GTX is divided 
into 16 streaming multiprocessors (SMs), each containing eight streaming processors (SPs), 
making a total of 128 SPs. Each SM has 8,192 registers that are shared among all threads 
assigned to the SM. The threads on a SM core execute in SIMD (single-instruction, multiple-
data) fashion, with the instruction unit (IU) broadcasting the current instruction to the eight 
SPs. Each SP has one arithmetic unit that performs single-precision floating point arithmetic 
and 32-bit integer operations. Fig. 1 shows an overview of the GeForce 8800 GTX. 

 
Fig. 1. The NVidia GeForce 8800 GTX 

 

Each SM has two special functional units (SFUs), which perform more complex FP operations 
such as transcendental functions. The arithmetic units and the SFUs are fully pipelined. 
Each FP instruction is operating on up to 8 bytes of data. An important factor that affects 
both performance and quality is the precision for operations and registers. The GeForce 
Series support 32 bit and 16 bit floating point formats (called float and half, respectively) 0. 
The float data type resembles IEEE754 (s23e8), half has an s10e5 format. Some models, e.g. 
the G200 also support double precision in IEEE754R-format (one double-precision unit per 
SM). The processors support gathering and scattering. Thus, they are capable of reading and 
writing anywhere in local memory on the graphics card or in other parts of the system. The 
G80 has several on-chip memories that can exploit data locality and data sharing, e.g. a 
64 KB off-chip constant memory and an 8 KB single-ported constant memory cache in each 
SM. If multiple threads access the same address during the same cycle, the cache broadcasts 
the address to those threads with the same latency as a register access. In addition to the 
constant memory cache, each SM has a 16 KB shared (data) memory that is either written and 
reused or shared among threads. Finally, for read-only data that is shared by threads but not 
necessarily to be accessed simultaneously, the off-chip texture memory and the on-chip 
texture caches exploit 2D data locality. 

 
2.2 The CUDA Programming Model 
The CUDA programming model consists of ANSI C supported by several keywords and 
constructs. CUDA treats the GPU as a coprocessor that executes data-parallel kernel 
functions. The developer supplies a single source program encompassing both host (CPU, c) 
and kernel (GPU, cu) code. The host code transfers data and code to and from the GPU's 
global memory via API calls and initiates the kernel. At the highest level, each kernel creates 
a single grid, which consists of many thread blocks. Each thread block is assigned to a single 
SM for the duration of its execution. A thread block consists of a limited number of threads 
which can cooperate. The maximum number of threads per block is 512. Threads from 
different blocks cannot cooperate. Each thread can read/write from/to thread registers, 
thread-local memory, shared memory in a block, the global memory and read from constant 
memory or the texture memory in a grid. The host has read/write access on the constant, 
global and texture memory. Threads in the same block can share data through the shared 
memory and can perform barrier synchronization. Threads are otherwise independent, and 
synchronization across thread blocks is safely accomplished only by terminating the kernel.  
The IU manages things in groups of parallel threads, called warps. SMs can perform zero-
overhead scheduling to interleave warps on an instruction-by-instruction basis to hide the 
latency of global memory accesses and long-latency arithmetic operations. When one warp 
stalls, the SM can switch to a ready warp in the same or different thread block assigned to 
the SM. Each warp executes in SIMD fashion, with the IU broadcasting the same instruction 
to the eight cores on a SM on four consecutive clock cycles. Since one pixel equals one 
thread, and since the SPs are scalar, the compiler schedules pixel elements for execution 
sequentially: red, then green, then blue, and then alpha.  
Fig. 2 shows a Thread Processing Cluster (TPC) used on the G200 series with 10 TPCs in 
total. As depicted, a TPC comprises multiple IUs, SPs and local memory. 
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Fig. 2. A Thread Processing Cluster (TPC)  

 
2.3 Experimental Setup and Clock Variation 
In this Section we present the results from a first experimental evaluation by clock variation, 
since we wanted to artificially increase the fault rate, observe the system behavior 
concerning reliability and depict basic performance figures.  
Our experimental setup consists of a 6 GB main memory Core i7 system, configured with 
two NVidia GTX260 cards (PCIe 2.0 x16). The two hard disks (500 GB) are in RAID 0 mode. 
In the first experiment with SLI, we adjusted the engine, shader and memory clock 
frequency. A SLI-system is constructed on hardware level and must be configured on 
software level. Either the GPUs work independently in non-SLI mode to support multi-view 
displays or all GPUs in a SLI configuration appear as a single unit, mainly used to speed up 
3D applications and computations. For the CUDA programming environment, a non-SLI 
system appears as a set of graphics cards, a SLI system as one graphics card. Multiple GPUs 
appear as multiple host threads. The clock rate adjustment in SLI mode is done for both 
cards simultaneously, in non-SLI mode, both cards have to be configured separately. The 
maximum clock rate of (engine=800, shader=1650, memory=2700) MHz sometimes resulted 
in execution faults of a kernel in non-SLI mode and complete system failures in SLI mode. 
Therefore, we applied less aggressive settings and varied the clock frequency between 
(engine=500, shader=1150, memory=1900) and (700, 1400, 2500) MHz. The workload 
consisted of a computation of the blackscholes formula for 512 iterations. The same 
workload was also computed on the CPU. Besides precision issues (see Section 0) no 
deviation except for the highest clock settings occurred. Fig. 3 shows the influence of the 
variation of the clock frequencies of the engine, shader and memory on performance (SLI). 
Note that the bandwidth is the internal card bandwidth and not the bandwidth of the 
external interface (PCIe). From the experiments two simple but important conclusions can 
be derived:  

1) a system in SLI mode is less reliable than one in non-SLI mode. Reliable 
calculations should be carried out on a non-SLI system. A SLI system has more 
advantage in computing-intensive applications. For bandwidth-intensive 
applications a non-SLI system should be preferred. 

2) Within the overclocking experiments, the GPU rather tended to completely reject 
the execution of a kernel instead of doing faulty computations (overclocking 
applied at the beginning of the execution).  

We are aware of the fact that these figures are only exemplary, but the results can serve as 
an orientation. 

 

 
Fig. 3. System performance while varying clock frequencies 

 
2.4 Bandwidth Experiments 
The question in this Section is to determine the bandwidth in Mbytes per second for 
different transfer sizes and different configurations of a SLI and non-SLI system. The 
bandwidth is important e.g. when the results of a redundant computation must be 
transferred back to the CPU for a comparison. The basic bandwidths of PCIe 2.0 interfaces 
are depicted in Table 1. 
 

PCIe-Slot Lanes/ Direction Bandwidth Clock 

x1 1 0.5 GByte/s 2.5 GHz  

x4 4 2 GByte/s 2.5 GHz  

x8 8 4 GByte/s 2.5 GHz  

x16 16 8 GByte/s 2.5 GHz  

x32 32 16 GByte/s 2.5 GHz  

Table 1. Basic bandwidths of PCIe 2.0 
 
Blocks with a certain size were either transferred from the host to the device, from the 
device to the host and from device to device. The maximum bandwidth for each device 
within the experiments is 8 GBytes/s. Fig. 4 shows the bandwidths for pageable and pinned 
memory. Pinned memory allows the compute kernels to access and share the host’s 
memory. We applied the lowest clock settings (engine=500, shader=1150, memory=1900) to 
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determine a lower bandwith bound. From the results, we see that the host to device transfer 
(pinned memory) is the slowest form to transfer data, followed by the device to host 
(pageable) communication. Starting from block sizes greater than 65536 bytes, the device to 
device communication is the fastest way to transfer data. 

 
Fig. 4. Bandwidth for different block transfer sizes 
 
We note that the experimental bandwidth for the device to device communication is well 
above the limit of the PCIe 2.0 x16 specification. The reason for this is that transfers are done 
on the graphics card and do not pass the external PCIe bus.  

 
2.5Precision Experiments 
The realm of (COTS) GPUs is not precision, it is speed. Thus, applications running on GPUs 
must be questioned in general. Most GPUs use IEEE754R as floating-point format. In 
comparison to IEEE754 rounding occurs, leading to imprecision. But there are several work-
arounds, including mixed-precision 0.  
In this Section, we do not focus on rounding errors. We prefer an empirical analysis, since 
we do not know the implementation of the floating-point algorithms within the GPU. 
Especially the implementation of transcendental functions implies approximation 
algorithms, which we cannot know if we do not have a disclosure of the GPU 
implementation, which is not available to the public due to commercial reasons. To the 
knowledge of the author, this approach to examine the precision of GPUs is a novelty. 
We present benchmarks to compute the deviation of GPU operations in comparison to a 
CPU implementation and regard three different data types: integer, float and double. Half-
floats are supported by shaders and thus are not directly accessible by CUDA. As the half-
float is inspired by IEEE754, infinity exists if all bits of the exponent are one and the 
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mantissa is zero. A half-float is a NaN if all exponent bits are one and the mantissa is not 
zero. The set of precision benchmarks can be downloaded from 0.  
The benchmarks implement vector operations in dim(224) with different data types and 
operations, listed in Table 2. The vector data is randomized in each run. Each cell in Table 2 
contains the maximum unsigned deviation from the CPU implementation. For 
computations which could cause overflows, such as the exponential function, the size of the 
numbers within the randomized vectors was limited. 

Type Single Double INT32 
Add 0 0 0 
Sub 0 0 0 
Mul 0 0 0 
Div 0.125 0 0 
Sqrt 0.0000152588 0 0 
Sin 0.000000119209 1*10-16 0 
Cos 0.000000119209 1*10-16 0 
Log 0.000000953674 9*10-16 0 
Exp 0.00195313 4*10-16 0 

Table 2. Maximum absolute deviation from CPU implementation 
 
Astonishingly, basic arithmetic operations such as add and sub or mul and all integer 
operations do not lead to imprecision. From this, we can conclude that a scaling of small 
floats to integers can improve the precision in such a way that the CPU and the GPU results 
will not differ.  

 
2.6Timing and mid-term Experiments 
In this Section, we present the results of mid-term experiments to determine the timing 
variance and reliability/ stability of results. By a mid-term evaluation, we mean an 
observation interval of one week. A longer observation interval, e.g. over more than one 
month would be appreciated, but was not feasible due to the timely restrictions of this work. 
The precision benchmarks from subsection 0 were calculated 185 times. Additionally, we 
calculated the workload on the CPU with one core and a parallelized version on the 8 
available cores. We measured the time for each calculation, GPU and CPU and calculated 
the average arithmetic mean. The graphics cards were configured in non-SLI mode. The 
results are depicted in Fig. 5. For some cases (INT operations), the OpenMP implementation 
was even faster than the GPU. 
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observation interval of one week. A longer observation interval, e.g. over more than one 
month would be appreciated, but was not feasible due to the timely restrictions of this work. 
The precision benchmarks from subsection 0 were calculated 185 times. Additionally, we 
calculated the workload on the CPU with one core and a parallelized version on the 8 
available cores. We measured the time for each calculation, GPU and CPU and calculated 
the average arithmetic mean. The graphics cards were configured in non-SLI mode. The 
results are depicted in Fig. 5. For some cases (INT operations), the OpenMP implementation 
was even faster than the GPU. 
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The variations are e.g. caused by normal user interactions. We conclude that results cannot 
be expected at a certain time. Thus, computations on graphics cards may not be currently 
suitable for realtime applications. Interesting is that the timings from CPU and GPU have a 
connection, i.e. if the timing for the GPU was large, the timing of the corresponding CPU 
implementation was also higher. The deviation resulted in each run and the results seem to 
correlate. This is surprising, since we implemented an asynchronous version for the GPU 
which ran independently from the CPU. During the experiments, no unusual deviation 
(except precision) between CPU and GPU occurred. The results were stable during the 
whole observation period.  

 
3. Opportunities for Dependability 
 

In this Section, we will discuss the opportunities for dependability offered by graphics 
cards. Note, that our terminology is based on 0. We will first have a look at the section means 
from the dependability tree (from 0) in Fig. 7. Then we will discuss the means fault 
prevention, fault-tolerance, fault removal and fault forecasting in the following subsections. 
We do not specify the exact nature (e.g. bit-flip faults, transmission faults, permanent) of 
faults within a model, since we do not want to restrict our horizon by regarding at a special 
set of fault types but we are aware of the fact, that a fault model has to be developed later 
on. 

 
Fig. 7: A section from the dependability tree 
 
We distinguish different levels on which different dependability means can be applied. 
Therefore, we depict the notational conventions in Table 3 and note the level, where zero (0) 
means the top level. 
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The variations are e.g. caused by normal user interactions. We conclude that results cannot 
be expected at a certain time. Thus, computations on graphics cards may not be currently 
suitable for realtime applications. Interesting is that the timings from CPU and GPU have a 
connection, i.e. if the timing for the GPU was large, the timing of the corresponding CPU 
implementation was also higher. The deviation resulted in each run and the results seem to 
correlate. This is surprising, since we implemented an asynchronous version for the GPU 
which ran independently from the CPU. During the experiments, no unusual deviation 
(except precision) between CPU and GPU occurred. The results were stable during the 
whole observation period.  

 
3. Opportunities for Dependability 
 

In this Section, we will discuss the opportunities for dependability offered by graphics 
cards. Note, that our terminology is based on 0. We will first have a look at the section means 
from the dependability tree (from 0) in Fig. 7. Then we will discuss the means fault 
prevention, fault-tolerance, fault removal and fault forecasting in the following subsections. 
We do not specify the exact nature (e.g. bit-flip faults, transmission faults, permanent) of 
faults within a model, since we do not want to restrict our horizon by regarding at a special 
set of fault types but we are aware of the fact, that a fault model has to be developed later 
on. 

 
Fig. 7: A section from the dependability tree 
 
We distinguish different levels on which different dependability means can be applied. 
Therefore, we depict the notational conventions in Table 3 and note the level, where zero (0) 
means the top level. 
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Level Name Meaning 
0 Host The host or the system;  

a computing system containing one or more CPUs and 
graphics hardware 

Integrated Computing Hardware 
1 CPU The central processing unit 
2 Processing core A core within a CPU 
3 Thread A hardware thread, consisting of registers etc. 

Graphics Hardware 
1 Device A single graphics card 
2 GPU A graphics processing unit 
3 GP core A core within a GPU 
4 Grid A set of thread blocks 
5 Thread Block (TB) A thread block consists of multiple threads 

Table 3. Notational Conventions 
 

 
3.1 Fault Prevention 
We note that the development of an additional GPU kernel, doing the same task as the CPU 
at the same time, automatically involves diversity in hardware, software and design, since 
through different implementations and by using different compilers, we have diversity, 
considering the fact that we have only one system, but multiple versions of a program and 
multiple hardware realizations. Note, that the forecast of faults can also be seen as essential 
part of fault prevention (see Section 0 for details). 

 
3.2 Fault-Tolerance 
Basic means of fault-tolerance are structural, temporal, informational and functional 
redundancy. Naturally, all codes involving informational redundancy can be computed by 
graphics cards. An interesting idea is to speed up the calculation of Reed-Solomon-Codes by 
GPUs 0. Functional redundancy can be easily achieved by either computing a calculation on 
the CPU and the GPU, involving diversity in software or by programming a set of functions 
again for the GPU. When voting between the results, we can use the inherent voting 
capability supported by CUDA. 

 
3.2.1 Structural Redundancy 
Structural redundancy can be achieved by integrating multiple graphics cards into a single 
computing system. The result is massive redundancy, e.g. via dual, triple, quadruple 
configurations. Naturally, we are not able to tolerate permanent CPU faults, but permanent 
GPU faults. Note, that it is also possible to combine mainboard GPUs and external graphics 
cards. One should be aware of the fact that multiple (PCIe) graphics cards can be installed 
simultaneously, deriving diversity in hardware. The multiprocessing-paradigm has also 
arrived for GPUs. NVidia's GeForce 9800 GX2 contains a pair of 65 nm G92 graphics 

 

processors running at 600 MHz. The ATI Radeon™ HD 4870 X2 has two 55 nm GPUs, a 512-
bit GDDR3 memory interface and the option to construct a dual-mode CrossfireX 
configuration, resulting in a total of four GPUs. To lower physical dependencies, one should 
carry out redundant computations on different cards, then on different GPUs, then on 
different grids. The program/ operating system can additionally implement a scheduler, 
issuing different redundant computations to different parts of the graphics subsystem. The 
redundant computations can be called from the main program and run in parallel to the 
CPU calculation. A comparison can be done by the CPU or the GPU. However, the 
production of results must be synchronized. Fig. 8 shows the integration. Disadvantages 
besides synchronization are that the user must decide which code should be verified by the 
GPU and the source code of the application must be modified. Additionally, only system 
relevant routines could be modified. 

 
Fig. 8. CPU/ GPU redundant computations 
 
From Fig. 8 we see that the combination of multiple host thread callers and GPU threads is 
possible. To do a synchronization without waiting times for the CPU and/ or the GPU, the 
results could be written into a buffer, where each calculation receives its very own 
identification. Thus, we do not have to wait for the results to arrive. A disadvantage is that 
in case of a rollback, already calculated results must be discarded. The synchronization of 
host and GPU threads offers a new perspective for research. 

 
3.2.2 Temporal Redundancy 
Temporal redundancy is an essential property of a multithreaded system, thus also for 
graphics cards comprising hundreds or thousands of threads. A temporal redundant 
computation can be done on every accessible element of the graphics card by redoing the 
calculation on the same or (better) on a different component. The only point where 
structural or temporal redundant threads are dependent is at the checking of results. The 
implementation in software is difficult, since CUDA does not differ between physical and 
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Level Name Meaning 
0 Host The host or the system;  

a computing system containing one or more CPUs and 
graphics hardware 

Integrated Computing Hardware 
1 CPU The central processing unit 
2 Processing core A core within a CPU 
3 Thread A hardware thread, consisting of registers etc. 

Graphics Hardware 
1 Device A single graphics card 
2 GPU A graphics processing unit 
3 GP core A core within a GPU 
4 Grid A set of thread blocks 
5 Thread Block (TB) A thread block consists of multiple threads 

Table 3. Notational Conventions 
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We note that the development of an additional GPU kernel, doing the same task as the CPU 
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through different implementations and by using different compilers, we have diversity, 
considering the fact that we have only one system, but multiple versions of a program and 
multiple hardware realizations. Note, that the forecast of faults can also be seen as essential 
part of fault prevention (see Section 0 for details). 
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Basic means of fault-tolerance are structural, temporal, informational and functional 
redundancy. Naturally, all codes involving informational redundancy can be computed by 
graphics cards. An interesting idea is to speed up the calculation of Reed-Solomon-Codes by 
GPUs 0. Functional redundancy can be easily achieved by either computing a calculation on 
the CPU and the GPU, involving diversity in software or by programming a set of functions 
again for the GPU. When voting between the results, we can use the inherent voting 
capability supported by CUDA. 

 
3.2.1 Structural Redundancy 
Structural redundancy can be achieved by integrating multiple graphics cards into a single 
computing system. The result is massive redundancy, e.g. via dual, triple, quadruple 
configurations. Naturally, we are not able to tolerate permanent CPU faults, but permanent 
GPU faults. Note, that it is also possible to combine mainboard GPUs and external graphics 
cards. One should be aware of the fact that multiple (PCIe) graphics cards can be installed 
simultaneously, deriving diversity in hardware. The multiprocessing-paradigm has also 
arrived for GPUs. NVidia's GeForce 9800 GX2 contains a pair of 65 nm G92 graphics 

 

processors running at 600 MHz. The ATI Radeon™ HD 4870 X2 has two 55 nm GPUs, a 512-
bit GDDR3 memory interface and the option to construct a dual-mode CrossfireX 
configuration, resulting in a total of four GPUs. To lower physical dependencies, one should 
carry out redundant computations on different cards, then on different GPUs, then on 
different grids. The program/ operating system can additionally implement a scheduler, 
issuing different redundant computations to different parts of the graphics subsystem. The 
redundant computations can be called from the main program and run in parallel to the 
CPU calculation. A comparison can be done by the CPU or the GPU. However, the 
production of results must be synchronized. Fig. 8 shows the integration. Disadvantages 
besides synchronization are that the user must decide which code should be verified by the 
GPU and the source code of the application must be modified. Additionally, only system 
relevant routines could be modified. 

 
Fig. 8. CPU/ GPU redundant computations 
 
From Fig. 8 we see that the combination of multiple host thread callers and GPU threads is 
possible. To do a synchronization without waiting times for the CPU and/ or the GPU, the 
results could be written into a buffer, where each calculation receives its very own 
identification. Thus, we do not have to wait for the results to arrive. A disadvantage is that 
in case of a rollback, already calculated results must be discarded. The synchronization of 
host and GPU threads offers a new perspective for research. 

 
3.2.2 Temporal Redundancy 
Temporal redundancy is an essential property of a multithreaded system, thus also for 
graphics cards comprising hundreds or thousands of threads. A temporal redundant 
computation can be done on every accessible element of the graphics card by redoing the 
calculation on the same or (better) on a different component. The only point where 
structural or temporal redundant threads are dependent is at the checking of results. The 
implementation in software is difficult, since CUDA does not differ between physical and 
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virtual threads. Here, data dependencies have to be regarded. Fig. 9 illustrates two possible 
forms of temporal redundancy. 

 
 

Independent Data Dependent Data
Fig. 9. Temporal Redundancy, Data Dependencies 
 
Temporal redundancy on GPUs leads again to synchronization problems.  

 
3.3 Fault Removal 
Apart from the ECC fault removal within the GPU memory 0, fault removal is a hard thing 
to implement by using GPUs, because the faulty unit must be located and a prior and sane 
state must be restored. On a fault-free computation we must store a checkpoint. Here, we 
can fallback to classical schemes storing the checkpoint on hard disks or to store the 
checkpoint on the cards. The first thing is to use a triple card configuration to detect, locate 
and remove the fault within the graphics configuration. Here, the graphics cards ought to 
execute the same code, not strictly synchronously, but in a way that faults cannot propagate 
between cards. We do not discuss the removal of faults initiated from the CPU to the GPU 
(CPU  GPU) here, since our aim is to assist CPU calculations. 

 
3.3.1 Watchdogs 
A GPU can be periodically triggered by an external timer to monitor activities. The timer 
routine must be able to directly access the memory of the graphics card. The external timer 
is needed, because GPUs do not possess such a capability at the moment. The activities are 
e.g. CPU or fixed disk functionalities. Any activity and the current time are e.g. written to 
the texture memory. On a write of the current time, the last time will be copied to a different 
location within memory. If the new timer value does not differ from the last one, a fault is 
signaled. Furthermore, the GPU checks the activities. If no activities are recorded in the 
timer interval (no value has been written to memory) a wakeup signal can be issued. Fig. 10 
shows the algorithm. 
 

 

Startup:  E={} // Empty event list E in mem 
On timer:  // Compare new timestamp N with previous P in mem 

If N>P: write P to previous timestamp in mem (P=>PP) 
Else Signal “Timer Fault” 

  If E={}:Signal “Event List Empty - Wakeup” 

On event: Write event to E // Note that timer is also an event 
Fig. 10. Watchdog Algorithm 
 
The wakeup signal can be issued by writing to a dedicated memory location within the 
host’s memory. If no OS restrictions apply, the GPU could write the recovery entry address 
to the CPU program counter. 

 
3.3.2 Fault Removal GPU  GPU 
We can imagine something like a RAIGx configuration (Redundant Array of Independent 
Graphics cards, according to a RAIDx – Redundant Array of Independent Disks). As we 
have not hardware controller to support RAIG, we only support Software-RAIG. As RAIG, 
we can consider the usual modes, listed in Table 4. 
 

Mode Meaning, Configuration 
0 Two or more graphics cards doing independent calculations 
1 Two of more graphics cards doing the same calculations in parallel 
5 Two graphics cards doing the same calculations in parallel, 

securing the operands and the results in memory by a checksum, e.g. parity 
Table 4. RAIG Modes 
 
On the detection of a fault, we can vote among the results. If we include the CPU in the 
calculations, we have a TMR configuration and therefore can locate the faulty unit, if two 
results are equal. If the kernels are data independent, we can simply continue. If we have 
dependencies among the calculations, we have the option to either copy all memory 
contents and processing states of an assumed fault-free card to other all cards or copy the 
modified parts (see subsection 0).  

 
3.3.3 Removal GPU  CPU 
Fault removal within a CPU from a GPU is possible but far more difficult. CPU states must 
be written into the memory of the graphics card, also updated memory locations. We 
suggest checkpoint intervals between 106 (~4 MBytes written) and 107 (~40 MBytes written) 
memory writes. The checkpoint interval is restricted by the main memory of the graphics 
card, expected reliability and system performance. The CPU state is also stored in the main 
memory of the card. On a fault, the memory and CPU state must be transferred back. In Fig. 
4 it is shown what bandwidth can be achieved. Since we cannot usually map the whole main 
memory of the host to the device memory, since it is smaller than that of the host’s memory, 
we must either do every memory write of the CPU simultaneously on the card, significantly 
decreasing performance or do a fault removal for a single (system relevant) application 
running on the CPU such as a daemon. For CPU states, there is no problem, because the 

www.intechopen.com



Facts, Issues and Questions - GPUs for Dependability 77

 

virtual threads. Here, data dependencies have to be regarded. Fig. 9 illustrates two possible 
forms of temporal redundancy. 

 
 

Independent Data Dependent Data
Fig. 9. Temporal Redundancy, Data Dependencies 
 
Temporal redundancy on GPUs leads again to synchronization problems.  
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state must be restored. On a fault-free computation we must store a checkpoint. Here, we 
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execute the same code, not strictly synchronously, but in a way that faults cannot propagate 
between cards. We do not discuss the removal of faults initiated from the CPU to the GPU 
(CPU  GPU) here, since our aim is to assist CPU calculations. 
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routine must be able to directly access the memory of the graphics card. The external timer 
is needed, because GPUs do not possess such a capability at the moment. The activities are 
e.g. CPU or fixed disk functionalities. Any activity and the current time are e.g. written to 
the texture memory. On a write of the current time, the last time will be copied to a different 
location within memory. If the new timer value does not differ from the last one, a fault is 
signaled. Furthermore, the GPU checks the activities. If no activities are recorded in the 
timer interval (no value has been written to memory) a wakeup signal can be issued. Fig. 10 
shows the algorithm. 
 

 

Startup:  E={} // Empty event list E in mem 
On timer:  // Compare new timestamp N with previous P in mem 

If N>P: write P to previous timestamp in mem (P=>PP) 
Else Signal “Timer Fault” 

  If E={}:Signal “Event List Empty - Wakeup” 

On event: Write event to E // Note that timer is also an event 
Fig. 10. Watchdog Algorithm 
 
The wakeup signal can be issued by writing to a dedicated memory location within the 
host’s memory. If no OS restrictions apply, the GPU could write the recovery entry address 
to the CPU program counter. 

 
3.3.2 Fault Removal GPU  GPU 
We can imagine something like a RAIGx configuration (Redundant Array of Independent 
Graphics cards, according to a RAIDx – Redundant Array of Independent Disks). As we 
have not hardware controller to support RAIG, we only support Software-RAIG. As RAIG, 
we can consider the usual modes, listed in Table 4. 
 

Mode Meaning, Configuration 
0 Two or more graphics cards doing independent calculations 
1 Two of more graphics cards doing the same calculations in parallel 
5 Two graphics cards doing the same calculations in parallel, 

securing the operands and the results in memory by a checksum, e.g. parity 
Table 4. RAIG Modes 
 
On the detection of a fault, we can vote among the results. If we include the CPU in the 
calculations, we have a TMR configuration and therefore can locate the faulty unit, if two 
results are equal. If the kernels are data independent, we can simply continue. If we have 
dependencies among the calculations, we have the option to either copy all memory 
contents and processing states of an assumed fault-free card to other all cards or copy the 
modified parts (see subsection 0).  

 
3.3.3 Removal GPU  CPU 
Fault removal within a CPU from a GPU is possible but far more difficult. CPU states must 
be written into the memory of the graphics card, also updated memory locations. We 
suggest checkpoint intervals between 106 (~4 MBytes written) and 107 (~40 MBytes written) 
memory writes. The checkpoint interval is restricted by the main memory of the graphics 
card, expected reliability and system performance. The CPU state is also stored in the main 
memory of the card. On a fault, the memory and CPU state must be transferred back. In Fig. 
4 it is shown what bandwidth can be achieved. Since we cannot usually map the whole main 
memory of the host to the device memory, since it is smaller than that of the host’s memory, 
we must either do every memory write of the CPU simultaneously on the card, significantly 
decreasing performance or do a fault removal for a single (system relevant) application 
running on the CPU such as a daemon. For CPU states, there is no problem, because the 
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amount of data to transfer is very small. Difficult is the injection of a previous state in the 
CPU. Here we can imagine a state memory for each CPU which can be written from the 
GPU and read by the CPU. Within a multicore system another (healthy) CPU can inject the 
state into the faulty CPU. 

 
3.4 Fault Forecasting (with GPUs) 
For the prediction of faults, a history of faults must be stored in the graphics card memory, 
because without knowledge of the past, we cannot predict future faults. The prediction can 
be done with various methods, e.g. causal Bayesian networks, Hidden Markov Models 
(HMMs) and the forward algorithm, etc. We propose to use the MCE (machine check 
exception) of modern processors to enter a special routine to compute the prediction. We 
assume the history to be organized as simple ring buffer of length N. The algorithm in Fig. 
11 briefly sketches the method without going into details. 
 

Startup: History (h2) location h=0;  
    
CPU:

On_MCE: Write MCE-Flag, time to GPU memory, location h2 
 h=h+1 % N 
 Call prediction on GPU 

GPU:
 On_Call: Do prediction using h2 

Fig. 11. Basic (abstract) prediction of faults 
 
Note, that the forecast with HMMs implies very small numbers and hence precision 
problems. A small deviation can lead to faulty results. The scaling to big integers can limit 
these effects. 

 
4. Summary and Outlook  
 

This work presents a first step and innovative approach to use GPUs for dependability. We 
are aware of the fact that this work is rudimentary – but it can serve as a starting point and a 
priming of future work. It has been shown how the existing parallelism of GPUs can be 
exploited for dependability. Although we did not specify the exact nature of faults, since we 
did not want to restrict our horizon by regarding at a special set of fault types, the results 
and the physical context of the experimental setup strongly suggest to model transient 
faults. To lower physical dependencies, one should carry out redundant computations on 
different cards, then on different GPUs, then on different grids. From the experimental 
results some conclusions can be derived: a system in SLI mode is less reliable than one in 
non-SLI mode. Reliable calculations should be carried out on a non-SLI system. A system 
configured in SLI has more (proven) advantage in computing-intensive applications. For 
bandwidth-intensive applications a non-SLI system should be preferred. During the mid-
term experiments, no unusual deviation (except precision) between CPU and GPU results 
occurred. The results were stable during the whole observation period. 
Not everything is golden in this new world of opportunities. There are a few critical points 
which must be regarded by future research:  

 

 The precision of results: fortunately all basic arithmetic operations such as add, sub 
and mul and all integer operations do not lead to imprecise results. A scaling of 
small floats to integers can improve the precision in such a way that the CPU and 
the GPU results will not differ.  

 The synchronization of host and GPU threads offers a whole new perspective for 
research. The varying timings from CPU and GPU have a connection per 
computation, i.e. if the timing for the GPU was large, the timing of the 
corresponding CPU implementation was also higher. This is surprising, since we 
implemented an asynchronous version for the GPU which ought to run 
independently on the CPU. In their current implementation, graphics cards are not 
suitable for realtime applications. 

Future work will include the implementation and analysis of the discussed dependability 
means and a long-term reliability evaluation.  
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amount of data to transfer is very small. Difficult is the injection of a previous state in the 
CPU. Here we can imagine a state memory for each CPU which can be written from the 
GPU and read by the CPU. Within a multicore system another (healthy) CPU can inject the 
state into the faulty CPU. 

 
3.4 Fault Forecasting (with GPUs) 
For the prediction of faults, a history of faults must be stored in the graphics card memory, 
because without knowledge of the past, we cannot predict future faults. The prediction can 
be done with various methods, e.g. causal Bayesian networks, Hidden Markov Models 
(HMMs) and the forward algorithm, etc. We propose to use the MCE (machine check 
exception) of modern processors to enter a special routine to compute the prediction. We 
assume the history to be organized as simple ring buffer of length N. The algorithm in Fig. 
11 briefly sketches the method without going into details. 
 

Startup: History (h2) location h=0;  
    
CPU:

On_MCE: Write MCE-Flag, time to GPU memory, location h2 
 h=h+1 % N 
 Call prediction on GPU 

GPU:
 On_Call: Do prediction using h2 

Fig. 11. Basic (abstract) prediction of faults 
 
Note, that the forecast with HMMs implies very small numbers and hence precision 
problems. A small deviation can lead to faulty results. The scaling to big integers can limit 
these effects. 

 
4. Summary and Outlook  
 

This work presents a first step and innovative approach to use GPUs for dependability. We 
are aware of the fact that this work is rudimentary – but it can serve as a starting point and a 
priming of future work. It has been shown how the existing parallelism of GPUs can be 
exploited for dependability. Although we did not specify the exact nature of faults, since we 
did not want to restrict our horizon by regarding at a special set of fault types, the results 
and the physical context of the experimental setup strongly suggest to model transient 
faults. To lower physical dependencies, one should carry out redundant computations on 
different cards, then on different GPUs, then on different grids. From the experimental 
results some conclusions can be derived: a system in SLI mode is less reliable than one in 
non-SLI mode. Reliable calculations should be carried out on a non-SLI system. A system 
configured in SLI has more (proven) advantage in computing-intensive applications. For 
bandwidth-intensive applications a non-SLI system should be preferred. During the mid-
term experiments, no unusual deviation (except precision) between CPU and GPU results 
occurred. The results were stable during the whole observation period. 
Not everything is golden in this new world of opportunities. There are a few critical points 
which must be regarded by future research:  

 

 The precision of results: fortunately all basic arithmetic operations such as add, sub 
and mul and all integer operations do not lead to imprecise results. A scaling of 
small floats to integers can improve the precision in such a way that the CPU and 
the GPU results will not differ.  

 The synchronization of host and GPU threads offers a whole new perspective for 
research. The varying timings from CPU and GPU have a connection per 
computation, i.e. if the timing for the GPU was large, the timing of the 
corresponding CPU implementation was also higher. This is surprising, since we 
implemented an asynchronous version for the GPU which ought to run 
independently on the CPU. In their current implementation, graphics cards are not 
suitable for realtime applications. 

Future work will include the implementation and analysis of the discussed dependability 
means and a long-term reliability evaluation.  
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