2,276 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Improved Signal Detection for Ambient Backscatter Communications

    Full text link
    In ambient backscatter communication (AmBC) systems, passive tags connect to a reader by reflecting an ambient radio frequency (RF) signal. However, the reader may not know the channel states and RF source parameters and can experience interference. The traditional energy detector (TED) appears to be an ideal solution. However, it performs poorly under these conditions. To address this, we propose two new detectors: (1) A joint correlation-energy detector (JCED) based on the first-order correlation of the received samples and (2) An improved energy detector (IED) based on the p-th norm of the received signal vector. We compare the performance of the IED and TED under generalized noise modeled using the McLeish distribution and derive a general analytical formula for the area under the receiver operating characteristic (ROC) curves. Based on our results, both detectors outperform TED. For example, the probability of detection with a false alarm rate of 1% for JCED and IED is 14% and 5% higher, respectively, compared to TED. These gains are even higher using the direct interference cancellation (DIC) technique, with increases of 16% and 7%, respectively. Overall, our proposed detectors offer better performance than the TED, making them useful tools for improving AmBC system performance.Comment: This paper has got Major Revision by IEEE TGC

    Stokes Vector Modulation of Optical Signals; Coherence, Noise, and Digital Signal Processing

    Full text link
    Stokes vector modulation (SVM) is a method of encoding information onto an optical wave by controlling its amplitude and its state of polarization (SOP). SVM offers the potential to achieve the high spectral efficiency of multi-dimensional symbols using a power-efficient, direct-detection receiver. Combining the two independent degrees of freedom representing polarization with one representing amplitude, SVM symbols are defined in a 3-D space of Stokes vectors, where vector length represents the amplitude and altitude/azimuth angles represent the SOP. The recoverable information content is fundamentally limited by the noise on the received signal, which may include shot noise due to photon-counting, electrical circuit noise, amplified spontaneous emission due to optical amplifiers, and self-interference of low-coherence light sources. Some of these noise terms do not obey the usual approximation of additive white Gaussian noise, and some may not be isotropic in Stokes space. Taking these complexities into account, I will theoretically analyze and compare several recently-proposed SVM receiver designs under different conditions of source coherence and channel impairments. For the most promising options, I will design symbol constellations and receiver decision strategies suitable for maximal data throughput. Construction and operation of apparatus to experimentally verify bit-error performance up to at least 10 Gsym/s with different sources, constellations, fiber spans, and receivers will be an essential component of the work. Possible extensions may include simultaneous modulation of the degree of polarization, to create a 4-D symbol space. Further, I will develop and characterize a system based on a cubic constellation for 8-SVM, using an off-the-shelf integrated modulator driven with simple bias points and data waveforms. Symbol error rates (SER) and bit error rates BER) are measured up to 30 Gb/s, and analysis of the symbol errors reveals a significant effect of inter-symbol interference. Finally, I will theoretically and experimentally demonstrate a novel adaptation of independent component analysis (ICA) for compensation of both cross-polarization and inter-symbol interference in a direct-detection link using Stokes vector modulation (SVM). SVM systems suffer from multiple simultaneous impairments that can be difficult to resolve with conventional optical channel DSP techniques. The proposed method is based on a six-dimensional adaptation of ICA that simultaneously derotates the SVM constellation, corrects distortion of constellation shape, and mitigates inter-symbol interference (ISI) at high symbol rates. Experimental results at 7.5 Gb/s and 15Gb/s show that the newly-developed ICA-based equalizer achieves power penalties below ~1 dB, compared to the ideal theoretical bit-error rate (BER) curves. At 30-Gb/s, where ISI is more severe, ICA still enables polarization de-rotation and BE

    Radio frequency communication and fault detection for railway signalling

    Get PDF
    The continuous and swift progression of both wireless and wired communication technologies in today's world owes its success to the foundational systems established earlier. These systems serve as the building blocks that enable the enhancement of services to cater to evolving requirements. Studying the vulnerabilities of previously designed systems and their current usage leads to the development of new communication technologies replacing the old ones such as GSM-R in the railway field. The current industrial research has a specific focus on finding an appropriate telecommunication solution for railway communications that will replace the GSM-R standard which will be switched off in the next years. Various standardization organizations are currently exploring and designing a radiofrequency technology based standard solution to serve railway communications in the form of FRMCS (Future Railway Mobile Communication System) to substitute the current GSM-R. Bearing on this topic, the primary strategic objective of the research is to assess the feasibility to leverage on the current public network technologies such as LTE to cater to mission and safety critical communication for low density lines. The research aims to identify the constraints, define a service level agreement with telecom operators, and establish the necessary implementations to make the system as reliable as possible over an open and public network, while considering safety and cybersecurity aspects. The LTE infrastructure would be utilized to transmit the vital data for the communication of a railway system and to gather and transmit all the field measurements to the control room for maintenance purposes. Given the significance of maintenance activities in the railway sector, the ongoing research includes the implementation of a machine learning algorithm to detect railway equipment faults, reducing time and human analysis errors due to the large volume of measurements from the field

    Signal Design and Machine Learning Assisted Nonlinearity Compensation for Coherent Optical Fibre Communication Links

    Get PDF
    This thesis investigates low-complexity digital signal processing (DSP) for signal design and nonlinearity compensation strategies to improve the performance of single-mode optical fibre links over different distance scales. The performance of a novel ML-assisted inverse regular perturbation technique that mitigates fibre nonlinearities was investigated numerically with a dual-polarization 64 quadrature amplitude modulation (QAM) link over 800 km distance. The model outperformed the heuristically-optimised digital backpropagation approach with <5 steps per span and mitigated the gain expansion issue, which limits the accuracy of an untrained model when the balance between the nonlinear and linear components becomes considerable. For short reach links, the phase noise due to low-cost, high-linewidth lasers is a more significant channel impairment. A novel constellation optimisation algorithm was, therefore, proposed to design modulation formats that are robust against both additive white Gaussian noise (AWGN) and the residual laser phase noise (i.e., after carrier phase estimation). Subsequently, these constellations were numerically validated in the context of a 400ZR standard system, and achieved up to 1.2 dB gains in comparison with the modulation formats which were optimised only for the AWGN channel. The thesis concludes by examining a joint strategy to modulate and demodulate signals in a partially-coherent AWGN (PCAWGN) channel. With a low-complexity PCAWGN demapper, 8- to 64-ary modulation formats were designed and validated through numerical simulations. The bit-wise achievable information rates (AIR) and post forward error correction (FEC) bit error rates (BER) of the designed constellations were numerically validated with: the theoretically optimum, Euclidean (conventional), and low-complexity PCAWGN demappers. The resulting constellations demonstrated post-FEC BER shaping gains of up to 2.59 dB and 2.19 dB versus uniform 64 QAM and 64-ary constellations shaped for the purely AWGN channel model, respectively. The described geometric shaping strategies can be used to either relax linewidth and/or carrier phase estimator requirements, or to increase signal-to-noise ratio (SNR) tolerance of a system in the presence of residual phase noise

    Efficient Security Protocols for Constrained Devices

    Get PDF
    During the last decades, more and more devices have been connected to the Internet.Today, there are more devices connected to the Internet than humans.An increasingly more common type of devices are cyber-physical devices.A device that interacts with its environment is called a cyber-physical device.Sensors that measure their environment and actuators that alter the physical environment are both cyber-physical devices.Devices connected to the Internet risk being compromised by threat actors such as hackers.Cyber-physical devices have become a preferred target for threat actors since the consequence of an intrusion disrupting or destroying a cyber-physical system can be severe.Cyber attacks against power and energy infrastructure have caused significant disruptions in recent years.Many cyber-physical devices are categorized as constrained devices.A constrained device is characterized by one or more of the following limitations: limited memory, a less powerful CPU, or a limited communication interface.Many constrained devices are also powered by a battery or energy harvesting, which limits the available energy budget.Devices must be efficient to make the most of the limited resources.Mitigating cyber attacks is a complex task, requiring technical and organizational measures.Constrained cyber-physical devices require efficient security mechanisms to avoid overloading the systems limited resources.In this thesis, we present research on efficient security protocols for constrained cyber-physical devices.We have implemented and evaluated two state-of-the-art protocols, OSCORE and Group OSCORE.These protocols allow end-to-end protection of CoAP messages in the presence of untrusted proxies.Next, we have performed a formal protocol verification of WirelessHART, a protocol for communications in an industrial control systems setting.In our work, we present a novel attack against the protocol.We have developed a novel architecture for industrial control systems utilizing the Digital Twin concept.Using a state synchronization protocol, we propagate state changes between the digital and physical twins.The Digital Twin can then monitor and manage devices.We have also designed a protocol for secure ownership transfer of constrained wireless devices. Our protocol allows the owner of a wireless sensor network to transfer control of the devices to a new owner.With a formal protocol verification, we can guarantee the security of both the old and new owners.Lastly, we have developed an efficient Private Stream Aggregation (PSA) protocol.PSA allows devices to send encrypted measurements to an aggregator.The aggregator can combine the encrypted measurements and calculate the decrypted sum of the measurements.No party will learn the measurement except the device that generated it
    • …
    corecore