298 research outputs found

    Realistic Haptic Rendering of Interacting Deformable Objects in Virtual Environments

    Get PDF
    International audienceA new computer haptics algorithm to be used in general interactive manipulations of deformable virtual objects is presented. In multimodal interactive simulations, haptic feedback computation often comes from contact forces. Subsequently, the fidelity of haptic rendering depends significantly on contact space modeling. Contact and friction laws between deformable models are often simplified in up to date methods. They do not allow a "realistic" rendering of the subtleties of contact space physical phenomena (such as slip and stick effects due to friction or mechanical coupling between contacts). In this paper, we use Signorini's contact law and Coulomb's friction law as a computer haptics basis. Real-time performance is made possible thanks to a linearization of the behavior in the contact space, formulated as the so-called Delassus operator, and iteratively solved by a Gauss-Seidel type algorithm. Dynamic deformation uses corotational global formulation to obtain the Delassus operator in which the mass and stiffness ratio are dissociated from the simulation time step. This last point is crucial to keep stable haptic feedback. This global approach has been packaged, implemented, and tested. Stable and realistic 6D haptic feedback is demonstrated through a clipping task experiment

    Constraint-based synthesis of shape-morphing compliant structures in virtual reality

    Get PDF
    The purpose of this research is to establish a novel approach to the design of compliant shape-morphing structures using constraint-based design methods (CBDM) and virtual reality (VR). Compliant mechanisms, as opposed to rigid link mechanisms, achieve motion guidance via the compliance and deformation of the mechanism\u27s members. They are currently being explored as structural components to produce shape changes in products such as aircraft wing and antenna reflectors. The goal is to design a single-piece flexible structure capable of morphing a given curve or profile into a target curve or profile while utilizing the minimum number of actuators. The successful design of compliant mechanisms requires an understanding of solid mechanics (deformation, stress, strain, etc.) and mechanism kinematics (properties of motion). As a result, only a fairly narrow, experienced group of engineers are successful in designing these mechanisms. This approach was developed as an alternative to the two primary methods prevalent in the design community at this time - the pseudo-rigid body method (PRBM) and the topological synthesis (which tend to suffer from either a poor potential solution synthesis capabilities or from susceptibility to overly-complex solutions). A tiered design method that relies on kinematics, finite element analysis, and optimization in order to apply the CBDM concepts to the design and analysis of shape-morphing compliant structures is presented. By segmenting the flexible element that comprises the active shape surface at multiple points in both the initial and the target configurations and treating the resulting individual elements as rigid bodies that undergo a planar or general spatial displacement we are able to apply the traditional kinematics theory to rapidly generate sets of potential solutions. An FEA-augmented optimization sequence establishes the final compliant design candidate. Coupled with a virtual reality interface and a force-feedback device this approach provides the ability to quickly specify and evaluate multiple design problems in order to arrive at the desired solution without an excessive number of design iterations and a heavy dependence on the intermediate physical prototypes

    Haptic rendering for VR laparoscopic surgery simulation

    Get PDF
    Adelaide, S

    Real-time hybrid cutting with dynamic fluid visualization for virtual surgery

    Get PDF
    It is widely accepted that a reform in medical teaching must be made to meet today's high volume training requirements. Virtual simulation offers a potential method of providing such trainings and some current medical training simulations integrate haptic and visual feedback to enhance procedure learning. The purpose of this project is to explore the capability of Virtual Reality (VR) technology to develop a training simulator for surgical cutting and bleeding in a general surgery

    Research on real-time physics-based deformation for haptic-enabled medical simulation

    Full text link
    This study developed a multiple effective visuo-haptic surgical engine to handle a variety of surgical manipulations in real-time. Soft tissue models are based on biomechanical experiment and continuum mechanics for greater accuracy. Such models will increase the realism of future training systems and the VR/AR/MR implementations for the operating room
    corecore