250,318 research outputs found

    Throughput of Existing Multiprocessor File Systems (An Informal Study)

    Get PDF
    Fast file systems are critical for high-performance scientific computing, since many scientific applications have tremendous I/O requirements. Many parallel supercomputers have only recently obtained fully parallel I/O architectures and file systems, which are necessary for scalable I/O performance. Scalability aside, I show here that many systems lack sufficient absolute performance. I do this by surveying the performance reported in the literature, summarized in an informal table

    Many-core applications to online track reconstruction in HEP experiments

    Full text link
    Interest in parallel architectures applied to real time selections is growing in High Energy Physics (HEP) experiments. In this paper we describe performance measurements of Graphic Processing Units (GPUs) and Intel Many Integrated Core architecture (MIC) when applied to a typical HEP online task: the selection of events based on the trajectories of charged particles. We use as benchmark a scaled-up version of the algorithm used at CDF experiment at Tevatron for online track reconstruction - the SVT algorithm - as a realistic test-case for low-latency trigger systems using new computing architectures for LHC experiment. We examine the complexity/performance trade-off in porting existing serial algorithms to many-core devices. Measurements of both data processing and data transfer latency are shown, considering different I/O strategies to/from the parallel devices.Comment: Proceedings for the 20th International Conference on Computing in High Energy and Nuclear Physics (CHEP); missing acks adde

    Exploiting parallelism within multidimensional multirate digital signal processing systems

    Get PDF
    The intense requirements for high processing rates of multidimensional Digital Signal Processing systems in practical applications justify the Application Specific Integrated Circuits designs and parallel processing implementations. In this dissertation, we propose novel theories, methodologies and architectures in designing high-performance VLSI implementations for general multidimensional multirate Digital Signal Processing systems by exploiting the parallelism within those applications. To systematically exploit the parallelism within the multidimensional multirate DSP algorithms, we develop novel transformations including (1) nonlinear I/O data space transforms, (2) intercalation transforms, and (3) multidimensional multirate unfolding transforms. These transformations are applied to the algorithms leading to systematic methodologies in high-performance architectural designs. With the novel design methodologies, we develop several architectures with parallel and distributed processing features for implementing multidimensional multirate applications. Experimental results have shown that those architectures are much more efficient in terms of execution time and/or hardware cost compared with existing hardware implementations

    Flexible Communication Avoiding Matrix Multiplication on FPGA with High-Level Synthesis

    Full text link
    Data movement is the dominating factor affecting performance and energy in modern computing systems. Consequently, many algorithms have been developed to minimize the number of I/O operations for common computing patterns. Matrix multiplication is no exception, and lower bounds have been proven and implemented both for shared and distributed memory systems. Reconfigurable hardware platforms are a lucrative target for I/O minimizing algorithms, as they offer full control of memory accesses to the programmer. While bounds developed in the context of fixed architectures still apply to these platforms, the spatially distributed nature of their computational and memory resources requires a decentralized approach to optimize algorithms for maximum hardware utilization. We present a model to optimize matrix multiplication for FPGA platforms, simultaneously targeting maximum performance and minimum off-chip data movement, within constraints set by the hardware. We map the model to a concrete architecture using a high-level synthesis tool, maintaining a high level of abstraction, allowing us to support arbitrary data types, and enables maintainability and portability across FPGA devices. Kernels generated from our architecture are shown to offer competitive performance in practice, scaling with both compute and memory resources. We offer our design as an open source project to encourage the open development of linear algebra and I/O minimizing algorithms on reconfigurable hardware platforms

    Experimental Evaluation and Comparison of Time-Multiplexed Multi-FPGA Routing Architectures

    Get PDF
    Emulating large complex designs require multi-FPGA systems (MFS). However, inter-FPGA communication is confronted by the challenge of lack of interconnect capacity due to limited number of FPGA input/output (I/O) pins. Serializing parallel signals onto a single trace effectively addresses the limited I/O pin obstacle. Besides the multiplexing scheme and multiplexing ratio (number of inter-FPGA signals per trace), the choice of the MFS routing architecture also affect the critical path latency. The routing architecture of an MFS is the interconnection pattern of FPGAs, fixed wires and/or programmable interconnect chips. Performance of existing MFS routing architectures is also limited by off-chip interface selection. In this dissertation we proposed novel 2D and 3D latency-optimized time-multiplexed MFS routing architectures. We used rigorous experimental approach and real sequential benchmark circuits to evaluate and compare the proposed and existing MFS routing architectures. This research provides a new insight into the encouraging effects of using off-chip optical interface and three dimensional MFS routing architectures. The vertical stacking results in shorter off-chip links improving the overall system frequency with the additional advantage of smaller footprint area. The proposed 3D architectures employed serialized interconnect between intra-plane and inter-plane FPGAs to address the pin limitation problem. Additionally, all off-chip links are replaced by optical fibers that exhibited latency improvement and resulted in faster MFS. Results indicated that exploiting third dimension provided latency and area improvements as compared to 2D MFS. We also proposed latency-optimized planar 2D MFS architectures in which electrical interconnections are replaced by optical interface in same spatial distribution. Performance evaluation and comparison showed that the proposed architectures have reduced critical path delay and system frequency improvement as compared to conventional MFS. We also experimentally evaluated and compared the system performance of three inter-FPGA communication schemes i.e. Logic Multiplexing, SERDES and MGT in conjunction with two routing architectures i.e. Completely Connected Graph (CCG) and TORUS. Experimental results showed that SERDES attained maximum frequency than the other two schemes. However, for very high multiplexing ratios, the performance of SERDES & MGT became comparable

    Exploiting parallelism within multidimensional multirate digital signal processing systems

    Get PDF
    The intense requirements for high processing rates of multidimensional Digital Signal Processing systems in practical applications justify the Application Specific Integrated Circuits designs and parallel processing implementations. In this dissertation, we propose novel theories, methodologies and architectures in designing high-performance VLSI implementations for general multidimensional multirate Digital Signal Processing systems by exploiting the parallelism within those applications. To systematically exploit the parallelism within the multidimensional multirate DSP algorithms, we develop novel transformations including (1) nonlinear I/O data space transforms, (2) intercalation transforms, and (3) multidimensional multirate unfolding transforms. These transformations are applied to the algorithms leading to systematic methodologies in high-performance architectural designs. With the novel design methodologies, we develop several architectures with parallel and distributed processing features for implementing multidimensional multirate applications. Experimental results have shown that those architectures are much more efficient in terms of execution time and/or hardware cost compared with existing hardware implementations

    Power-efficient high-speed interface circuit techniques

    Get PDF
    Inter- and intra-chip connections have become the new challenge to enable the scaling of computing systems, ranging from mobile devices to high-end servers. Demand for aggregate I/O bandwidth has been driven by applications including high-speed ethernet, backplane micro-servers, memory, graphics, chip-to-chip and network onchip. I/O circuitry is becoming the major power consumer in SoC processors and memories as the increasing bandwidth demands larger per-pin data rate or larger I/O pin count per component. The aggregate I/O bandwidth has approximately doubled every three to four years across a diverse range of standards in different applications. However, in order to keep pace with these standards enabled in part by process-technology scaling, we will require more than just device scaling in the near future. New energy-efficient circuit techniques must be proposed to enable the next generations of handheld and high-performance computers, given the thermal and system-power limits they start facing. ^ In this work, we are proposing circuit architectures that improve energy efficiency without decreasing speed performance for the most power hungry circuits in high speed interfaces. By the introduction of a new kind of logic operators in CMOS, called implication operators, we implemented a new family of high-speed frequency dividers/prescalers with reduced footprint and power consumption. New techniques and circuits for clock distribution, for pre-emphasis and for driver at the transmitter side of the I/O circuitry have been proposed and implemented. At the receiver side, new DFE architecture and CDR have been proposed and have been proven experimentally

    Performance Comparison of Uniprocessor and Multiprocessor Web Server Architectures

    Get PDF
    This thesis examines web-server architectures for static workloads on both uniprocessor and multiprocessor systems to determine the key factors affecting their performance. The architectures examined are event-driven (userver) and pipeline (WatPipe). As well, a thread-per-connection (Knot) architecture is examined for the uniprocessor system. Various workloads are tested to determine their effect on the performance of the servers. Significant effort is made to ensure a fair comparison among the servers. For example, all the servers are implemented in C or C++, and support sendfile and edge-triggered epoll. The existing servers, Knot and userver, are extended as necessary, and the new pipeline-server, WatPipe, is implemented using userver as its initial code base. Each web server is also tuned to determine its best configuration for a specific workload, which is shown to be critical to achieve best server performance. Finally, the server experiments are verified to ensure each is performing within reasonable standards. The performance of the various architectures is examined on a uniprocessor system. Three workloads are examined: no disk-I/O, moderate disk-I/O and heavy disk-I/O. These three workloads highlight the differences among the architectures. As expected, the experiments show the amount of disk I/O is the most significant factor in determining throughput, and once there is memory pressure, the memory footprint of the server is the crucial performance factor. The peak throughput differs by only 9-13% among the best servers of each architecture across the various workloads. Furthermore, the appropriate configuration parameters for best performance varied based on workload, and no single server performed the best for all workloads. The results show the event-driven and pipeline servers have equivalent throughput when there is moderate or no disk-I/O. The only difference is during the heavy disk-I/O experiments where WatPipe's smaller memory footprint for its blocking server gave it a performance advantage. The Knot server has 9% lower throughput for no disk-I/O and moderate disk-I/O and 13% lower for heavy disk-I/O, showing the extra overheads incurred by thread-per-connection servers, but still having performance close to the other server architectures. An unexpected result is that blocking sockets with sendfile outperforms non-blocking sockets with sendfile when there is heavy disk-I/O because of more efficient disk access. Next, the performance of the various architectures is examined on a multiprocessor system. Knot is excluded from the experiments as its underlying thread library, Capriccio, only supports uniprocessor execution. For these experiments, it is shown that partitioning the system so that server processes, subnets and requests are handled by the same CPU is necessary to achieve high throughput. Both N-copy and new hybrid versions of the uniprocessor servers, extended to support partitioning, are tested. While the N-copy servers performed the best, new hybrid versions of the servers also performed well. These hybrid servers have throughput within 2% of the N-copy servers but offer benefits over N-copy such as a smaller memory footprint and a shared address-space. For multiprocessor systems, it is shown that once the system becomes disk bound, the throughput of the servers is drastically reduced. To maximize performance on a multiprocessor, high disk throughput and lots of memory are essential
    • …
    corecore