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ABSTRACT

Exploiting Parallelism within Multidimensional Multirate

Digital Signal Processing Systems. (May 2003)

Dongming Peng, B.S. and M.S., Beijing University of Aeronautics and Astronautics

Chair of Advisory Committee: Dr. Mi Lu

The intense requirements for high processing rates of multidimensional Digital

Signal Processing systems in practical applications justify the Application Specific

Integrated Circuits designs and parallel processing implementations. In this dis-

sertation, we propose novel theories, methodologies and architectures in designing

high-performance VLSI implementations for general multidimensional multirate Dig-

ital Signal Processing systems by exploiting the parallelism within those applications.

To systematically exploit the parallelism within the multidimensional multirate DSP

algorithms, we develop novel transformations including (1) nonlinear I/O data space

transforms, (2) intercalation transforms, and (3) multidimensional multirate unfold-

ing transforms. These transformations are applied to the algorithms leading to sys-

tematic methodologies in high-performance architectural designs. With the novel

design methodologies, we develop several architectures with parallel and distributed

processing features for implementing multidimensional multirate applications. Exper-

imental results have shown that those architectures are much more efficient in terms

of execution time and/or hardware cost compared with existing hardware implemen-

tations.
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CHAPTER I

INTRODUCTION

A. General Introduction

The intense requirements for high processing rates of multidimensional Digital Signal

Processing (DSP) systems in practical applications justify the Application Specific

Integrated Circuits (ASIC) designs and parallel processing implementations. The

designs of ASIC and/or multiprocessor systems are usually required in order to im-

prove the performance of applications such as multimedia processing, computer vision,

high-definition television, medical imaging, remote sensing, and fluid dynamics. Due

to the features of hierarchical signal analysis and multi-resolution analysis, many of

these applications are multirate in nature, meaning that the sample rate is not uniform

throughout the algorithm description. There are many famous multirate multidimen-

sional DSP applications including Discrete Wavelet Transform (DWT), Full Wavelet

Transform (FWT), Multi-Wavelet Transform (MWT)[1], M-ary Wavelet Transform,

Wavelet Packet Transform (WPT)[2], Embedded Zerotree Coding, Set Partitioning In

Hierarchical Trees (SPIHT), Spatial-Frequency Quantization (SFQ), and etc. Though

the theory of multirate Digital Signal Processing (DSP) systems has matured over

the past decade, there has been not much research on the theory of designing efficient

ASIC architectures for multidimensional multirate systems yet. As a result, there

has been a lack of computer-aided design (CAD) tools that can translate multidi-

mensional multirate algorithms at a behavior level into efficient VLSI architectures

by exploiting the parallelism within the algorithms [3][4][5][6][7][8][9].

In this dissertation, we propose several theories and methodologies in designing

The journal model is IEEE Transactions on Automatic Control.
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high-performance VLSI architectures for general multidimensional multirate digital

signal processing systems by exploiting the parallelism within those algorithms. There

are two types of parallelism available in n-D signal processing. The first type of

parallelism is inter-iteration parallelism (i.e., concurrent execution of iterations in an

algorithm), which can be achieved by increasing the amount of hardware so multiple

iterations can be executed concurrently. The second type of parallelism is intra-

iteration (or inter-operation) parallelism (i.e., simultaneous execution of tasks within

an iteration). In general, the retiming technique is involved to exploit the intra-

iteration parallelism so operations within an iteration can be executed in parallel,

resulting in a shorter clock period because more operations can be performed in

parallel in circuits during each clock cycle.

The dissertation is concerned with both types of the parallelism. To systemati-

cally explore and exploit the parallelism within the multidimensional multirate DSP

algorithms, we develop novel transformations including (1) nonlinear I/O data space

transforms, (2) intercalation transforms, and (3) multidimensional multirate unfold-

ing transforms. These transforms are applied to the DSP algorithms leading to the

systematic methodology in high-performance VLSI architectural designs. With the

novel design methodology, we propose several ASIC and multiprocessor VLSI archi-

tectures with parallel and distributed processing features for implementing general

multidimensional and multirate DSP applications. It has been demonstrated that

those architectures are much more efficient than existing hardware implementations

in terms of execution time and/or hardware cost.
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1. Literature Review: Architectural Designs for Multidimensional

Multirate DSP Systems

Much research on architectural designs for 1-D DSP algorithms has been done based

on modeling the loops or iterations of DSP algorithms as the Data-Flow Graphs

(DFG). The loops or iterations of multidimensional DSP algorithms are represented

by Multidimensional DFG (MDFG). The multirate multidimensional algorithms can

be described by Multirate MDFG’s (MR-MDFG), in which the difference from the

normal MDFG’s is that the edges in MR-MDFG’s are doubly-weighted by delays and

multirates.

As an important methodology in architectural designs of single-rate multidimen-

sional DSP algorithms corresponding to the MDFGs, the multidimensional retiming,

which has been recently proposed to exploit the intra-iteration parallelism, improves

the circuitry performance by inserting a number of registers into circuit paths and

reconstructing memory elements in a legal way. This technique guarantees that all

functional elements in the MDFGs can be executed simultaneously on circuits de-

signed to solve problems involving more than one dimension.

Most researches on retiming operations are focused on single-rate DSP algo-

rithms only. However, there are still many problems open regarding the application

of retiming operations onto multirate DSP systems. For example, is the technique

of retiming operation applicable to an ARBITRARY multirate DSP dataflow graph?

What are the necessary and sufficient conditions for the applicability of the retiming

on the multirate dataflow graph? Is there a unified methodology for retiming opera-

tions on both single-rate and multirate systems? These problems are to be addressed

in this dissertation based on a comprehensive modeling and analysis of multirate

multidimensional dataflow graphs.
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No published research has been devoted to exploring the inter-iteration paral-

lelism within multirate multidimensional DSP algorithms. Although the notion of the

parallelism in multidimensional applications has existed for a long time, it was so far

unknown what the bound (if any) of inter-iteration parallelism in multirate multidi-

mensional DSP algorithms is, and whether the maximum inter-iteration parallelism

can be achieved for arbitrary multirate data-flow algorithms. In the context of 1-D

single-rate algorithms, signal processing programs with recursion (or feedback) have

a fundamental bound on the available parallelism, referred to as iteration bound. In

calculating the iterations of a 1-D algorithm with feedback, we can never achieve an

iteration period shorter than iteration bound, even when infinite processors are avail-

able. In the case of n-D multirate algorithms, the problem of exploring maximum

available inter-iteration parallelism is far more complicated, especially because of the

dependencies complicatedly existing in the n-D iteration space. With the contribu-

tions of multidimensional intercalation and multidimensional multirate unfolding, this

dissertation explores the inter-iteration parallelism within multirate multidimensional

DSP algorithms based on the method of general selective shrinking, and proves that

this parallelism can always be achieved in hardware system given the availability of

a large number of processors and the interconnections between them.

2. Outline of Proposed Methodologies

In literature, an approach increasingly referred to as algorithm engineering has re-

ceived research interests. Algorithm engineering is the implementation of algorithms

as abstract objects in 3-D physical space and time. The main research goal is to de-

velop a theory that allows an expression of the correspondence between abstract and

physical representation of algorithms and thus allows the transformation of an algo-

rithm from one form to another. However, at the present time, the theory considers
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only a very restricted class of algorithms with uniform data-dependence computation

structures (which exclude all multirate algorithms), and produces only a restricted

class of hardware implementations such as systolic arrays. Therefore, the extension

of the capabilities of the existing theory is of great interest.

The three methodologies proposed in this dissertation play a significant role in

the extension of the existing theory in algorithm engineering to the architectural

designs of a general class of DSP algorithms, i.e., multidimensional multirate DSP

algorithms, whose applications are used extensively in many image/video processing

and pattern recognition systems.

a. Non-RAM-based Architectural Designs of Wavelet-Based Systems

Wavelet-based DSP algorithms belong to a particular class of multidimensional mul-

tirate DSP algorithms, and have been found very powerful in many DSP and pat-

tern recognition applications. There have been a great deal of useful and com-

plex wavelet-based multidimensional algorithms studied in literature including MWT

[1][10][11], WPT [2][12], EZW [13], SPIHT [14], SFQ [15][16][17], and etc. In cal-

culating these algorithms, off-chip Random Access Memory (RAM) based systems

have been necessary, where either memory address pointers or data rearrangements

in off-chip memories are employed because of the large size of 2-D input data. To

the best of our knowledge, all recently proposed special-purpose architectures (e.g.,

[18][19][20][21][22][23][24]) for these complicate algorithms have to be involved with

large off-chip RAMs when calculating and rearranging multidimensional data.

In this research, we contribute to embedding the main bodies of these algorithms

into non-RAM-based architectures leading to the elimination of off-chip communi-

cations and thus the significant increase of the processing rates which are especially

desirable in image and video coding.
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Generally, the broadcast or communication of control information is another bot-

tleneck that blocks the increase of processing rates and hardware efficiency in parallel

processing systems. This dissertation proposes architectures featuring localized con-

trol where wavelet algorithms are computed by some processing units and all devices

operate independently with local controls except using a single global clock signal.

Prior to presenting architectural designs, we establish and follow two novel con-

cepts in data dependence analysis for generalized and arbitrarily multidimensional

wavelet-based algorithms, i.e., wavelet-adjacent field, and super wavelet-dependence

vector. Based on the concepts, novel nonlinear I/O data space transformations for

variables localization and dependence graph regularization for wavelet algorithms

are proposed which lead to designs of non-RAM-based architectures. The major

contributions are exploring the computation locality and dependency within general

wavelet-based algorithms by representing them with wavelet-adjacent fields and su-

per dependence vectors based upon a newly defined model of “I/O data space”, then

regularizing and merging the dependence graphs via novel nonlinear I/O data space

transformations, and finally, proposing non-RAM-based architectures with appropri-

ate space-time mapping techniques based on the transformed dependence graphs.

b. Achieving Intra-iteration Parallelism in Multidimensional Multirate Systems

We have constructed in this part a complete theoretical analysis of modeling multi-

dimensional multirate DSP algorithms in dataflow graphs. Based on the analysis, we

propose a novel methodology of multidimensional intercalation in an iteration space

that is expanded by replicating the data-flow graphs. In the theoretical analysis, a

general class of DSP systems, rate-balanced multirate multidimensional DSP systems,

is identified, with its precise definition proposed later in this dissertation. Many prac-

tically used multirate multidimensional DSP algorithms belong to this class, including
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all wavelet-based algorithms and most Partial Differential Equation algorithms. We

have demonstrated that the multidimensional retiming technique which was recently

reported is inapplicable to arbitrary multirate dataflow graphs. The technique of

retiming operation can be applied to a multirate DSP system if and only if the mul-

tirate system is rate-balanced. In this dissertation, by multidimensional intercalation

we fully retime the rate-balanced MDFG so that there is no zero-valued delay weight

between any two nodes in the retimed MDFG, which means that the intra-iteration

parallelism can be fully exploited. Storage minimization and arbitrarily linear input

format of multidimensional data are also addressed in this part.

c. Exploiting Inter-iteration Parallelism in Multidimensional Multirate Systems

In this part we propose the methodology of (1) multidimensional multirate unfold-

ing, (2) translating a multirate multidimensional data-flow graph into a single-rate

multidimensional data-flow graph, and (3) cyclic MDFG shrinking. Based on these

approaches, we have shown how the inter-iteration parallelism is optimally exploited

against precedence constraints within multirate multidimensional DSP algorithms

in parallel processing implementation. As a measurement to achieve the full inter-

iteration parallelism, an upper bound on the number of processors is given, which

is derived from the topology and weights of the MR-MDFG and the shape of the

iteration space. Any other implementations with a number of processors beyond this

bound do not lead to further improvement.

While this part is mainly directed to a theoretical understanding of parallel

processing implementations of multirate multidimensional DSP algorithms and an

exploration of the inter-iteration parallelism, the design of methodologies in this part

also helps discussing other topics regarding high-level synthesis of multirate multi-

dimensional DSP algorithms. The proposal of multidimensional intercalation and
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unfolding leads to a combination between (1) retiming operations for multirate mul-

tidimensional DSP algorithms in exploiting intra-iteration parallelism and (2) the

multiprocessor implementations in exploiting inter-iteration parallelism. A direct

mapping of multirate DSP algorithms to hardware would require data to move at

different rates on the chip, which involves complicated routing and synchronization

of multiple clock signals. The methodology of multidimensional unfolding and trans-

lating an MR-MDFG into a single-rate MDFG can lead to mapping a multirate DSP

algorithm into a single-rate VLSI architecture, where the entire system operates with

the same clock signal. No sub-clocks are necessary and the hardware efficiency is

improved significantly.

B. Organization of the Dissertation

The dissertation is organized as follows. In Chapter II, we propose and investigate

some novel nonlinear I/O data space transformations for generalized wavelet-based

DSP algorithms which have a wide range of applications in many digital image/video

processing systems. Based on the transformations, we present Non-RAM-based and

control-distributed architectural designs for general wavelet-based digital systems.

In Chapter III, we discuss multidimensional retiming operations in achieving intra-

iteration operation parallelism for multidimensional multirate systems. To adapt the

multidimensional retiming operation, which has been lately reported to be applied

to single-rate systems only, to multirate systems, we introduce the methodology of

intercalation based on a complete theoretical analysis of modeling multirate systems in

dataflow graphs and in iteration space. In Chapter IV, we are dedicated to exploring

inter-iteration parallelism within multirate multidimensional DSP algorithms based

on the methodologies of multidimensional intercalation, unfolding and cyclic MDFG
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shrinking. Chapter V shows our experimental results and design examples in three

parts. The first part is for the simulation of non-RAM-based and control-distributed

architectures for wavelet-based zerotree coding systems. The second part is for the

hardware simulation in achieving intra-iteration parallelism for a 3-D wavelet-based

system via multidimensional intercalation and retiming operations. The third part is

a design example for implementation of a SFQ algorithm by exploring inter-iteration

parallelism. In Chapter VI, we summarize the dissertation and make the conclusions.



10

CHAPTER II

NON-RAM-BASED AND CONTROL-DISTRIBUTED DESIGNS OF

WAVELET-BASED DSP SYSTEMS

A. Introduction

There have been many useful wavelet-based multidimensional algorithms studied in

literature including Multi-Wavelet Transform (MWT) [1][10][11][25], Wavelet Packet

Transform (WPT) [2][15], Embedded Zerotree Wavelet transform (EZW) [13], Set

Partitioning In Hierarchical Trees (SPIHT) [14], Space Frequency Quantization (SFQ),

and etc. In these algorithms multidimensional data are decomposed into different

spectral subbands, and correlations across the subbands are further analyzed and

exploited in coding systems. The calculations of these complex algorithms are based

on intense and complicated manipulation of multidimensional data. For instance, the

algorithms of EZW, SPIHT and SFQ have three common procedures: 1) hierarchical

wavelet decompositions, 2) construction of zerotree data structures, and 3) symbol

generation from the wavelet coefficients on zerotrees, quantization of the magnitudes

of significant coefficients and entropy coding. The second procedure, i.e., the zerotree

construction, is the most important one that efficiently encodes the coefficients with

a number of symbols by exploiting the inter-subband correlations of DWT via the ze-

rotree data structure. Because the zerotrees are created from the 2-D data generated

by DWT, in applications it is difficult locating the corresponding parent coefficient

for a given child coefficient among the 2-D data [20]. For another instance, the appli-

cation of 2-D MWT on images involves pre-processing images into 2-D vector-valued

data streams, convoluting groups of data from adjacent rows with the matrix-valued

wavelet filter taps, and then convoluting groups of data from adjacent columns in
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the result of row-wise convolution. In calculating these algorithms, off-chip Random

Access Memory (RAM) based systems have been necessary, where either memory

address pointers or data rearrangements in off-chip memories are employed because

of the large size of 2-D input data. As a matter of fact, to the best of our knowledge,

all recently proposed special-purpose architectures (e.g., [18][19][20]) for these com-

plex algorithms have to be involved with large off-chip RAMs when calculating and

rearranging multidimensional data.

In this chapter, we contribute to embedding the main bodies of these algorithms

into non-RAM-based architectures leading to the elimination of off-chip communica-

tions and thus the increase of the processing rates which are especially desirable in

image and video coding. For example, one of our main ideas in building zerotrees for

the algorithms of EZW, SPIHT or SFQ is to rearrange the calculations of wavelet

transform and take advantage of parallel as well as pipelined processing, so that ANY

parent coefficient and its children coefficients in zerotrees are guaranteed to be cal-

culated and output simultaneously during the computation of wavelet transform. In

this way, neither locating the parent for a given child coefficient nor building zerotree

data structures is necessary any more after the computation of wavelet transforms.

In other words, we combine the procedures of wavelet transform and zerotree con-

struction into a single routine without using RAMs. The same philosophy can be

applied to other wavelet-based algorithms described above. Principles of Non-RAM-

based architectural designs for the wavelet based digital systems are proposed in the

chapter.

Generally, the broadcast or communication of control information is one of the

bottlenecks that block the increase of processing rates and hardware efficiency in

parallel processing systems. This chapter proposes architectures featuring localized

control where algorithms are computed by some processing units and all devices
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operate independently with local controls except using a single global clock signal.

Prior to presenting architectural designs, this chapter establishes and follows two

novel concepts in data dependence analysis for generalized and arbitrarily multidi-

mensional wavelet-based algorithms, i.e., wavelet-adjacent field, and super wavelet-

dependence vector. Based on them, novel nonlinear I/O data space transformations

for variable localization and dependence graph regularization for wavelet algorithms

are proposed which lead to designs of non-RAM-based architectures.

Unlike regular iterative algorithms which can be linearly mapped onto efficient

regular architectures by conventional space-time mapping techniques, wavelet-based

algorithms are characterized by a rather irregular data dependence structure largely

due to sequence decimations, and the efficient space-time maps are bound to employ

a certain form of nonlinearity. A thorough design space exploration can be accom-

plished for the linear synthesis in choosing linear space-time mapping functions, but

selecting appropriate nonlinear mapping functions in architectural synthesis is still

an open problem. A nonlinear index space transformation applied to synthesizing

parallel structures for 1-D DWT has been reported in [23]. However, the approach

in [23] is heuristic but not systematic, and it is ONLY applicable to 1-D case and

cannot be extended to architectural designs for generalized and arbitrarily multidi-

mensional wavelet algorithms. The major contributions in this chapter are exploring

the computation locality and dependency within general wavelet-based algorithms by

representing them with wavelet-adjacent fields and super dependence vectors based

upon a newly defined model of “I/O data space”, then regularizing and merging the

dependence graphs via novel nonlinear I/O data space transformations, and finally,

proposing non-RAM-based architectures with appropriate space-time mapping tech-

niques based on the transformed dependence graphs.

Although the data dependence analysis and dependence graph regularization are



13

proposed in this chapter as a theoretical basis of architectural designs for generalized

wavelet-based algorithms, with the space limit of this chapter, it is impossible here to

derive architectural designs for all complex wavelet-based algorithms. In this chap-

ter, we use the zerotree construction algorithm as the representative of wavelet based

algorithms for deriving corresponding architectures. Zerotree construction algorithm

is the main body of such algorithms as EZW, SPIHT and SFQ ([13][14][15][16]). The

schemes in architectural designs in this chapter form the basis for synthesizing other

more generalized wavelet-based digital systems. As such, we mention Full Wavelet

Transform[17], M-ary Wavelet Transform[17] and Embedded zerotree coded multi-

wavelet[10].

B. Novel Nonlinear I/O Data Space Transforms

1. I/O Data Space Modeling

The basic equation for any discrete wavelet algorithms is generally represented by

Xj+1[t] =
∑

k∈L

C[k]Xj[Mt− k] (2.1)

where C[k] are taps of a wavelet filter, Xj and Xj+1 are the sequence of input data and

output data respectively at the (j + 1)th level transform, L is a set that corresponds

to the size of the wavelet filter, and M is a constant scalar in the algorithm.

Generally, the algorithm is termed as M-ary wavelet transform when M > 2.

There are M wavelet filters for M-ary wavelet transform. j is always used in this

chapter to refer to the wavelet transform level. If Xj and Xj+1 are scalars and C

is scalar-valued taps of the wavelet filter, the algorithm is a classical scalar wavelet

transform; if Xj and Xj+1 are vector-valued data and C is matrix-valued taps of
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the multiwavelet filter, it is an MWT. If t and k are scalars, the algorithm is a 1-D

transform; if t and k are n-component vectors, it is an n-D transform. Wavelet-

based algorithms are multiresolution algorithms, i.e., the output data at a level of

transform can be further transformed at the next level. In the classical DWT, there

are two wavelet filters (low-pass filter and high-pass filter) at each level of transform,

and only the output of low-pass filter is further transformed at the next level. In

the arbitrary wavelet tree expansion of the WPT, the output of either filter may be

further transformed at the next level. Note that the domain over which the sum is

calculated by Eq. (2.1) is centered at Xj[Mt].

Parameter index axis: The parameter index axis of a signal processing algorithm

is the index axis for those data to be broadcasted in the algorithm, i.e., the data

used in most computations but not generated by computations. As parameters of the

computations, the number of them is fixed. Data index: The data index is the index

for the intermediate data, input data, or output data that are generated and/or used

by computations. In signal processing algorithms, the input size is variable.

We propose the following definitions for our modeling of wavelet algorithms in

the n-D I/O data space.

I/O data space: In an I/O data space the indexed data can only be input data or

output data, and the parameters of the algorithm are ignored. The intermediate data

are viewed as partial inputs or partial outputs for the intermediate computations.

Wavelet-adjacent field: In an I/O data space, a wavelet-adjacent field is a small

domain made up of a group of source data items used by a calculation in Eq. (2.1).

Its size is dependent on the wavelet filter.

Super wavelet-dependence vector: A super wavelet-dependence vector
−−→
dWb starts

from a wavelet-adjacent field W and ends at the resulting data b. Since the source

of the “dependence vector” itself is a domain instead of a single datum, we term
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such a dependence vector (corresponding to the calculation in Eq. (2.1)) a super

wavelet-dependence vector. In later analysis the super wavelet-dependence vectors are

generally called dependence vectors and treated similarly as traditional dependence

vectors. The length of a super wavelet-dependence vector |
−−→
dWb| is defined as the

Euclidean distance between a and bc, where a and bc are arithmetic centers of W and

b respectively.

We also refine the following concepts which are used throughout this chapter.

Dependence graph: Although there are many versions of the definitions of depen-

dence graph, in this chapter we make an emphasis on the dependence graph based on

an I/O data space, where each node in the dependence graph corresponds to a data

item, and each edge corresponds to a calculation or a dependence relation between

the data used in the calculation and that generated in the calculation.

Regular dependence graphs: In such dependence graphs the length of each de-

pendence vector d is a constant value independent of either the input size or the data

positions.

Pseudo regular dependence graphs: In such dependence graphs the dependence

vectors can be partitioned into a certain number of groups and in each group the

length of dependence vectors is a constant value independent of either the input size

or the data positions.

As examples, a wavelet-adjacent field, a super wavelet-dependence vector and the

dependence graph including some instances of dependence vectors for the algorithm

of separable 2-D MWT[11][26][27] are shown in Fig. 1 based on these concepts. The

term “separable” means that the 2-D wavelet transform can be done row-wise and

column-wise consecutively. In Fig. 1, j is the transform level; n1 and n2 are indices

for the 2-D input data or 2-D output data. In Eq. (2.1) for the MWT, both Xj and

Xj+1 are vector-valued and C corresponds to the matrix-valued multiwavelet filter.
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Fig. 1. An example of dependence graph for the 2-D MWT modeled in I/O data space

Thus the wavelet-adjacent field is a bunch of vectors and the end of the super wavelet-

dependence vector itself is a vector (Xj+1) in Fig. 1. The separable 2-D MWT is

performed row-wise and column-wise separately at each level of transform, and the

dependence graph shown in Fig. 1 presents the dependence relationships in the I/O

data space. Index j corresponds to the multi-wavelet transform level. In Fig. 1,

Plane j = 0 in the 3-D space is the input plane which means the input data is always

located at this plane, j = 2 is the output plane which means the final output data

of the algorithm is always located at this plane, and j = 1 is an intermediate data

plane. Plane j = 1/2 or j = 3/2 is the output plane of a row-wise transform and

meanwhile the input plane of a column-wise transform. The dependence graph in Fig.

1 is apparently not a regular dependence graph as the length of dependence vectors

is not a constant value yet depends on the positions of the target of the dependence

vector.
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2. Novel Nonlinear I/O Data Space Transforms

As illustrated in Fig. 1, the dependence graph for a wavelet-based algorithm in

the I/O data space is irregular in that the lengths of the dependence vectors are

dependent on the data positions as well as the input size. Whether it be a classical

DWT, a vector-valued transform MWT, an arbitrary wavelet expansion WPT, or

other wavelet-based algorithm, this irregularity always exists due to the sequence

decimation in the nature of each level wavelet transform. Meanwhile, the output

size is always Mn times less than the input size of each level transform (where n is

the number of dimensions of the wavelet transforms). However, as proposed later,

these irregular dependence graphs in the I/O data space can be generally regularized

through a group of novel nonlinear I/O data space transformations so that the output

data is uniformly distributed and the dependence vectors are regularized. The general

dependence regularizations are formulated in the following proofs of Theorem 2.1 and

Theorem 2.2.

Theorem 2.1: The dependence graphs of wavelet algorithms modeled in I/O

data space can always be regularized through appropriate nonlinear I/O data space

transformations.

Proof:

The proof can be presented in two cases:

(1) For algorithms of 1-D wavelet transforms and non-separable n-D wavelet

transforms: According to Eq. (2.1), the wavelet adjacent fields in the I/O data space

correspond to groups of data Xj[Mt − k] where k ∈ L, and L is a set that depends

on the size of the wavelet filter and the number of the dimensions of the wavelet

transform. The super dependence vectors represent the dependence relationships be-

tween the wavelet adjacent fields and the target data Xj+1[t], and the lengths of
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dependence vectors are the distances between centers of the wavelet adjacent field

and the target data. When performing the nonlinear I/O data space transformation

Γ1: j 7−→ j, t 7−→M jt, we can always make the lengths of dependence vectors a con-

stant value and thus regularize the dependence graph as analyzed in the following.

After rearranging data, the dependence vector in the I/O data space corresponding

to the dependence relation between Xj+1[t] and the wavelet-adjacent filed Xj[Mt−k]

(where k ∈ L) changes to the dependence vector for the dependence relation between

Xj+1[M
j+1t] and the wavelet-adjacent field Xj[M

j+1t−M jk] (where k ∈ L). Mean-

while, the length of this dependence changes to the distance between Xj+1[M
j+1t] and

Xj[M
j+1t], or |(j + 1)− j| = 1. In other words, the dependence graph is regularized

by performing the nonlinear I/O data space transformation Γ1.

(2) For separable n-D wavelet transforms: The multi-dimensional filter C[K] is

separable for the separable n-D wavelet transforms, and Eq. (2.1) is separated to be

calculated in each dimension. Generally, Eq. (2.1) is calculated equivalently by the

following Eq. (2.2) in separable n-D wavelet transforms:

Xj+1[t1, t2, · · · , tn]

=
∑

k1∈L1

C1[k1]
∑

k2∈L2

C2[k2] · · ·
∑

kn∈Ln

Cn[kn]Xj[Mt1− k1, Mt2− k2, · · · , Mtn− kn] (2.2)

where (t1, t2, · · · , tn) are components of n-component vector t, (k1, k2, · · · , kn) are the

components of k, (Mt1 − k1, Mt2 − k2, · · · , Mtn − kn) are the components of Mt− k

in Eq. (2.1), C1, C2, · · · , Cn are n 1-D filters separated from the n-D filter C, and

L1, L2, · · · , Ln correspond to n 1-D wavelet-adjacent fields separated from the original

n-D wavelet-adjacent field. In order to give the dependence graph for Eq. (2.2) in the

I/O data space, we draw the index j (which represents the level of multiresolution
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transforms and can only be integers in case (1)) in fractional numbers to represent the

intermediate calculations in every level of transform. For example, the plane j = 0.5

in Fig. 1 corresponds to the output of the first level row-wise wavelet transform and

the input of the first level column-wise wavelet transform. In the (s+1)th level (where

s is a non-negative integer) of an n-D wavelet transform, we thus have intermediate

planes j = s + 1/n, j = s + 2/n, · · ·, j = s + (n− 1)/n between the plane j = s and

j = s + 1. Accordingly, Eq. (2.2) can be calculated in the order of

∑
k1∈L1

C1[k1]
∑

k2∈L2
C2[k2] · · ·

∑
kn∈Ln

Cn[kn]Xs[Mt1−k1, Mt2−k2, · · · , Mtn−kn]

=
∑

k2∈L2
C2[k2] · · ·

∑
kn∈Ln

Cn[kn]Xs+1/n[t1, Mt2 − k2, · · · , Mtn − kn]

=
∑

k3∈L3
C3[k3] · · ·

∑
kn∈Ln

Cn[kn]Xs+2/n[t1, t2, Mt3 − k3, · · · , Mtn − kn]

= · · ·

=
∑

kn
∈ LnCn[kn]Xs+(n−1)/n[t1, t2, · · · , tn−1, Mtn − kn]

= Xs+1[t1, t2, · · · , tn] (2.3)

When performing the nonlinear I/O data space transformation Γ2: j 7−→ j,

ti 7−→ M dj− i
n

+ 1

2n
e × ti for i = 1, 2, · · · , n, we can make the lengths of dependence

vectors a constant value and thus regularize the dependence graph corresponding

to Eq. (2.3) as analyzed in the following. Here 1
2n

is used in the expression for

adjusting the value of ceiling function. The length of the dependence vector is

|(s + i/n) − (s + (i − 1)/n)| = 1/n. In other words, the dependence graph for

the calculation of the separable wavelet transform is regularized by performing the

nonlinear I/O data space transformation Γ2.

Note that we have not assumed that the data calculated in the wavelet transforms

are scalar-valued, so the proof is also applicable to MWT.
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In the algorithm of WPT, the computation has a structure of an arbitrary wavelet

tree expansion, and the algorithm is calculated by iterating the wavelet branches of

the filter bank to give a finer resolution to the wavelet decomposition, where not only

the coarse component but also the detailed component is possibly further decomposed.

The classical DWT can be taken as a special instance of WPT, where only the coarse

component is recursively decomposed at each level of transform. The calculation for

any wavelet filter in the computation of WPT follows Eq. (2.1), with C replaced

by different wavelet filters. We can construct the dependence graphs corresponding

to the calculations of WPT, and regularize them similarly by nonlinear I/O data

space transformations Γ1 and Γ2 as introduced above. Nevertheless, each dependence

graph represents only one path in the arbitrary expansion of wavelet tree, and the

whole dependence graph of WPT should be the combination of dependence graphs

corresponding to all paths in the expanded wavelet tree of WPT. Such process of

combining the dependence graphs via nonlinear I/O data space transformations is

formulated in the following proof of Theorem 2.2.

Theorem 2.2: The dependence graphs of wavelet-packet based algorithms mod-

eled in I/O data space can always be merged and regularized to a pseudo regular

dependence graphs via appropriate nonlinear I/O data space transformations.

Proof:

The symbols j, t, X, L, t1, t2, · · · , tn, L1, L2, · · · , Ln have the same meanings as in

the previous paragraphs. The proof can be presented in three cases:

(1) For algorithms of 1-D transforms: There are M wavelet filters (f1, f2, · · · , fM)

at each level of 1-D M-ary wavelet transform, and each level of transform can decom-

pose a certain subband into M components in wavelet-packet based algorithms. One

of the filters (f1) is for generating coarse component, others for detailed components.

Assume M functions Fi(x) = Mx + i− 1 for i = 1, 2, · · · , M .
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Suppose that a subband Π is calculated in l levels of wavelet-packet based trans-

form consecutively with wavelet filters p1, p2, · · · , pl, where pu = fi for u = 1, 2, · · · , l

and i is any integer ∈ [1, M ]. Since the calculation of each level of transform follows

the same format in Eq. (2.1), the corresponding dependence graph of Π can be con-

structed and regularized via the I/O data space transformation similarly as in the

proof of Theorem 2.1. However, considering that there are many subbands generated

together by l levels of wavelet-packet based transform, and their corresponding de-

pendence graphs should be merged as well as regularized to get a whole dependence

graph for the algorithm, the nonlinear I/O data space transformation Γ3 is presented

as follows. Without losing generality, for the dependence graph corresponding to

subband Π, Γ3 is: j 7−→ j; t 7−→ t if j = 0; t 7−→ P1(P2(· · · (Pj(t)) · · ·)) otherwise,

where Pu = Fi if pu = fi for u = 1, 2, · · · , j, and j ≤ l, i ∈ [1, M ]. Note that here j

corresponds to the level of transform and can be only integers.

Consider another subband Π1 different from Π generated in the algorithm. Sup-

pose that Π1 is calculated in l levels consecutively with wavelet filters p′
1, p

′
2, · · · , p

′
l,

where p′u = fi for u = 1, 2, · · · , l and i is any integer ∈ [1, M ]. Since there exits at

least one p′u 6= pu where u ∈ [1, l], Γ3 maps the data for Π and Π1 to different positions

in the I/O data space. In other words, Γ3 can combine all dependence graphs of the

subbands into a single I/O data space without conflicts.

(2) For nonseparable n-D transforms: There are Q = Mn different wavelet filters

(f1, f2, · · · , fQ) at each level of n-D M-ary wavelet transform. Assume Q functions

Fi(x) = Mx + q, where x and q are n-component vectors. The components of q are

q1, q2, · · · , qn, and qv is an integer ∈ [0, M−1] for v = 1, 2, · · · , n, and i =
∑n

u=1 Muqu.

So i ∈ [1, Q].

Suppose that a subband Π is calculated in l levels of n-D wavelet-packet based

transform consecutively with wavelet filters p1, p2, · · · , pl, where pu = fi for u =
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1, 2, · · · , l and i ∈ [1, Q]. Without losing generality, for the dependence graph corre-

sponding to subband Π, a nonlinear I/O data space transformation Γ4 is presented

as: j 7−→ j; t 7−→ t if j = 0; t 7−→ P1(P2(· · · (Pj(t)) · · ·)) otherwise, where Pu = Fi if

pu = fi for u = 1, 2, · · · , j, and j ≤ l, i ∈ [1, Q]. Note that here j corresponds to the

level of transform and can be only integers, and t represents n-component vectors.

For other subbands different from Π generated in the algorithm, since there exists

at least one filter used in the calculation of l levels of transform different from that of

Π, Γ4 maps the data of them to different positions. In other words, Γ4 can combine

all dependence graphs of the subbands into a single I/O data space without conflicts.

Similar to case (1), a calculation corresponding to the dependence vector changes

to Xu+1[P1(P2(· · · (Pu(Pu+1(t))) · · ·))]=
∑

k∈L pu+1[k]Xu[P1(P2(· · · (Pu(Mt−k)) · · ·))],

where Pv = Fi if pv = fi for v = 1, 2, · · · , u + 1, and i ∈ [1, Q]. The difference

between the coordinates of the source and the target of the dependence vector along

index j is |u + 1 − u| = 1. The difference along t is P1(P2(· · · (Pu(Pu+1(t))) · · ·)) −

P1(P2(· · · (Pu(Mt)) · · ·))= P1(P2(· · · (Pu(Mt + w)) · · ·)) − P1(P2(· · · (Pu(Mt)) · · ·))=

Muw, where w is an n-component vector whose components are integers ∈ [1, M −1].

Thus the length of the dependence vector is independent of t’s value. We have the

similar conclusion that the lengths of the dependence vectors in the I/O data space

after the mapping of Γ4 are bounded and independent of the data positions and input

size, and the dependence vectors can be partitioned into a finite number of groups

(according to the possible values of w and u), and the lengths of the dependence

vectors in each group are the same.

(3) For separable n-D transforms: As in case (2) of the proof for Theorem 2.1,

the n-D separable transforms are calculated separately and consecutively in every

dimension. The index j is drawn in fractional numbers to represent the intermediate

calculations in each level of transform. In the (s + 1)th level (where s is a non-
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negative integer) of a separable n-D wavelet transforms, we have (n-1) intermediate

I/O data planes j = s + 1/n, j = s + 2/n, · · ·, j = s + (n − 1)/n between the

planes j = s and j = s + 1. In the calculations for every dimension, there are M

wavelet filters f1, f2, · · · , fM , and a subband may be decomposed into M components

on each dimension. So after each level of transform, a subband can be decomposed

into Mn components. In addition, we assume M functions Fv(x) = Mx + v − 1 for

v = 1, 2, · · · , M .

Suppose that a certain subband Π is calculated in l levels of n-D separable

wavelet-packet based transform consecutively with wavelet filters p1,1, p1,2, p1,n, p2,1,

· · · , p2,n, · · · , pl,n, where pu,i = fv for u = 1, 2, · · · , l and i = 1, 2, · · · , n, and v ∈ [1, M ].

pu,i represents the wavelet filter used for the calculation of the uth level transform on

the ith dimension in generating Π. In order to regularize the dependence graphs, we

present the nonlinear I/O data space transformation Γ5 as follows. Without losing

generality, for the dependence graph corresponding to subband Π, Γ5 is: j 7−→ j,

ti 7−→ ti (i = 1, 2, · · · , n) if j = 0; ti 7−→ P1,i(P2,i(· · · (Ps+1,i(ti)) · · ·)) otherwise, with

j ∈ [s + i/n, s + 1 + i/n), s being an integer ∈ [0, l − 1], Pu,i = Fv for pu,i = fv

(u = 1, 2, · · · , s + 1; i = 1, 2, · · · , n; and v ∈ [1, M ]).

For other subbands different from Π generated in the algorithm, since there exits

at least one filter used in the calculation of l levels of transform different from that

of Π, Γ5 maps the data of them to different positions.

To sum up, the dependence graphs for wavelet-packet based algorithms are com-

bined and regularized to be a pseudo regular dependence paragraph via the nonlinear

I/O data space transformation Γ3, Γ4 or Γ5.

An example of I/O data space transformation Γ5 is illustrated in Fig. 2.
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Fig. 2. An example for the applications of the nonlinear I/O data space transformation

on a 2-D wavelet packet transform



25

Although nonlinear input formats of multidimensional data such as random ac-

cess or pseudo-fractal scan[26] also exist, the chapter only considers linear input

format of a multidimensional data set. This is to prevent systems from potentially

involving data preprocessing and rearrangement in RAMs before computation. Sup-

pose that the input data is n-dimensional. A group of n n-component unitary orthog-

onal vectors {S1, S2, · · · , Sn} is used to describe a linear input format. Assume that

A and B are any two samples indexed by n-component Cartesian vectors X and Y

respectively in the multidimensional data set. (X, Y) is the inner product of two vec-

tors X and Y. The linear input format can be described as: 1) if (X, S1) 6= (Y, S1), the

sample corresponding to the less of the two inner products will be input to the system

earlier; 2) else if (X, S2) 6= (Y, S2), the sample corresponding to the less of the two

inner products will be input to the system earlier; 3)· · ·; n) else if (X, Sn) 6= (Y, Sn),

the sample corresponding to the less of the two inner products will be input to the

system earlier.

Now consider the dependence graphs regularized by the nonlinear I/O data space

transformations proposed in this sub-section. The n-dimensional input data is always

located on the super plane j = 0 shown as in Fig. 2, and it is scanned in a linearly

indexed order when the data is input to the system. The I/O data space is (n+1)-

dimensional. On super planes j = c + i/n (where c and i are integers, c > 0 and

n > i ≥ 0) located are intermediately calculated data which makes up wavelet-

adjacent fields for the next level calculation. Dependence vectors starting from the

wavelet-adjacent fields are located between every two neighboring super planes.

A scheme of free schedule is used to optimize the system performance, which

schedules a calculation in the I/O data space to be executed as soon as its operands

(i.e., the data in wavelet-adjacent field) are ready. Due to the dependence graph

regularization via nonlinear I/O data space transformations, dependence vectors and
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wavelet-adjacent fields are uniformly distributed on super planes which are orthogonal

to axis j. When the input data items are fed to the system one by one according

to a linear input format, the wavelet-adjacent fields on plane j = 0 are scanned one

by one, and the corresponding dependence vectors which start from this plane and

take these wavelet-adjacent fields as sources are ready to be processed one by one.

Since dependence vectors are along the orientation of axis j due to I/O data space

transformations, the calculation results on the next super plane, or the targets of these

dependence vectors, can be produced one by one in a linear order which is the same as

the system’s linear input format, resulting in that the wavelet-adjacent fields in this

super plane are also “scanned” one by one, and dependence vectors between this plane

and the further next plane are ready to be processed in the same linear order, and so

on. Thus, if we assign each level of algorithm computation, or each layer of dependence

vectors in I/O data space, to a separate processor, have all these processors execute

simultaneously, and let the processing rates match the system’s data-feeding rate, we

can finish the algorithm computation as soon as the feeding of input data is finished.

In this scheme, we avoid using RAMs to rearrange or manipulate multidimensional

input data, which was necessary in the complex computation structure of wavelet

algorithms. Since any wavelet-based algorithm consists of wavelet transforms that

follow Eq. (2.1), and basically uses data structures on the results of wavelet transforms

that can be modeled and reformulated in I/O data space as proposed in this section,

we can apply the above scheme to general wavelet-based algorithms without using

RAMs. The following section gives more detailed explanations in design examples for

specific wavelet-based algorithms.

Because the dependence vectors and wavelet-adjacent fields are uniformly dis-

tributed on super planes which are orthogonal to axis j due to I/O data space trans-

formations Γ1−Γ5, when the input data items are fed to the system in linear order at
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a constant rate, the processors, each of which is to perform calculations correspond-

ing to each layer of dependence vectors in I/O data space, will operate periodically

according to the scheme described in the above paragraph. For instance, when 2-D

input data which is located at plane j = 0 in Fig. 2 is fed to the system in row-major

format, the processor that needs to perform calculations for dependence vectors be-

tween plane j = 0 and j = 1/2 will alternate performing low-pass and high-pass

wavelet filtering periodically. The other processor that performs calculations for de-

pendence vectors between planes j = 1/2 and j = 1 has the similar feature of periodic

operations. This feature of periodic operations of parallel processors, which is inde-

pendent of input data or intermediate calculation results, leads to control-localized

parallel processing architectures.

C. Design Example: Non-RAM-Based Architectures for Zerotree Construction Sys-

tems

1. Zerotree Coding Algorithm

Zerotree coding is the common and the most important part of algorithms EZW,

SPIHT and SFQ. With the limit of the length of this chapter, we briefly review EZW

as the typical scheme of the class of wavelet zerotree coding algorithms, and make

our designs of zerotree construction based on the scheme without losing generality.

Hereby we quote several definitions like parent, child, descendent, root, zerotree, sig-

nificance, dominant pass, subordinate pass etc. from the reference [13] to describe

the EZW coding scheme. As illustrated in Fig. 3, the input image is transformed

and subsampled using the hierarchical DWT to obtain a collection of 3S+1 subband

images, where S is the number of transform levels. As wavelet coefficients in the sub-

band images have some correlations along the same orientation (horizontal, vertical
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Fig. 3. The zerotree construction in the EZW algorithm

or diagonal), the dependencies can be well exploited by building a quadtree structure

called “zerotrees”, according to which any coefficient at a given band in Fig. 3 has

four children coefficients at its lower-level subband (corresponding to the four-time

larger subband image) in the same orientation. Suppose that the parent’s position

is (i,j) with i and j standing for the row and column number in its subband image,

then its children’s positions are (2i,2j), (2i,2j+1), (2i+1,2j), and (2i+1, 2j+1) in their

corresponding subband image. There are two types of passes performed in EZW cod-

ing. The dominant pass finds significant coefficients (greater than a given threshold),

and its following subordinate pass refines the magnitudes of all significant coefficients

found in the dominant pass. A ZTR symbol (meaning “zerotree root”) is used for an

insignificant coefficient (less than a given threshold) that has no significant descen-

dents. An Isolated Zero symbol (named IZ) is used when a coefficient is insignificant

but has some significant descendents. Because a child coefficient is probably also

insignificant when its parent coefficient is insignificant and thus many insignificant
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coefficients can be represented as ZTRs, and furthermore a ZTR’s descendents may

be cut off from the final code stream, the use of ZTR and IZ symbols informs the

locations of significant coefficients quite efficiently. Interested readers may refer to

[13] for the details of zerotree coding algorithm.

2. Applying I/O Data Space Transform to Zerotree Construction

In the zerotree coding algorithm one first computes 2-D DWT and then constructs

zerotree data structures on the results of wavelet transform. At each level of the 2-D

separable DWT, the band is decomposed into Lr and Hr (where Lr is the result of

low-pass row-wise filtering and Hr is the result of high-pass row-wise filtering); Lr

is decomposed into LL and LH by low-pass and high-pass column-wise filters; Hr is

decomposed into HL and HH by low-pass and high-pass column-wise filters. Sub-

band LL is recursively decomposed in higher levels of transforms, as shown in Fig.

3. The subscript number of a subband in Fig. 3 refers to the wavelet transform level.

For instance, LH2 refers to the LH subband in the second-level wavelet transform.

The dependence graphs in I/O data space and the nonlinear I/O data space trans-

formations are illustrated in Fig. 4. According to Γ5 in Section B of this chapter, the

nonlinear I/O data space transformation for 2-D DWT is rewritten as below.

When j = u + 1/2 (u is supposedly a positive integer), Lr: n1 7−→ 2bjcn1, n2 7−→

2djen2, j 7−→ j; for Hr: n1 7−→ 2bjcn1, n2 7−→ 2dje(n2 + 1
2
), j 7−→ j; when j is an

integer, for LL: n1 7−→ 2bjcn1, n2 7−→ 2djen2, j 7−→ j; for LH: n1 7−→ 2bjc(n1 +

1
2
), n2 7−→ 2djen2, j 7−→ j; for HL: n1 7−→ 2bjcn1, n2 7−→ 2dje(n2 + 1

2
), j 7−→ j; for HH:

n1 7−→ 2bjc(n1 + 1
2
), n2 7−→ 2dje(n2 + 1

2
), j 7−→ j.



30

j j j j

j

n1

n1 n1 n1 n1

n2 n2 n2 n2

N
N

N

N

N

N N

N

N

N

n2

u u u

u

u+0.5

u+1

u

u+1 u+1 u+1 u+1

u+0.5u+0.5u+0.5u+0.5

Fig. 4. The regularization of dependence graphs for zerotree construction
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Considering the zerotree data structures among the results of wavelet transforms,

we can find that the nonlinear I/O data space transformation Γ5 relocate the parent-

children relationships and put each parent and its children together in terms of their

coordinates of n1 and n2 in the I/O data space. For instance, let there be a parent

data item belonging to subband HL2 with the coordinates of (n1 = a, n2 = b, j = 2)

in I/O data space before the nonlinear I/O data space transformation. According to

the zerotree coding algorithm, it has four children belonging to subband HL1 with

coordinates of (n1 = 2a, n2 = 2b, j = 1), (2a, 2b+1, 1), (2a+1, 2b, 1) and (2a+1, 2b+

1, 1) respectively. After the nonlinear I/O data space transformation is applied, the

parent’s new coordinates are (4a, 4b + 2, 2), and the children’s new coordinates are

(4a, 4b + 1, 1), (4a + 2, 4b + 1, 1), (4a, 4b + 3, 1) and (4a + 2, 4b + 3, 1) respectively. In

other words, the parent-children relationships are restricted in local domain if we get

a projection of the dependence graphs in I/O data space along axis j.

To give a brief presentation, we suppose that there are two levels of wavelet

transforms (j ≤ 2 for the dependence graphs in I/O data space), and assume a row-

major input format to scan a 2-D image and feed the image pixels to the system.

Following the scheme of free schedule at the end of last section, we can assign the

computation corresponding to each layer of dependence vectors in Fig. 4 to a separate

processor, and have all processors perform calculations in parallel when the input data

are fed to the system in real time. The particular challenge in architectural designs

of wavelet zerotree coding algorithms stems from locating children given any parent

data item. To avoid using RAMs for data rearrangement when constructing zerotrees

and generating symbols as designated in the zerotree coding algorithm, we adjust the

scheme of free schedule so that the calculation of any parent data and the calculation

of its children are scheduled to be on the same time. In other words, we reorder the

2-D DWT computation so that the result of the DWT computation (as the outputs of
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parallel processors) itself follows the zerotree structures. This has been made possible

by nonlinear I/O data space transformations proposed in the chapter. When the

input image pixels are fed to the system in a row-major order, the wavelet-adjacent

fields on plane j = 0 are row-wise scanned, and the calculations corresponding to the

dependence vectors between planes j = 0 and j = 1/2 are ready to be performed

in the same row-wise order. Due to I/O data space transformation, the calculation

results on each plane (orthogonal to axis j) above j = 0 can also be produced in row-

wise major by parallel processors in real time. Since any parent data and its children

on zerotree structure are put together via Γ5 in terms of their coordinates of n1 and

n2 in I/O data space, we can adjust the schedules of parallel processors only a little

so that the children are calculated by a processor when their parent is calculated by

another processor simultaneously. This adjustment is accomplished by using a small

Transpose Unit in which only systolic data flow is allowed, and meanwhile a large

off-chip RAM is avoided. The architectures are proposed in the following.

3. The Architecture for Rearranging 2-level 2-D DWT

We assume the width of wavelet filters is L and the size of 2-D input data is N ×N .

For typical applications in practice, let L = 9 and N = 512 in the introduction of

this subsection. We introduce a simple structure of wavelet filters whose architecture

is detailed in [22]. Its structure is used in our design as a module of Processing

Unit (PU) that computes wavelet filtering and decimation. As illustrated in Fig. 5

for a 9-point wavelet filter, it is made up of four registers, five multipliers and six

adders. It rearranges the calculation of wavelet filtering such that the filter is cut

to half taps based on the symmetry between the negative and positive wavelet filter

coefficients. a, X and Y are the input sequence, low- and high-pass filtering output

sequence respectively. While a datum of input sequence a is fed and shifted into
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Fig. 5. The systolic and parallel wavelet filters integrating low-pass and high-pass fil-

tering

the PU every clock cycle, a datum of X is calculated every even clock cycle and

a datum of Y is calculated every odd clock cycle. Such calculations are possible

because of the wavelet dyadic downsampling. The connections between computation

units (multipliers or adders) are restricted local. The PU in Fig. 5 is extended to

a parallel format as illustrated in Fig. 5 where if a number of data from sequence

a ak+8, ak+7, ..., ak are fed to the PU in parallel at a certain clock cycle, then ak+9,

ak+8, ..., ak+1 are fed at the next cycle. The calculations of X and Y are the same as

in Fig. 5. The PU actually takes a wavelet-adjacent field as the input.

We propose a module called Transpose Unit (TU) that can partially transpose a
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Fig. 6. The architecture of Transpose Unit (TU)

matrix on the fly. When a matrix is input to the TU in a row-wise indexing way with

one element per clock cycle, the TU gives out the elements in a partially column-wise

indexing way as explained in the following. The structure of TU is illustrated in

Fig. 6. It is made up of (L + 4) or 13 concatenated modules of First In First Out

(FIFOs) [28][29], with each FIFO having N or 512 cells. The top FIFO takes as its

input the row-wise indexed matrix with one element per clock cycle. Because the

distance between the outputs of all FIFOs Yi and Yi+1 (0<i<(L+3)) is always N, the

TU’s 13 outputs belong to the same column in the input matrix. The FIFOs transfer
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the input data step by step in clock cycles, and meanwhile provide a new group of

column-wise data (i.e., a new column-wise wavelet-adjacent field) to the next wavelet

filter in each clock cycle.

PU1 TU1
PU2

       4q

   

4q+1

   4q+2
  4q+3

LL1
LH

HH

HL

 1

 1
1..........

.....
3PU

........

Fig. 7. The architecture for zerotree construction

Keeping in mind the dyadic downsamplings in both row-major and column-major

filtering of 2-D DWT. In the following, we present our design that rearranges the

computation of the DWT so that a parent and its children are calculated at the same

time. The structure for the non-RAM-based zerotree construction is proposed in Fig.

7.

The coefficients generated in the first decomposition level can be separated into

groups each of which contains four coefficients having the same parent (which is

generated in the next decomposition level). Now we have the restriction that these

four sibling coefficients be calculated together for the purpose of calculating children
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and parent simultaneously. More exactly, we calculate the four siblings consecutively

at a rate with one coefficient per clock cycle, and at the same time generate their

parent coefficient at a four-time less rate via another output port. Due to the row-

major dyadic downsampling, the row-major high/low-pass filtering is alternatively

executed by PU1 in Fig. 7 point by point in each row. Based on similar column-

major dyadic downsampling, PU2 takes turns to execute column-major high/low-pass

filtering.

PU2 selects appropriate inputs from TU1 to generate four sibling coefficients

consecutively. The order to calculate the siblings is as A, then B, C and D in the

example of four siblings illustrated in Fig. 3. After PU2’s calculation of point A

by taking Y1, ..., YL as inputs, PU2 has to calculate B by taking Y3, ..., YL+2 as

inputs, then PU2 comes back to take Y1, ..., YL to calculate C, then PU2 takes Y3,

..., YL+2 again to calculate D. This is for the case that A, B, C and D are in the

column-major low-pass subband (HL in Fig. 3). If they are in the column-major

high-pass subband (LH or HH in Fig. 3), PU2 will alternate using Y2, ..., YL+1 and

Y4, ..., YL+3 as inputs and take turns on the calculations in similar ways. Note that

PUs consume one clock cycle for each calculation and the TU cells consume one clock

cycle to transfer a datum so that the above calculations and the corresponding data

transfers are performed step by step. In a similar way, PU3 takes turns generating the

parents as the outputs of the second level of DWT. In summary, any four siblings are

always generated in turns by PU2 and their parent is calculated by PU3 at the same

time. The control signal for the switch DM is internal and simple. There is neither

external nor complex control for any device in Fig. 7. Only the clock signal is global

to synchronize the system. We call this scheme of internal control as “self-controlled”

device. Fig. 8 has demonstrated an example that a multiplexer selects data based on

internal control signals which are generated from the input clock periodically. It is
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the rearranged periodical operations for zerotree construction derived from our novel

nonlinear I/O data space transformations in Section B of this chapter that make such

designs of “self-controlled” devices possible.
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OutA1
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clock

Fig. 8. An example of local-controlled 4-1 multiplexer

4. An Arbitrary Number of Levels in Zerotree Construction Systems

In this subsection we extend our design to general cases where any levels of wavelet

decompositions are possible. All coefficients in the first level and in the intermediate

levels which correspond to the same ancestor in the last level decomposition have

to be calculated together to satisfy the restriction that any parent and its children

be calculated simultaneously. As in the former subsection, by the word “together”

we mean successively calculating the children at a four-time higher frequency than

their parent and simultaneously outputting children and the parent via two ports

respectively.

Because the input image is fed into the system in the same way as before, the
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first level row-major high/low-pass filtering is still performed in PU1 alternatively.

Regarding the first level column-major high/low-pass filtering performed in PU2, we

note that there are 4m−1 coefficients in the first level decomposition corresponding to

the same ancestor in the last level (level m) decomposition. To satisfy the restriction

of generating parent and children simultaneously, it is required that these 4m−1 “kin-

dred” coefficients be calculated together. Meanwhile these coefficients’ parents in the

intermediate levels of decomposition should be calculated together too. Note that

these 4m−1 coefficients are located in 2m−1 adjacent rows and 2m−1 adjacent columns

in their subband. PU2 should alternatively select appropriate inputs among 2m−1

different groups of parallel column-major data from TU1, and perform column-major

filtering to generate the 4m−1 kindred coefficients in turns, where the coefficients cal-

culated with the same group of input belong to the same row (see the next paragraph

for instance). Accordingly, TU1 is an extended version in Fig. 6 and is supposed to

have output ports Y1, ..., YL+M with M equal to 2m, so TU1 has (L+M)×N cells

with a structure similar to Fig. 6.

For instance, there are sixteen “kindred” coefficients in HL1 subband illustrated

in Fig. 3 to be calculated successively in the first level of the three-level DWT. The

order to calculate these coefficients is from A1 to A2, A3, A4, B1, B2, B3, B4, C1,

C2, C3, C4, D1, D2, D3, and at last D4. This calculation order is according to the

requirement that siblings be calculated successively, e.g., the siblings A1, A2, A3 and

A4 should be calculated as a group (meanwhile their parent A is calculated in PU3).

Four parallel column-major data are selected among TU1’s output ports Y1, ..., YL+8

as: Y1, ..., YL (named E1 for brevity); Y3, ..., YL+2 (named E2); Y5, ..., YL+4 (named

E3); and Y7, ..., YL+6 (named E4). Based on the systolic data transfer in TU1 and

column-major dyadic subsamplings in PU2, PU2 first takes E1 as input to calculate

A1, then uses E2 for calculating A2 in next clock cycle; after that, comes back to take
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E1 for A3, then E2 for A4. PU2’s following operations are: E3 for B1, E4 for B2, E3

for B3, E4 for B4, then E1 for C1, E2 for C2, and etc.

Now we analyze the operations in PU3. PU3 carries out the rest computation in

DWT. The second level decomposition is achieved as follows. In the first quarter of

the period when 2m rows of input image are fed to the system, PU3 gets its inputs, i.e.,

the coefficients in LL1 subband (see Fig. 3(d)) from TU1, and alternatively performs

the second level low/high-pass row-major convolution. The calculated results, or the

coefficients in Lr2 and Hr2 are stored in two TUs in PU3’s feedback block. In the

second quarter, the Lr2 coefficients are fed back to PU3 to be column-major filtered

to get the results in LL2 and LH2. In the third and fourth quarter, the Hr2 points

are fed back to PU3 to be used to calculate out HL2 and HH2 respectively. There

are some idling intervals during PU3’s performing the second level transform due to

less computation in the second level of DWT. Thus we can insert the computation

of further levels of decomposition into those available intervals. For example, once

an LL2 point is generated in the second quarter, it will be fed back to PU3 via the

feedback block to be row-major filtered in available intervals. Then the generated Lr3

and Hr3 coefficients are also stored in TUs in PU3’s feedback block. In next available

intervals Lr2 and Hr2 are fed to PU3 for column-major convolution to calculate LH3,

HL3 and HH3 coefficients. Due to the exponentially decreasing number of parents,

PU3 can similarly proceed to more levels of decomposition in the intervals between

lower-level calculations.
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CHAPTER III

EXPLOITING INTRA-ITERATION PARALLELISM IN MULTIDIMENSIONAL

MULTIRATE SYSTEMS

A. Background Introduction

An MD Data Flow Graph (MDFG) ([30][31][32][33][34][35][36]), G=(V, E, d, t), is a

node-weighted and edge-weighted directed graph modeling an MD DSP algorithm. V

is the set of computation nodes. E⊂ V×V is the set of edges representing the data

flows and dependencies between nodes. d is the set of delay-weights (n-component

vectors) on E (each edge is associated with an n-component vector as its delay-weight)

and represents the MD delays of data flowing between two nodes, with n being the

number of dimensions of the algorithm. t is the set of computation times (in clock

cycles) for the computation nodes. An iteration is the execution of a loop body

exactly once, i.e., executing the task corresponding to each node in V exactly once.

By replicating an MDFG at multi-dimensionally indexed positions, we expand an

iteration space, where each MDFG, excluding the edges with delay vectors different

from (0, 0, · · ·, 0), is taken as a cell indexed by Cartesian coordinates. Those non-

zero delay weighted edges within the MDFG give specifications of the dependencies

between these cells in the iteration space. Due to the causality, a legal MDFG must

have no zero-delay cycle, i.e., the summation of the delay vectors along any cycle

path in the MDFG can not be (0, 0, · · ·, 0) [37][38][39][40]. An example of an MDFG

for a 2-D algorithm and the corresponding iteration space is illustrated in Fig. 9. It

is an example introduced in [41].

A multi-dimensional retiming operation on a node u ∈ V redistributes the nodes

in the cells in iteration space. The retiming vector r(u) of a node u ∈ V represents the
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Fig. 9. A simple example of an MDFG and the corresponding iteration space

offset vector between the original cell containing u, and the one after retiming. To

preserve dependencies in iteration space after retiming operations, delay-weights of

edges change accordingly. Formally, for edge e : u→ v, we have the retiming equation

[32]

dr(e) = d(e)+r(u)−r(v) (3.1)

where d(e) or dr(e) is the delay-weight of edge e after or before retiming respec-

tively. After retiming, an instance of node u in the cell indexed by i in iteration

space is moved to cell i-r(u). Obtaining full inter-operation parallelism is equivalent

to obtaining non-zero delays on all edges of the MDFG by retiming techniques such
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that the computation tasks corresponding to all nodes in the retimed MDFG can be

executed simultaneously. An example of MD retiming is shown in Fig. 10 (a 2-D

case), where r(A)=r(B)=r(C)=(0,0) and r(D)=(0,1). Fig. 10 is an example intro-

duced in [41]. The delay-weights on the edges outgoing from a computation node in

the MDFG corresponds to the necessary storage of the data outgoing from this com-

putation node to its following computation nodes. Therefore, another key purpose of

the retiming technique is to minimize the system storage requirement by modifying

the delay-weights on edges in the MDFG.

A
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D(0,0)

(0,0)

A B

C D

A A A AB B B B
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C C C C

CCC

A A A

D D D D
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D D D D
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(1,0)
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Fig. 10. The retiming operations on MDFG and iteration space
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B. Modeling MD Multirate Algorithms in MR-MDFG’s

Multirate DSP algorithm descriptions contain decimators and/or expanders to repre-

sent multirate data flows[33][42][43]. These decimators and expanders can be modeled

by multirate-weighted edges[44][45][46][47][48]. We formulate the Multirate MDFG

(MR-MDFG) as: G=(V, E, M, d, t), which is a node-weighted and edge-doubly-

weighted directed graph that is used to model a multirate MD DSP algorithm. V is

the set of computation nodes. E⊂ V×V is the set of edges representing the data flows

and dependencies between nodes. d is the set of offset-weights (n-component vectors)

on E (each edge is associated with an n-component vector as its offset-weight) with n

being the number of dimensions of the algorithm. M is the set of multirate-weights (n

by n matrices) on E (each edge is associated with an n by n matrix as its multirate-

weight). t is the set of computation times (in clock cycles) for the computation nodes.

Consider an edge e: u → v connecting two computation nodes u and v in the

MR-MDFG. The dependence relationship between data streams at both sides of edge

e in the MR-MDFG is represented by:

P (m)← Q(M(e)×m−d(e)) (3.2)

where P is the data stream flowing out from node v and Q is the data stream

flowing out from node u, M(e) and d(e) are the multirate-weight and the offset-

weight of e respectively, and m is the index vector of data stream P . Fig. 11 shows

an example of MR-MDFG (2-D case), and its corresponding multirate MD DSP

algorithm is as the following.

For m1 = 1 to M1

For m2 = 1 to M2

C(m1, m2) = A(2m1 − 4, m2 − 3) + B(2m1 − 5, m2 − 6);
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D(m1, m2) = 3× C(m1 − 8, 3m2 − 1);

F (m1, m2) = D(m1 − 3, m2 − 7) + B(2m1 − 2, 3m2 − 5);

In order to illustrate the dependence relationship at both sides of an edge in the

MR-MDFG with Eq. (3.2), we take edge E3 in Fig. 11 as an example. Computation

node Y, a multiplier, corresponds to the multiplication in statement Y of the DSP

algorithm. Node Y takes data stream C as the input, and computes data stream D

as the output. Consider an output data item D(15, 3) with m = (15, 3)′ as the index

vector. According to Eq. (3.2), the dependence relationship between computation

nodes Y and X is specified by edge E3, i.e., D(15, 3) ← C(M(E3) ×m − d(E3)) =

C((1 ∗ 15, 3 ∗ 3)− (8, 1)) = C(7, 8).

The multirate-weights are n by n matrices (where n is the number of dimensions)

and only diagonal elements can be non-zero values. If all diagonal elements of a

multirate-weight are equal to 1, the corresponding edge is equivalent with a traditional

single-rate edge. If all edges in an MR-MDFG are of single-rate, the MR-MDFG is

equivalent with a traditional single-rate MDFG. Applying traditional retiming vectors

r(U) and r(V) on the nodes of U and V, we have the new offset-weight of e: U → V

as

dr(e) = d(e) + M(e)r(U)− r(v) (3.3)

Definition 3.1 In an MR-MDFG, the rate of a path P, Z(p), is defined as

Z(p) =
∏

i M(ei), where {ei} represents all edges along path p.

The sources of an MR-MDFG are those nodes connecting with the data stream(s)

of system input. Without loosing generality, we assume that each computation node

in an MR-MDFG can have at most two input edges to receive operands (otherwise we

could add some auxiliary computation nodes and edges to satisfy this assumption).
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Fig. 11. An example of MR-MDFG

The internal computation nodes of an MR-MDFG are those nodes at which some

edges end and from which some edges start. The sinks of an MR-MDFG are those

nodes from which no edges start.

Definition 3.2 The rate of an edge e : u → v, R(e), is defined as R(e) =

MAX[Z(p)] where the maximum is taken over all paths from the sources of the

MR-MDFG to v and going through edge e.

Definition 3.3 We define an MR-MDFG as a rate-balanced MR-MDFG if, for any

internal computation node in the MR-MDFG, the rates of this node’s two input edges

are equal. Otherwise, the MR-MDFG is defined as rate-conflict. Single-rate MDFGs

can be taken as a special class of rate-balanced MR-MDFGs where multirate-weights

are all 1’s. It can be shown that the MR-MDFGs for many generally used multirate

DSP algorithms such as all wavelet-based algorithms and most Partial Differential

Equation problems are rate-balanced.

Lemma 3.1 If and only if an MR-MDFG is rate-balanced, for any edge in the

MR-MDFG, e.g., e: u→ v, we have R(e) = Z(p), where p is ANY path from a source

of the MR-MDFG to node v and goes through edge e, i.e., all Z(p) are equal for ANY

path p that starts from a source of the MR-MDFG to v and goes through e.
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Proof:

1) Assume that an MR-MDFG is rate-balanced and there exists a path P1 starting

from one of the sources of the MR-MDFG with e as the last edge such that R(e) 6=

Z(P1). According to Definition 3.2, there is at least a path Pmax starting from one

of the sources of the MR-MDFG with e as the last edge such that Z(Pmax) = R(e).

So we have Z(Pmax) > Z(P1). As shown in Fig. 12, since Pmax and P1 are different

but have the same destination node, we can find a node called U1 as their branch

node. Let eA1 and eB1 be the two input edges of node U1. Path Pmax goes through

edge eA1 and path P1 goes through edge eB1. Based on Definition 3.1 and Definition

3.3, we have R(eA1) = R(eB1) implying that Z(P11) < Z(Pmax1) = R(eB1) = R(eA1),

where path Pmax1 starts from one of the sources of the MR-MDFG and with eB1 as

the last edge, and Z(Pmax1) is equal to R(eB1). Path P11 is the part of P1 that ends

at U1. Since paths P11 and Pmax1 are different but have the same destination node

(U1), we can find a node called U2 as their branch node. eA2 and eB2 are the two

input edges of node U2. Path Pmax1 goes through edge eA2 and path P11 goes through

edge eB1. Along path P1, we can find in Fig. 12 Pmax2, P12, U3, eA3, eB3, Pmax3, P13, · · ·

recursively, until we reach node Ut that is right after the source (called S1) of the

MR-MDFG on path P1. Let the edge between Ut and S1 be eBt. Similarly, path P1t

is the part of P1 that ends at Ut (Here it is the same as eBt). Based on the recursive

implications described above, we have Z(P1t) < R(eBt). It must be false because it

is contradict to Definition 3.1. Therefore, the assumption at the beginning of this

paragraph can never be true. In other words, if an MR-MDFG is rate-balanced, the

property mentioned in Lemma 3.1 must be true.

2) Assume that an MR-MDFG is rate-conflict. According to Definition 3.3, in

the MR-MDFG exists at least an edge e: u→v such that R(eA) 6= R(eB), where eA

and eB are the two input edges of node u. Suppose M(e) is the multirate-weight on
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Fig. 12. An example showing the proof of lemma 3.1

edge e. Because of Definition 3.2, R(e) is equal to either M(e)×R(eA) or M(e)×R(eB),

i.e., there exists a path P from one of the sources of the MR-MDFG to node v, going

through either eA or eB, such that R(e) 6= Z(P ).

Lemma 3.1 is critical to prove the following Theorem 3.1 and Theorem 3.2, which

are the foundation for Procedure 3.1: MD intercalation that is to be introduced in

Section C of this chapter.

In a rate-conflict MR-MDFG, an edge e: u → v is called a rate-conflict edge if

R(eA) 6= R(eB), where eA and eB are the two input edges of node u. Suppose PA is a

path from one of the sources of the MR-MDFG to node u such that Z(PA) = R(eA).

Suppose PB is a path from one of the sources of the MR-MDFG to node u such that

Z(PB) = R(eB). We call PA and PB the primary paths of the rate-conflict edge e.

Definition 3.4: If in a rate-conflict MR-MDFG there is no such rate-conflict edge

that at least one of its primary paths goes through itself, the MR-MDFG is called a

branch-type rate-conflict MR-MDFG; otherwise the MR-MDFG is called a cycle-type
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rate-conflict MR-MDFG, as illustrated in Fig. 13.

e

e e
A

B

Fig. 13. The cycle-type rate-conflict MR-MDFG

Definition 3.5: The delay of a path p, d(p), is defined as
∑K

i=1[(
∏i−1

j=0 M(ej))d(ei)],

where M(e0) is assumed to be 1, and e1, e2, · · ·, and eK are all K edges along p from

the beginning to the end.

Definition 3.5 is inspired by concatenating the dependence relations specified

by all edges on path p according to Eq. (3.2). Similarly, we define the delay of a

path p after retiming operations dr(p) by
∑K

i=1[(
∏i−1

j=0 M(ej))dr(ei)], where dr(ei) is

the retimed offset-weight on edge ei. The increment of the delay of a path p after

retiming operations ∆d(p) is dr(p)− d(p).

Lemma 3.2: Such relation always exists for the retiming operations along any

path p in the multirate-MDFG: ∆d(p) = r(u)−R(p)r(v), where u and v are respec-

tively the starting node and the destination node of path p.

Proof:

Based on Eq. (3.3), in the formula of dr(p) (Definition 3.5) we can replace dr(ei)

by d(ei) + r(ui−1)−M(ei)r(ui) for i = 1, 2, 3, · · · , K, where u0, u1, u2, · · · , uK are the

nodes along path p from the beginning to the end. After simplifying the formula

of dr(p), we get dr(p) = d(p) + r(u0) − Z(p)r(uK). Letting u0 and uK be u and v

respectively, we have derived the above conclusion.
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An MR-MDFG is called stable for retiming if in an MR-MDFG, given any

two nodes u and v and two corresponding retiming vectors r(u) and r(v), we have

∆d(P ) = C for any path P from u to v where C is a constant value independent of P.

Theorem 3.1: 1) All rate-balanced MR-MDFGs are stable for retiming; 2) If in a

branch-type rate-conflict MR-MDFG there exists a rate-conflict edge whose primary

paths have more than one common node, the MR-MDFG is not stable for retiming;

3) None of the cycle-type rate-conflict MR-MDFG is stable for retiming.

Proof:

1) Suppose u and v are any two nodes in a rate-balanced MR-MDFG. Assume

two different paths PA and PB from u to v. Let P0 be the path from one of the sources

of the MR-MDFG to u. Since PA and PB have the same destination node (i.e., v),

we can find a node U0 such that PA and PB respectively go through edges eA and

eB (the two input edges of node U0), and path U0 → v (called PC) is the common

part of PA and PB. Thus we have PA = PA1 + PC and PB = PB1 + PC where paths

PA1 and PB1 are respectively another part of PA and PB. Finally, we conclude that

R(eA) = R(eB) (per Definition 3.3) =⇒ Z(P0 +PA1) = Z(P0 +PB1) (per Lemma 3.1)

=⇒ Z(P0) × Z(PA1) = Z(P0) × Z(PB1) (per Definition 3.1) =⇒ Z(PA1) = Z(PB1)

=⇒ Z(PA1) × Z(PC) = Z(PB1) × Z(PC) =⇒ Z(PA) = Z(PB). This leads to the

conclusion that all rate-balanced MR-MDFGs are stable for retiming if Lemma 3.2 is

considered.

2) In a branch-type rate-conflict MR-MDFG where there exists a rate-conflict

edge e: v → v0 whose primary paths PA and PB have more than one common nodes,

we can assume a node u (which is different from v) as one of the common nodes

of PA and PB. PA goes through eA and PB goes through eB, where eA and eB are

the two input edges of node v. If u is a source of the MR-MDFG, based on Lemma



50

3.2, we simply draw the conclusion that the MR-MDFG is not stable for retiming

because Z(PA) 6= Z(PB). If u is not a source of the MR-MDFG, we suppose that

PA1 : u → v and PB1 : u → v are respectively a part of PA and PB, and PA2 and

PB2 are respectively another part of PA and PB. Since R(eA) = Z(PA), we have

Z(PA) ≥ Z(PA1+B2) based on Definition 3.2, where PA1 is the first part and PB2 is

the second part of path PA1+B2. Thus we have Z(PA1)×Z(PA2) ≥ Z(PA1)×Z(PB2)

=⇒ Z(PA2) ≥ Z(PB2). Similarly considering edge eB, we also have Z(PB2) ≥ Z(PA2).

So Z(PA2) = Z(PB2), implying Z(PA1) 6= Z(PB1). Thus the MR-MDFG is not stable

for retiming based on Lemma 3.2.

3) Suppose there is a rate-conflict edge e: u → v whose primary paths are PA

and PB in a cycle-type rate-conflict MR-MDFG, and PA goes through e. Let the

starting node of PB be s, a source of the MR-MDFG. Because PA is different from

PB, we have two paths from s to u: PB and (PA + PB) as shown in Fig. 13. Appar-

ently Z(PB) 6= Z(PB +PA). Thus the MR-MDFG is not stable for retiming based on

Lemma 3.2.

The property of the retiming stability described in Theorem 3.1 is very impor-

tant in retiming an MR-MDFG. We can use the constraint of retiming legality to

explain the importance of the retiming stability. When performing the operations

of retiming on an MR-MDFG, we are under the restriction of retiming legality, i.e.,

the restriction that no dependence relationships between computation nodes in an

MR-MDFG should be changed after the transformation, otherwise the function of

the DSP algorithm represented by the MR-MDFG is modified. The delay of a path

(d(p)) reflects the dependence relationship between two computation nodes at both

ends of the path. If for a couple of nodes in an MR-MDFG, retiming operations result

in different increments of path delay along different paths between the two nodes, (in
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other words, the MR-MDFG is not stable for retiming), the constraint of retiming

legality will not be observed since the path delays after retiming are different for

different paths between the two nodes and thus the dependence relationship between

these two nodes cannot be reserved. However, this important property of retiming

stability has never been mentioned in literature on the MD retiming to the best of

our knowledge. The reason is that all single-rate MDFGs are stable for retiming

(immediately from Theorem 3.1 if the single-rate MDFGs are taken as rate-balanced

MR-MDFGs where the multirate-weights are unit matrices), and the previous re-

searches on retiming deal with single-rate MDFGs only. According to Theorem 3.1,

not all MR-MDFGs are stable for retiming.

Definition 3.6: In an MR-MDFG, a rate-identical cut is a set of multirate-

weighted edges whose rates are identical.

Theorem 3.2: If and only if an MR-MDFG is rate-balanced, such property exists:

when we cut off all multirate-weighted edges (i.e., those edges whose multirate-weights

are not unit matrices), and obtain subgraphs each of which is a single-rate MDFG, all

those multirate-weighted edges in the original MR-MDFG that are pointed directly

into the same subgraph belong to a rate-identical cut.

Proof:

1) Suppose that an MR-MDFG is rate-balanced, and there are two edges eA and

eB with different rates directly pointed into the same subgraph G1. Let u and v be

the nodes in G1 that are directly connected to eA and eB respectively. Because G1 is

a connected graph, we can find a node t in it such that there are two paths PA and

PB from the sources of the original MR-MDFG going through eA and eB respectively

and having t as the same destination. Since all edges in G1 are of single-rate, Z(PA)

and Z(PB) are equal to R(eA) and R(eB) respectively. So we have Z(PA) 6= Z(PB),

which is contradictory to Lemma 3.1.
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2) If an MR-MDFG is rate-conflict, we can find a rate-conflict edge e: u → v

and let its primary paths be PA and PB. Suppose u is in subgraph G1 if all multirate-

weighted edges in the MR-MDFG are cut off. Now we claim that there exist two

multirate-weighted edges with different rates in the original MR-MDFG pointed di-

rectly into G1. Otherwise, any two different paths from the sources of MR-MDFG to

node u would have the same rate because all edges in G1 are of single-rate.

For clear presentation later, we define that each node in a rate-balanced MR-

MDFG has a rate equal to the rate of its input edges, noticing that this is well-

defined in rate-balanced MR-MDFGs because the rates of two input edges for any

computation node are the same. After all multirate-weighted edges are cut off from

the original MR-MDFG, each of the obtained subgraphs is a single-rate MDFG. Thus,

the rates of all nodes in each of such subgraphs are identical. We furthermore define

that such subgraph has a rate equal to the rates of all nodes in it.

Corollary 3.1: If an MR-MDFG is rate-balanced, such property exists: when we

cut off all multirate-weighted edges (i.e., the multirate-weights are not unit matrices)

from this MR-MDFG to get subgraphs each of which is a single-rate MDFG, all

the multirate-weighted edges in the original MR-MDFG that outgo from the same

subgraph belong to a rate-identical cut.

Proof:

Immediately following the conclusion of Theorem 3.2 that all the multirate-

weighted edges in the original MR-MDFG which are pointed directly into the same

subgraph have the same rate, and the fact that every subgraph is of single-rate.
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C. The MD Intercalation

The previous section gives a general analysis on the theory of MR-MDFG-represented

MD multirate DSP algorithms, where the difference between rate-balanced MR-

MDFGs and rate-conflict MR-MDFGs are defined. Some desirable properties of the

rate-balanced MR-MDFG are analyzed and claimed which will be exploited in the

following sections. In this section we propose the concept and the technique of MD

intercalation based on Theorem 3.2. The MD intercalation is used to adapt the rate-

balanced MR-MDFG’s to be feasible for MD retiming such that appropriate analyses

on retiming legality, memory requirement and arbitrary input format will be allowed

in the next section.

In an iteration space expanded by replicating an MDFG as in Fig. 9, the cell

dependence vectors are designated by the non-zero offset weights of the edges within

the MDFG. The lengths of these dependence vectors correspond to the storage re-

quirement in hardware systems: the data (whose amount is evaluated by the length

of corresponding cell dependence vectors) outgoing from a computation node in the

MDFG needs to be stored and later (depending on the value of the offset-weight)

consumed by another computation node which is located in a cell that is pointed by

a dependence vector in iteration space.

Lemma 3.3: The cell dependence vectors in the iteration space that correspond to

the multirate-weighted edges in an MR-MDFG have lengths of O(N) in the iteration

space, where N is the input size of the DSP algorithm represented by the MR-MDFG.

Proof:

Assume an edge e: U → V with the offset-weight d(e) and the multirate-weight

M(e) in the MR-MDFG. Suppose that a cell dependence vector in the iteration space

corresponding to e is from the cell including U (indexed by S) to the cell including V
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(indexed by T). According to Eq. (3.2) and the concept of the cell dependence vector,

the length of this cell dependence vector should be |S − T | = |S −M(e)S + d(e)| =

O(Max(s1, s2, · · · , sn)) = O(N), where m1, m2, m3, · · · , mn are diagonal elements in

matrix M(e), d1, d2, d3, · · · , dn are elements in offset-vector d(e), both M(e) and d(e)

are taken as constant values independent of the DSP algorithm’s input size N, and

s1, s2, s3, · · · , sn are Cartesian coordinates of S in the iteration space ranged by the

algorithm’s input size N.

Theorem 3.3: The traditional MD retiming techniques cannot asymptotically

reduce the minimum storage requirement in the hardware mapping of multirate MD

DSP algorithms which are represented by MR-MDFGs.

Proof:

Consider an edge e: U → V in an MR-MDFG, and two retiming vectors r(U) and

r(V). From Eq. (3.3) we have e’s retimed offset weight dr(e) = d(e)+M(e)r(U)−r(v).

A retiming vector is applied to the same computation node in all cells (MDFGs). In

other words, the same computation node in all cells will be moved by the same dis-

tance in the iteration space according to the retiming vector, thus the length of the

retiming vector (or the moving distance) should be a small value independent of N

(the algorithm’s input size). Otherwise the epilogue[40] or prologue[40] will be so

big that the retiming operations are meaningless. Because only r(U) and r(V) affect

the changing of the length of the cell dependence vector between these two nodes

in retiming operations, after retiming operations, the length of the cell dependence

vector is still O(N), the same as in Lemma 3.3. Since to reduce the lengths of cell

dependence vectors is the only benefit that can be exploited by retiming operations

to reduce the minimum storage requirement, we reach the conclusion described in

this theorem.
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Based on the previous analyses, the normal MD retiming techniques [49][50][51]

[52][53] published in present research papers are not applicable to the MR-MDFGs.

Addressing this problem, we introduce the technique of MD intercalation which can

be done in three steps in the following descriptions.

Procedure 3.1: MD intercalation

Step 1. Partitioning the rate-balanced MR-MDFG into single-rate subgraphs:

Cut off all multirate-weighted edges from the MR-MDFG (i.e., those edges whose

multirate-weights are not unit matrices) to obtain subgraphs each of which is a single-

rate MDFG (as in Theorem 3.2).

Step 2. Creating the normalization matrix: Suppose that the original MR-MDFG

has been partitioned into K subgraphs: G1, G2, · · · , GK in Step 1, and the rates of

these subgraphs are represented by matrices R1, R2, · · · , RK. Assume ri,1, ri,2, · · · , ri,n

are the diagonal elements of the matrix Ri (1 ≤ i ≤ K). Create a special diago-

nal matrix R0 called normalization matrix whose diagonal elements r0,1, r0,2, · · · , r0,n

are evaluated in the following way: r0,j is equal to the least common multiple of

r1,j, r2,j, · · · , rK,j (1 ≤ j ≤ n).

Step 3. MD expansion and intercalation in the iteration space: Consider any

a cell indexed by an n-component vector t in iteration space, and a subgraph Gi

(1 ≤ i ≤ K) which is partitioned from the original MR-MDFG in the first step and

located in this cell. The operation of MD intercalation on this subgraph in this cell

is to move Gi (including all the nodes and edges within Gi) to a new position in

iteration space indexed by vector (R0/Ri) × t. Apply such operation of MD inter-

calation to all partitioned subgraphs (in the first step) in all cells in the iteration space.

We call Procedure 3.1 as “MD intercalation” because the MR-MDFG is parti-



56

tioned into single-rate subgraphs and these subgraphs are “intercalated” in iteration

space according to their rates.

Theorem 3.4: After the MD intercalation for rate-balanced MR-MDFG’s, the

lengths of the dependence vectors in the iteration space are independent of the DSP

algorithm’s input size.

Proof:

Assume an edge e: U → V with the offset-weight d(e) and the multirate-weight

M(e).

1) If its multirate-weight M(e) is a unit matrix, e is in a subgraph (assumed to be

Gi) partitioned in Step 1. The dependence vector in the iteration space corresponding

to e is from the cell including U (indexed by S) to the cell including V (indexed

by T). The length of the dependence vector before MD intercalation is |S − T | =

|d(e)|. Suppose that Gi’s rate is Ri. The instance of Gi in the cell at S is moved

to the position S’=(R0/Ri) × S. The instance of Gi at T is moved to the position

T’=(R0/Ri)×T according to Step 3 in the procedure of MD intercalation. The length

of the dependence vector is |S ′−T ′| = |(R0/Ri)×S−(R0/Ri)×T | = |(R0/Ri)×d(e)|,

which is independent of the algorithm’s input size (the range of the iteration space).

2) If e’s multirate-weight M(e) is not a unit matrix, e must be between two sub-

graphs (assumed to be Gi and Gj) partitioned in Step 1. Suppose U is in Gi and

V is in Gj, Gi and Gj’s rates are Ri and Rj respectively. The dependence vector in

the iteration space corresponding to e is from the cell including U (indexed by S) to

the cell including V (indexed by T). The length of the dependence vector before MD

intercalation is |S−T | = |S−M(e)S +d(e)|. After MD intercalation, the instance of

Gi (including U) in cell S is moved to the position S’=(R0/Ri)× S, and the instance

of Gj (including V) in cell T is moved to the position T’=(R0/Rj) × T . Thus the

length of the dependence vector after MD intercalation is |S ′−T ′| = |(R0/Rj)×d(e)|,
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which is independent of the algorithm’s input size, or the range of the iteration space.

By Theorem 3.4 we clarify one of the benefits of the MD intercalation which

is to make the dependence vectors in the iteration space constant values that are

independent of either the DSP algorithm’s input size or the positions of the depen-

dence vectors. The lengths of dependence vectors correspond to the distances of data

dependencies in the iteration space, and thus correspond to the storage requirement

in hardware mapping. Other benefits of MD intercalation, such as the availability

of the systematic designs for multirate MD DSP algorithms where MD retiming, full

parallelism and arbitrary input format are allowed, will be addressed in the following

section. In a schematic view of the iteration space, the effect of the MD intercalation

is just to relocate the multirate subgraphs partitioned from the MR-MDFG in each

cell, so that the dependence vectors are uniformly distributed in the iteration space.

In this way, we can apply the retiming techniques to the iteration space with quite

simple equations and unified formulations for both single-rate edges and multirate

edges, as proposed in the following section.

D. Retiming Formulations for MR-MDFG’s

The first subsection of this section derives unified retiming equations for MR-MDFG’s

based on an intercalated iteration space. The second subsection summarizes math-

ematical functions describing arbitrary linear processing order of an MD data set,

which can be taken as an extension of the analysis of 2-D case in [32]. Based on these

two subsections, the final retiming formulations are proposed in Subsection D.3 in

this chapter.
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1. Retiming Equations for Intercalated Iteration Space

In the proof of Lemma 3.3 and Theorem 3.4 we have calculated the lengths of the

dependence vectors in the iteration space of an MR-MDFG before and after the MD

intercalation. In this subsection we continue the calculations in iteration space and

give unified retiming equations on the MR-MDFG. These unified retiming equations

on the MR-MDFG directly lead to the derivation of the unified methodology for a

complete formulation of retiming on both single-rate and multirate DSP dataflow

graphs in Subsection D.3 in this chapter.

In this subsection, we also demonstrate the significance of MD intercalation in

unifying the retiming for multirate edges and single-rate edges in the MR-MDFG.

As introduced in Section A of this chapter, in literature the MD retiming operation

has been defined as the redistribution or movement of computation nodes in the n-

D iteration space [32]. Since all single-rate subgraphs of the MR-MDFG have been

moved according to rates of these subgraphs as specified in the steps of Procedure

3.1 after the MD intercalation, the retiming operation needs to be reinterpreted as

the movement of computation nodes on the grids of the n-D iteration space, where

the grids are the sets of uniformly-distributed points (i.e. iteration cells) in the

intercalated iteration space for various subgraphs of the MR-MDFG.

Assume an edge e: U → V with offset-weight d(e) and multirate-weight M(e)

in a rate-balanced MR-MDFG. Suppose in the first step of the MD intercalation the

MR-MDFG is partitioned, and nodes U and V are in the subgraphs Gi and Gj re-

spectively, with Ri as the rate of Gi, and Rj as the rate of Gj. R0 is the normalization

matrix. Assume that the retiming operations on nodes U and V are represented by

n-component retiming vectors r(U) and r(V). The retiming equations give the de-

pendence relations between instances of U and V in iteration space after retiming
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operation. Now we decide the dependence vector in iteration space corresponding to

edge e before and after the MD intercalation.

1) If M(e) is a unit matrix, or e is a single-rate edge, Gi is the same as Gj and

Ri = Rj. A) Before MD intercalation: retiming vector r(U) (or r(V)) is defined

as the difference vector between the original position and the retimed position of

node U (or V) in the iteration space in terms of Cartesian coordinates. Similar to

[32][39][40][41], the dependence vector before retiming is d(e), and the dependence

vector after retiming is dr(e)=d(e)+r(U)-r(V). B) After MD intercalation: nodes U

and V in any cell in the iteration space are moved according to Ri, thus U and V

are only possibly located in the grid whose positions are indexed by (R0/Ri) × X

ranged in the iteration space, where X is any n-component vector whose elements are

integers. We redefine the retiming vector r(U) (or r(V)) after MD intercalation as the

moving distance within the grid of node U (or V). As in the proof of Theorem 3.4, the

dependence vector in the iteration space after MD intercalation yet before retiming is

(R0/Ri)× d(e). Furthermore, the dependence vector in the iteration space after MD

intercalation and after retiming is (R0/Ri)× dr(e) = (R0/Rj)× (d(e)+ r(U)− r(V )).

2) If M(e) is not a unit matrix, in other words, if e is not a single-rate edge, Gi

is different from Gj and Ri is not equal to Rj. A) Before MD intercalation: retiming

vector r(U) (or r(V)) is defined as the difference vector between the original position

and the retimed position of node U (or V) in the iteration space in terms of Cartesian

coordinates. Suppose in a cell indexed by S in the iteration space is found a copy of

the MR-MDFG in which a node U is located. The dependence vector in the iteration

space starting from this node U is d(e) + S −M(e)S. The dependence vector after

retiming (yet before MD intercalation) is (d(e) + S −M(e)S) + M(e)r(U) − r(V ),

based on Eq. (3.2), Eq. (3.3) and the restriction that the dependence relationships

should not be changed after retiming. B) After MD intercalation: as in the above
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paragraph, U (or V) is only possibly located in the grid whose positions are indexed

by (R0/Ri) × X ranged in the iteration space, where X is any n-component vector

whose elements are integers. We also redefine the retiming vector r(U) (or r(V))

after MD intercalation as the moving distance within the grid for node U (or V). The

dependence vector in the iteration space after MD intercalation yet before retiming

is (R0/Rj) × d(e) according to Theorem 3.4. Considering the dependence vector in

the iteration space after retiming yet without MD intercalation, and the different

moving distances of r(U) and r(V) because of MD intercalation, we have that the

dependence vector in the iteration space after MD intercalation and after retiming is

(R0/Rj)× (d(e) + r(U)− r(V )), with the same equation as for single-rate edge.

Based on the above analysis, by MD intercalation, we have unified MD retiming

equations for single-rate edges and for multirate edges in the MR-MDFG. Moreover,

the lengths of dependence vectors after MD intercalation and retiming are indepen-

dent of the data positions in iteration space. The retiming equations for MR-MDFG

after MD intercalation have similar format as traditional retiming equations for single-

rate MDFG. These unified retiming equations become the basis for the complete

retiming formulation in Subsection D.3 in this chapter.

2. Serial Processing Order on MD Data Set

There are two basic types of parallelism available in MD multirate DSP algorithms.

One type of parallelism is inter-iteration parallelism where a parallel execution order

of data set is needed to speed up the executions of the MD DSP algorithms. Another

type of parallelism is inter-operation (or intra-iteration) parallelism, which involves

retiming the MDFG so that operations of the computation nodes can be executed in

parallel, resulting in a shorter clock period. In this chapter we consider retiming and

assume an MD data set being processed with a serial linear processing order (e.g.
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row-wise or column-wise).

The arbitrary linear processing order of an MD data set introduced here can be

taken as a straightforward extension of the analysis for the 2-D case in [32].

Suppose the system is n-dimensional. A group of n n-dimensional unitary or-

thogonal vectors {S1, S2, · · · , Sn} is used to describe the processing order. Let (A,

B) be the inner product of any two vectors A and B. Assume any two data sam-

ples indexed by n-component vectors X and Y respectively in the MD data set. The

processing order of X and Y is decided as the following. 1) If (X, S1) 6= (Y, S1), the

sample corresponding to the smaller one of the two inner products will be processed

earlier. 2) Else if (X, S2) 6= (Y, S2), the sample corresponding to the smaller one of the

two inner products will be processed earlier. 3)· · ·. n) Else if (X, Sn) 6= (Y, Sn), the

sample corresponding to the smaller one of the two inner products will be processed

earlier.

Let H1 be the maximum number of samples from the MD data set on a hyper-

plane indicated by equation (X, S1) = C1, where X is the n-component vector to index

the sample, and C1 is any constant value. Let H2 be the maximum number of sam-

ples on a hyperplane indicated by equations (X, S1) = C1 as well as (X, S2) = C2,

where C1 and C2 are any constant values. Let H3 be · · ·. · · ·. Let Hn−1 be the

maximum number of samples on a hyperplane indicated by equations (X, S1) = C1,

(X, S2) = C2, · · ·, and (X, Sn−1) = Cn−1, where C1, C2, · · ·, and Cn−1 are any constant

values.

Definition 3.7: The Eigen-function F (X) of a linear processing order on an MD

data set represented by {S1, S2, · · · , Sn} is F (X) =
∑n−1

i=1 Hi× (X, Si), where X is any

n-component vector.
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3. The Complete Retiming Formulation

Many researches on MD retiming for single-rate MDFG’s have been conducted. Most

details within this subsection come from similar derivations in earlier researches about

MD retiming for single-rate MDFG’s ([32][39][40][41]). Our contribution is to unify

the MD retiming formulations for single-rate MDFG’s and for MR-MDFG’s according

to the contents in previous parts of this chapter.

Let Rv be the storage cost for a computation node v in the MR-MDFG in hard-

ware mapping. Rv is the minimum storage necessary to store the data outgoing from

node v and later consumed by other computation nodes in the MR-MDFG. Define

W(u,v) as min {F (d(px))} where the minimum is taken over {px|px is any path from

node u to node v}. Let t(u) be the time for the computation node u to perform a

calculation. Define t(p) as
∑i=K

i=0 t(vi) where path p consists of nodes {vi|i ∈ [1, K]}.

Define t(u, v) as Max{t(p)} where the maximum is taken over {p | p is any path from

u to v such that F(d(p))=W(u,v)}.

Theorem 3.5: The complete formulation of retiming for MD intercalated iter-

ation space should be under the following constraints: 1) cost constraint: Ru =

Max(F (d(e)+r(u)−r(v)) for any edge e: u→ v outgoing from u in the MR-MDFG;

2) causality constraint: F (r(v) − r(u)) ≤ F (d(e)) for any edge u → v in the MR-

MDFG; 3) clock period constraint: F (r(v)− r(u)) ≤ W (u, v)− 1 for all nodes u and

v in the MR-MDFG such that t(u, v) > c, where c is the requirement of the system’s

minimum clock period.

Proof:

In the case of single-rate MR-MDFG, the MD intercalation will not lead to the

partition of the MR-MDFG because the multirate-weight of any edge in the MR-

MDFG is a unit matrix. Then the proof of this theorem is simply an extension from
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the 2-D case [32] to n-D case. The proof follows the similar proof for 2-D case. Note

that we use unitary vectors in n-D space to designate the processing order.

In the case that not all edges in the MR-MDFG have unit matrices as the

multirate-weights, the retiming vector r(u) has been redefined as the moving dis-

tance vector within the grid by intercalation (instead of within iteration space), but

the retiming equations for an MR-MDFG are the same as the normal retiming equa-

tions for a single-rate MR-MDFG according to the analyses in Subsection D.1 in this

chapter. Based on the unified MD retiming equations for the single-rate edges and

the multirate edges in the MR-MDFG, and considering that the three constraints

for the case of single-rate MR-MDFG had been derived only from the same retiming

equations in [32], we can conclude the same three constraints of the retiming formu-

lations for the MR-MDFG, followed by the reasoning similar to the proof in [32].

When the requirement of the system’s minimum clock period is set to 1, the

clock period constraint can be represented by the constraint that any edge in the

MR-MDFG should have non-zero valued offset-weight after retiming.

The complete formulation of the MD retiming for a multirate MD DSP algorithm

represented by an MR-MDFG, which are preprocessed by the MD intercalation, is

described as: to find retiming vectors for the computation nodes in the MR-MDFG so

as to minimize COST=
∑

v∈V Rv under the cost constraint, causality constraint and

clock period constraint, where V is the set of all nodes in the MR-MDFG.

This formulation of the MD retiming for multirate MD DSP algorithms is the

same as that of the traditional retiming for single-rate algorithms. There are many

practical procedures that have been derived from this traditional formulation, some

of which can be found in [32][34][38][39][40][41]. With the space limit, we do not

present a detailed discussion of systematic procedures to locate the retiming vec-
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tors for the computation nodes under constraints of minimum cost. Since we have

proposed a unified formulation of retiming technology, the systematic procedures for

determining retiming vectors in multirate systems according to the formulation are to

be established in the same way as those reports in previous literature for single-rate

systems.
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CHAPTER IV

EXPLOITING INTER-ITERATION PARALLELISM IN MULTIDIMENSIONAL

MULTIRATE ALGORITHMS

A. Basic Properties

In this chapter, we continue to use those symbols and terms which have been defined

and used in Chapter III. Before going to further analysis, we present some basic

concepts and properties to be used later.

Property 4.1: Suppose M(e1),M(e2), · · · ,M(es) are the multirate-weights for all

edges on a cycle in a rate-balanced MR-MDFG. To avoid the rate of data flow in the

system being infinite or zero, and so as for the system to be meaningful, we have that

∏s
i=1 M(ei) = 1. This is consistent with the claim that for any edge e : u → v, we

have R(e) = Z(p) in a rate-balanced MR-MDFG, where p is any path from one of

the sources of the MDFG to node v and going through edge e.

Property 4.2: Suppose that (U1, U2, · · · , Us), and e1, e2, · · · , es are successively

s nodes and edges on any a path in a rate-balanced MR-MDFG, and yi (or xi) is

the input (or output) of node Ui for 1 ≤ i ≤ s on the path. Thus we have that

y2(M(e1)t0 + d(e1)) = x1(t0). y3(M(e2)M(e1)t0 + M(e2)d(e1) + d(e2)) is dependent

on x1(t0), y4 · · ·, where t0 is the index of x1 and integral such that the indices of yi are

also integral. If appropriate integral values of components of t0 can always be chosen

periodically solely determined by M(ei), 1 ≤ i ≤ s, which is the original meaning of a

“multirate system”, we have that d(el)×
∏k

j=l+1 M(ej) (for 1 ≤ l ≤ s−1; l+1 ≤ k ≤ s)

should be integral.

Property 4.3: Suppose that (U1, U2, · · · , Us), and e1, e2, · · · , es are successively s

nodes and edges on a path L in an MR-MDFG. d(L) should be integral.
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Property 4.4: Suppose that a and b are co-prime integers. Suppose that c and d

are co-prime integers. Then GCD(a/b, c/d) = GCD(a, c)/LCM(b, d).

Property 4.5: For integers a, b and c, (a%b + c)%b = (a + c)%b. When a is a

fractional number, and b, c, ab, ac are integers, the second equations also holds. The

property also holds for integral vectors a, b, and c.

Property 4.6: If and only if an MR-MDFG is rate-balanced, for any edge in the

MR-MDFG, e.g., e : u → v, we have R(e) = Z(p), where p is any path from one of

the sources in the MDFG to node v and going through edge e.

Definition 4.1: The rate of a node U in a rate-balanced MR-MDFG, R(U), is

equal to the rates of the input edges of node U if U is not a source of MR-MDFG;

otherwise R(U) = 1. Note that this is well-defined because the rates of input edges

(if any) for any node are equal in a rate-balanced MR-MDFG.

Definition 4.2: When we partition a rate-balanced MR-MDFG by cutting off all

multirate edges to get subgraphs containing nodes and single-rate edges only, each of

such subgraphs is called a unit subgraph.

Definition 4.3: The rate of a unit subgraph X in a rate-balanced MR-MDFG,

R(X), is equal to the rate of any node in X. Note that this is well-defined because

all nodes in X are connected by single-rate edges so that the rates of their input edges

are equal and then the rates of these nodes are equal.

Property 4.7: For any edge e : U → V in a rate-balanced MR-MDFG, we always

have R(V ) = R(U)×M(e).

Definition 4.4: The dependence vectors between the cells in the iteration space are

the vectors corresponding to the dependence relations of operations among different

cells (or iterations) in iteration space.
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B. Multidimensional Multirate Unfolding

This section studies systematic multidimensional unfolding on the MR-MDFG and

properties of unfolded MR-MDFG. References [54][55] have given presentations on

systematic unfolding transforms on 1-D algorithms, where successively executed it-

erations are represented by an unfolded 1-D DFG. However, the extension of 1-D

unfolding to n-D unfolding is not trivial especially when considering the newly gen-

erated delay-weights in the unfolded MDFG and when the original MDFG is cyclic.

1. Construction of Unfolded MDFG

The 1-D unfolding transform exploits the inter-iteration precedence constraints in

addition to the intra-iteration precedence constraints, and can lead to the overlapped

schedules (i.e., the tasks of an iteration are scheduled to be executed before all the

tasks of previous iterations have been executed). Now we present the general proce-

dure of unfolding transform on an MDFG which corresponds to an n-D algorithm.

Suppose that f is the unfolding factor (an n-component vector, with positive integers

f1, f2, · · · , fn as components).

A simple illustration of an unfolding transform of a 2-D MDFG, G, which contains

only two nodes A and B and an edge e with delay-weight d(e) = (1, 1) is given in

Fig. 14, where f = (2, 3).

Procedure 4.1: Multidimensional unfolding on MDFG

Input: G, a general MDFG; Output: G’, the unfolded G by unfolding factor f .

Step 1: Suppose a node in G is U . Draw |f | nodes in G’ which are corresponding

to U and are taken as instances of U , and label any one of these |f | nodes by Ut,

where t is one of |f | integral n-component vectors that satisfy 0 ≤ t ≤ (f −1). Apply

such operations to all nodes in G.
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A(0,0)

B(0,0)

A(0,1)

B(0,1)

B(0,2)

A(1,0)

A(1,1)

B(1,1)

B(1,2)

A(0,2)
A(1,2)

B(1,0)

d(e)=(1,1)

A B

Fig. 14. A simple example of multidimensional unfolding transform on a 2-D MDFG

Step 2: Suppose an edge in G is e : U → V , whose delay-weight is d(e). Corre-

sponding to e, draw |f | edges in G’ such that: there is an edge from Ut to Vs in G’,

where t is any one of |f | integral n-component vectors that satisfy 0 ≤ t ≤ (f − 1);

s is equal to (t + d(e))%f ; and the delay-weight of the new edge et : Ut → Vs in G’,

d(et), is equal to b(t + d(e))/fc. Apply such operations to all edges in G.

In the example of Fig. 14, we copy 2× 3 instances of each node from G into G’,

and label the instances by t which is any one of |f | integral 2-component vectors that

satisfy 0 ≤ t ≤ (f − 1), where f = (2, 3). The example is a specific application of

Procedure 4.1. Another more complicate case of 2-D unfolding transform on an 2-D

MDFG is shown in Fig. 15.

Theorem 4.1: The procedure of multidimensional unfolding on MDFG described

in Procedure 4.1 preserves all dependence relations existing in the n-D iteration space

(Φ).
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A(0,2) B(0,2)

D(0,2)

C(0,0)

A(0,1) B(0,1) A(1,1) B(1,1)

D(1,1)

A(1,2) B(1,2)

D(1,2)

(1, 1)
(0, 1)

(1, 0)

(1, 0)

BA C

D
(0, 3)

(1, 1)

D(0,0) D(1,0)

D(0,1)

A(1,0) B(1,0)A(0,0) B(0,0)

C(0,2)

C(0,1)

C(1,2)

C(1,1)

(0, 1)

C(1,0)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

Fig. 15. Another example of multidimensional unfolding on a 2-D MDFG

Proof:

Suppose that the original MDFG is G. The task of this proof is to demonstrate

that all dependence vectors between cells in Φ (in which each cell is an instance

of G, excluding non-zero delay-weighted edges) are preserved, and all dependence

relations within a cell in Φ (specified by edges in G whose delay-weights are 0) are

also maintained after unfolding transform. After Procedure 4.1, we obtain G’ with

unfolding factor f . A new n-D iteration space Φ’ is constructed based on G’. Now we

show that all dependencies (including those among cells and within each cell) existing

in Φ and Φ’ have one-to-one corresponding relationship.

Suppose that ξ represents any one of dependencies in Φ: Ux 7−→ Vy, where Ux

is an instance of node U (a node of G) located in the cell indexed by x in Φ, and Vy



70

is an instance of node V (a node of G) located in the cell indexed by y in Φ. ξ is

specified by edge e : U → V in G. If d(e) = 0, we have x = y and ξ represents a

dependence within cell x in Φ, otherwise ξ represents a dependence between different

cells x and y in Φ, where y = x + d(e).

Now we are to prove that we can always find a unique dependence ξ’ from Φ’ that

corresponds to ξ. First, we present a one-to-one corresponding relationship between

nodes in cells of Φ and those in cells of Φ’. Corresponding to any node W (a node

of G) in the cell indexed by z in Φ, we find a unique node Wt (a node of G’) in

the cell indexed by r in Φ’, where t = z%f and r = bz/fc. Vice versa, we can

always find a unique node in Φ given any node in Φ’. Thus, we can find a unique

node in Φ’ corresponding to Ux in Φ: Ut (a node of G’) in the cell indexed by p in

Φ’, where t = x%f and p = bx/fc. We label this node as Ut,p. In Φ’, there is a

dependence: Ut,p 7−→ Vs,q (where Vs,q is an instance of node Vs from G’ located in the

cell indexed by q), which is specified by an edge of G’, et : Ut → Vs, with s equal to

(t+d(e))%f , and d(et) equal to b(t+d(e))/fc (per Step 2 of Procedure 4.1). Moreover,

q = p+d(et). In accordance with the one-to-one corresponding relationship between

nodes in cells of Φ and those nodes in cells of Φ’ which we specify at the beginning

of this paragraph, Vs,q in Φ’ corresponds to Vy′ in Φ, where y′ = qf + s. Replacing

q and s by their values as derived above, we have y=y. In other words, Vs,q in Φ’

uniquely corresponds to Vy in Φ, or, the dependence: Ut,p 7−→ Vs,q is ξ’ that we are

looking for in Φ’ corresponding to ξ in Φ.

In a similar way, we can demonstrate that a dependence ξ can always be found

from Φ given any ξ’ in Φ’. Thus, we conclude that all dependence relations existing

in Φ are preserved in Φ’ after Procedure 4.1.
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2. Properties of Multidimensional Unfolding

As introduced in the next section, the cycles in the original MDFG play a key role in

affecting the inter-iteration parallelism within the multidimensional DSP algorithms,

so we pay special attention to the cycles in the unfolded MDFG when studying the

transform of multidimensional unfolding. Fig. 16 gives an example of 2-D unfolding

where some distinct cycles are generated in the unfolded MDFG.

A B C
(2, 1) (1, 2)

(1, 1)

B(0,0) C(0,0)

A(0,1) B(0,1) C(0,1)
(0, 1)

A(1,0) B(1,0) C(1,0)

C(1,1)B(1,1)A(1,1)

A(0,0)

(1, 0) (1, 1)(1, 1)(1, 0)

(1, 1)

(0, 1)
(1, 0)

(1, 1)

(0, 1)

(1, 1)

Fig. 16. A multidimensional unfolding on a cyclic 2-D MDFG

Property 4.8: Corresponding to each cycle (if any) in the original MDFG, there

are |f |/Q distinct cycles in the unfolded MDFG after the unfolding transform as

described in Procedure 4.1. f is the unfolding factor. Q is evaluated in the following

way. Suppose d(L) is the sum of the delay-weights along all edges in cycle L in the

original MDFG. d1, d2, · · · , dn are components of d(L). Suppose f1x1 = d1y1, f2x2 =

d2y2, · · · , fnxn = dnyn, where xi and yi are co-prime integers for 1 ≤ i ≤ n. Then
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Q = LCM(y1, y2, · · · , yn).

Property 4.9: Corresponding to each edge e : U → V with the delay-weight

d(e) in the original MDFG, the total delay-weights of the instances of edge e in the

unfolded MDFG is |f | × d(e)/f .

Property 4.10: Corresponding to each cycle L in the original MDFG, the sum

of delay-weights of all edges in each distinct cycle ∆ (corresponding to L) in the

unfolded MDFG is equal to Q × d(L)/f , where d(L) is the sum of delay-weights of

all edges in L, and Q and f were previously defined.

3. Translating MR-MDFG into Single-rate MDFG

The procedure of multidimensional intercalation, Procedure 3.1, relocates the cells of

unit subgraphs of an MR-MDFG in iteration space. K is the number of unit subgraphs

in the MR-MDFG. Consider a unit subgraph in an MR-MDFG, Gi (1 ≤ i ≤ K),

whose rate is assumed to be Ri. From every cell of iteration space (e.g., a cell

indexed by t), Gi is moved to another cell in iteration space (e.g., a cell indexed

by ((RC)/Ri) × t) in Procedure 3.1. Thus after Procedure 3.1, there is only one

cell containing Gi every other RC/Ri lattice points in iteration space. Let RT be

LCM(1/R1, 1/R2, · · · , 1/RK). Furthermore, if we combine the cells in every |RCRT |

adjacent lattice points in iteration space into a group, we can get a combined data-

flow graph (including copies of Gi at these cells, 1 ≤ i ≤ K) represented by such a

group. So we get a reduced iteration space where each lattice point is such a group.

In each of such group, there are (RCRT )/(RC/Ri) or RiRT copies of Gi. Each group

in the reduced iteration space contains the same combined data-flow graph, and the

dependencies between groups are represented by constant vectors instead of variable

vectors. Thus the reduced iteration space can actually be constructed based on a

single-rate MDFG (i.e. all of its edges are single-rate edges with their multirate-
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weights equal to 1) which is the combined data-flow graph corresponding to each

group. The translation of an MR-MDFG into a single-rate MDFG is formulated

in Procedure 4.2, which can be taken as a procedure combining Procedure 3.1 and

Procedure 4.1.

Procedure 4.2: Multidimensional unfolding on the multidimensionally interca-

lated MR-MDFG

Input: An MR-MDFG; Output: A single-rate MDFG.

Step 1: Cut off all multirate edges from the original MR-MDFG to partition it

into K unit subgraphs: G1, G2, · · · , GK, and the rates of these unit subgraphs are

R1,R2, · · · ,RK. Assume RC as evaluated in Step 2 of Procedure 3.1.

Step 2: Let RT be LCM(1/R1, 1/R2, · · · , 1/RK). Take RiRT as the multidi-

mensional unfolding factor, apply Procedure 4.1 onto Gi (1 ≤ i ≤ K) respectively.

Suppose that Gi is unfolded to Hi (1 ≤ i ≤ K).

Step 3: Now we draw edges to connect H1, H2, · · · , HK. Consider each multirate

edge connecting two unit subgraphs in the original MR-MDFG, e.g., e : U → V ,

where U ∈ Gi, V ∈ Gj, i 6= j, 1 ≤ i, j ≤ K. Suppose the delay-weight and the

multirate-weight of e are d(e) and M(e) respectively. Let W = MIN(Ri,Rj) and

f = W×RT . In Hi, find the following |f | instances of U: Ut, where t = (Ri/W)×A

and A is any one of |f | integral vectors that satisfy 0 ≤ A ≤ f−1. Starting from each

Ut, draw edge et : Ut → V[t×M(e)+d(e)]%(Rj×RT ), where V[t×M(e)+d(e)]%(Rj×RT ) belongs

to Hj, and the delay-weight of et, d(et) = b(t×M(e) + d(e))/(Rj ×RT )c.

In Step 2, Gi is unfolded to Hi with unfolding factor RiRT and Gj is unfolded to

Hj with unfolding factor RjRT (i 6= j, 1 ≤ i, j ≤ K). As assumed in the description

of Step 3, Gi contains node U , Gj contains node V , and there is a multirate edge

e : U → V in the original MR-MDFG. Ri × M(e) = Rj per Property 4.7 and
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Definition 4.3. There are |RiRT | instances of U in Hi and |RjRT | instances of V

in Hj because of unfolding transforms. Without losing generality, we may suppose

M(e) < 1, and thus there are more instances of U in Hi than those of V in Hj. We

can draw edges (corresponding to e) only from some (NOT all) instances of U to (all)

instances of V .

To explain the last sentence of Step 3, we employ one auxiliary node λ and two

auxiliary edges δ : U → λ and θ : λ → V to replace e in the original MR-MDFG.

d(δ) = 0,M(δ) = M(e),d(θ) = d(e), and M(θ) = 1. After Step 1, δ is cut off, and λ,

θ and V are located in Gj. After Step 2 of Procedure 4.2 (i.e. Procedure 4.1) is applied

onto Gj with RjRT as the unfolding factor, we have the unfolded MDFG, Hj, in which

there are |RjRT | instances of λ, θ and V . Following Step 2 of Procedure 4.1, for each

λs in Hj where s is any integral vector that satisfy 0 ≤ s ≤ RjRT−1, we draw an edge

θs : λs → V[s+d(e)]%(RjRT ), with d(θs) = b(s+d(e))/(RjRT )c. Now we connect Hi and

Hj by drawing edges corresponding to δ starting from each Ut in Hi (the evaluation

of t is the same as in Step 3 of Procedure 4.2). Recalling that δ is an edge with

delay-weight as zero and multirate-weight as M(e), and reviewing the input/output

relation corresponding to a multirate-weighted edge, we draw δt : Ut → λt×M(e).

Combining δt and θs, and replacing s by t×M(e), we have the expressions in Step

3 of Procedure 4.2.

Including H1, H2, · · · , HK and the edges connecting them generated in Step 3 as

above, we obtain a larger MDFG, which performs the same function as the original

MR-MDFG as claimed in the following Theorem 4.2.

Theorem 4.2 The multidimensional unfolding on the multidimensionally interca-

lated MR-MDFG as formulated in Procedure 4.2 preserves the dependence relation-

ships inherent in the algorithm represented by the original MR-MDFG.

Proof:



75

In this proof we use the same symbols as before. The Multidimensional unfolding

on the subgraphs Gi (1 ≤ i ≤ K) does not change the dependence relationships rep-

resented by the edges within the subgraphs per Theorem 4.1. The multidimensional

intercalation on the MR-MDFG does not change the dependence relations between

the cells ( in iteration space) corresponding to the subgraphs of the MR-MDFG as

designated in Step 3 in Procedure 3.1. Now we show that the edges connecting the

unfolded subgraphs (Hi, 1 ≤ i ≤ K) drawn in Step 3 of Procedure 4.2 are strictly

corresponding to the dependence relations inherent in the algorithm represented by

the original MR-MDFG. Consider any multirate edge in the MR-MDFG e : U → V ,

where U ∈ Gi, V ∈ Gj, i 6= j, 1 ≤ i, j ≤ K. In the unfolded MDFG that combines

all cells at |RCRT | adjacent lattice points in iteration space (after multidimensional

intercalation), there are |RiRT | copies of subgraph Gi and |RjRT | copies of subgraph

Gj respectively. In the unfolded Hi (or Hj), there are |RiRT | (or |RjRT |) instances

of U (or V). It is obvious that not all instances of U are connected to all instances of

V because Rj = Ri×M(e) 6= Ri per Property 4.7. For every instance of U , there are

|M(e)| instances of V. Noticing this, and transferring Vt in terms of Vt×M(e), we could

drag e (with V ) into Gi when unfolding it to Hi. Note that there are |WRT | instances

of e when unfolding Gi and Gj to Hi and Hj. According to Step 3 of Procedure 4.1,

we could get the target instance of V when connecting Ut via e, and the delay-weight

of e after unfolding. The only difference from Procedure 4.1 is that we need to replace

t by t ×M(e) when V in Hj is involved and recall the unfolding factor for V as

RiRT . Thus, Step 3 of Procedure 4.2 is just an application of Step 3 of Procedure

4.1 onto the result of multidimensional intercalation for those multirate edges in the

MR-MDFG. So the dependence relations inherent in the algorithm represented by

the original MR-MDFG are preserved in Procedure 4.2.
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Property 4.11: Suppose L is a cycle in the original MR-MDFG containing s

edges: e1, e2, · · · , es and s nodes: U1, U2, · · · , Us consecutively. R1,R2, · · · ,Rs are

the rates of these nodes respectively. e1 is the edge from U1 to U2. The delay

of L, d(L), is defined as
∑s

i=1[(
∏s

j=i+1 M(ej))d(ei)] based on Definition 3.5. The

unfolding factor for U1, f , is defined as R1RT , with the same RT as in Procedure 4.2.

d1, d2, · · · , dn are n components of d(L). f1, f2, · · · , fn are n components of f . Suppose

f1x1 = d1y1, f2x2 = d2y2, · · · , fnxn = dnyn where xi and yi are co-prime integers for

1 ≤ i ≤ n, and Q = LCM(y1, y2, · · · , yn). The following always holds: each distinct

cycle corresponding to L in the translated single-rate MDFG (which is generated in

Procedure 4.2) contains Q instances of nodes U1, U2, · · · , Us.

Property 4.12: When another node on cycle L is arbitrarily selected and re-

labeled as U1 in Property 4.11 and the rest nodes on cycle L are re-labeled as

U2, U3, · · · , Us successively (as before, s is the number of nodes on cycle L), we accord-

ingly re-label the edges on L as e1, e2, · · · , es successively, with e1 being the edge from

U1 to U2. The values of dL and f which are defined in the description of Property

4.11 change in accordance, but Q’s value remains the same.

Property 4.13: Corresponding to cycle L in the original MR-MDFG, there are

|GCD(R1RT , R2RT , · · · ,RsRT )|/Q distinct cycles in the translated single-rate MDFG

which is generated by Procedure 4.2. The symbols are used in the same way as before.

Property 4.14: Corresponding to each edge e : U → V in the original MR-

MDFG, G, the summed delay-weights of all instances of edge e in the translated

single-rate MDFG, G′, is D, where D = |F|W/F, F = MIN(RURT ,RV RT ), RU

and RV are the rates of U and V respectively, RT is the same as before, W =

MIN(d(e), bd(e)/M(e)c), and d(e) and M(e) are e’s delay-weight and multirate-

weight respectively.

Property 4.15: Corresponding to cycle L : U1 → U2 → · · · → Us → U1 in the
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original MR-MDFG, a cycle ∆ : U1,t1 → · · · → U1,t1 is in the translated single-

rate MDFG, where t1 is any one of |R1RT | integral vectors that satisfy 0 ≤ t1 ≤

R1RT − 1. R1,R2, · · · ,Rs are the rates of nodes on L: U1, U2, · · · , Us respectively.

d(∆) is the summed delay-weights of all edges along ∆. The following always holds:

d(∆) = Qd(L)/f , where the delay of L, d(L), is defined based on Definition 3.5, and

f = R1R(T ). Other symbols are the same as before.

Property 4.16: When another node on cycle L is arbitrarily selected and re-

labeled as U1 in Property 4.15, and its following nodes are re-labeled as U2, U3, · · · , Us

consecutively, the values of dL and f change in accordance, but d(∆)’s value remains

the same.

Property 4.17: After Procedure 4.2, each cell in the iteration space for the data-

flow graph represents |RCRT | adjacent cells which are located in the iteration space

before Procedure 4.2.

C. Exploring the Inter-Iteration Parallelism

The iteration period bound in any 1-D data-flow program with feedback loops is given

in [54] by

T0 = MAX[Tl/Dl]. (4.1)

The maximum is taken over all feedback loops l in the DFG, Tl is the sum of the

execution times associated with all the nodes in feedback loop l, and Dl is the sum

of the delay-weights of all nodes in feedback loop l.

Periodic schedules are said to be rate-optimal if the iteration period is the same

as the iteration bound. One can never achieve an iteration period less than this

bound even when infinite processors are available. Parhi [55] has demonstrated that

rate-optimal schedules can always be constructed for algorithms represented by a 1-
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Fig. 17. An acyclic 1-D DFG executed with arbitrary concurrency

D DFG based on the construction of a so-called perfect-rate DFG shown as in Fig.

17. However, when the analysis is extended to multidimensional cases, the formula

for the iteration bound is no longer applicable since the delay-weights in the data-

flow graph are vectors instead of scalars. Moreover, the perfect-rate DFG can be

constructed in[55] if and only if the delay-weight of an edge would not be changed

by the operation of 1-D unfolding, and thus such perfect-rate DFG can NEVER be

constructed in a multidimensional case based on Property 4.9 and Property 4.14 in

this chapter. To the best of our knowledge, there is no research reported on exploring

inter-iteration parallelism within the MDFG and especially within the MR-MDFG in

literature to this date, one of the difficulties for which lies in the complex dependence

relationships between cells in n-D iteration space.

Consider a multidimensional algorithm described by an acyclic MDFG in Fig.

18. Since all paths starting from the input nodes (sources) in the acyclic MDFG are



79

A C

P11:   A21   B12   C33   D33   A54   B45   C66   D66
P21:   A31   B22   C43   D43   A64   B55   C76   D76
P31:   A41   B32   C53   D53   A74   B65   C86   D86
P12:   A22   B13   C34   D34   A55   B46   C67   D67
P22:   A32   B23   C44   D44   A65   B56   C77   D77
P32:   A42   B33   C54   D54   A75   B66   C87   D87
P13:   A23   B14   C35   D35   A56   B47   C68   D68
P23:   A33   B24   C45   D45   A66   B57   C78   D78
P33:   A43   B34   C55   D55   A76   B67   C88   D88

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

D

B

(-1, -2)

(-2, -1)

Fig. 18. An acyclic 2-D MDFG executed with arbitrary concurrency

non-circular, we could assign a processor to each distinct path starting from sources

of the MDFG in each cell in the iteration space, and have all these processors execute

the tasks corresponding to the nodes along the paths at different cells concurrently.

Though there are dependencies between processors because of the delay-weights in

the MDFG, the task corresponding to the same node in the MDFG yet in different

cells can be executed simultaneously without schedule conflict if the communication

constraints among processors are neglected. Thus, considering that signal processing

data-flow programs are non-terminating in nature, or that the order of the input size

is more than that of the size of the data-flow graph, we can achieve arbitrarily shorter

iteration period on average for algorithms represented by the acyclic MDFG given

the availability of a large number of processors.

On the other hand, for an algorithm described by a cyclic MDFG in Fig. 19,

though we could assign a few processors to each cell in iteration space, the same node
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in the MDFG yet in some different cells CANNOT be executed simultaneously since

there are dependence relationships regarding this node between cells. A conclusion

can be drawn from Figs. 17, 18 and 19: in either a 1-D DSP algorithm or an n-

D DSP algorithm, whether an arbitrarily shorter iteration period can be achieved

is determined on whether there exists a node in the data-flow graph in a cell that

depends on itself but in different cells in iteration space. More exactly, there is

still a lower bound on the iteration period for algorithms represented by the cyclic

MDFG, although the formula for the definition of iteration bound is not applicable to

multidimensional cases because Dl is a vector instead of a scalar. In the remainder of

this chapter, we do not consider the nodes of the MDFG which do not belong to any

cycle, and those nodes can be scheduled using postprocessors with arbitrarily shorter

iteration bound.

P33:   A33   B33   C33

P11:   A11   B11   C11
P12:   A12   B12   C12
P13:   A13   B13   C13
P21:   A21   B21   C21
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P23:   A23   B23   C23  
P31:   A31   B31   C31
P32:   A32   B32   C32

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

A B C

(1, 1)

Fig. 19. A trial of parallel scheduling of a cyclic 2-D MDFG

To explore the iteration period bound in algorithms represented by the MDFG is

to explore the inter-iteration parallelism within them. Only when as many as possible

nodes located in all cells in iteration space are executed concurrently can the least
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iteration period be achieved.

Prior to the discussion of the inter-iteration parallelism within cyclic multidimen-

sional data-flow graphs, we introduce the concepts of free schedule and time-optimal

linear schedule. In simple terms, an algorithm is represented as an ordered subset

(index set) of a multidimensional iteration space. A free schedule assigns an operation

indexed by x in iteration space to execute as soon as its operands are ready (i.e., all

those operations finish execution on which the operation x depends). Free schedule

is also usually refered to as soon as possible scheduling in synthesis community. Free

schedules fully explore the parallelism of algorithms and the total execution achieved

by a free schedule is exactly the lower bound of the execution time[56]. A linear

schedule is a mapping from the multidimensional algorithm index set into a one-

dimensional time space; this mapping is expressed as a linear transformation that

involves the multiplication of a vector (linear schedule vector) by each lattice point

of the index set. The purpose of time-optimal linear scheduling is to show how a

linear schedule vector can be determined so that the algorithm can be executed in a

minimal amount of time[56] [57]. The difference between the total execution times

achieved by the free schedule and the optimal linear schedule is bounded by a con-

stant, and often this constant is zero; Linear schedules are easier to use to measure

the parallelism since the total execution time by a linear schedule is a closed func-

tion of linear schedule vector[57]. The problem of time-optimal linear schedule for

uniform dependence algorithms has been well-analyzed based on similar approaches

simple cycle shrinking, generalized selective shrinking and generalized truth depen-

dence shrinking([56][57]). Extending those approaches, we present cyclic MR-MDFG

shrinking and its optimal solution, based on which the algorithm for optimal schedul-

ing on cyclic MR-MDFG shrinking is proposed, and an upper bound of the number

of processors for exploiting parallelism within MDFG or MR-MDFG is also given.
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The cyclic MR-MDFG shrinking is an adaptation from the procedure of generalized

selective shrinking. The only difference in between is the problem modeling. Our

contribution is to reformulate the problem modeling of cyclic MDFG scheduling such

that the methodology and results in [56][57] can be employed in this chapter.

A pair (J,D) can be used to characterize the uniform dependence algorithm, where

J is the index set or iteration space. Each element(cell) in J is an n-tuple column

vector corresponding to one iteration. Matrix D is the dependence matrix, with m

columns, each of which is a dependence vector Di, i = 1, · · · , m. J is considered as

convex polyhedron index sets, which can be described by R = {x : Ax ≤ b, A ∈

Za×n, b ∈ Za, a ∈ N+}, and J ⊂ {j : j ∈ R and j ∈ Zn}.

A generalized selective shrinking[56] is a mapping Γπ : J → N such that Γπ(j) =

b(πj+c)/dispπc, j ∈ J , where the row vector π is called the schedule vector specifying

Γπ, dispπ = min{πDi : Di ∈ D} > 0, GCD(π1, · · · , πn) = 1 and c = min{πj : j ∈ J}.

For algorithm (J,D), the total execution time (with time-optimal linear schedule) by

the generalized selective shrinking is t = d(max{π(j1− j2) : j1, j2 ∈ J}+1)/(dispπ)e.

The derivation and an explanation for this equation can be found in [56]. Thus the

problem of finding the optimal generalized shrinking for minimum execution time can

be formulated as: find π to minimize f = (max{π(j1 − j2) : j1, j2 ∈ J})/(min{πDi :

Di ∈ D}) subject to (1) πD > 0 (2) GCD(π1, · · · , πn) = 1.

The cyclic MR-MDFG shrinking is an extension on the generalized selective

shrinking. Consider an MR-MDFG that is translated into a single-rate MDFG by

Procedure 4.2. Since non-circular paths can be executed with arbitrary inter-iteration

parallelism, only cycles in the MR-MDFG are considered. Suppose there are m cycles

C1, · · · , Cm in the MR-MDFG. For 1 ≤ i ≤ m, let Di be the summed delay-weights

of the edges on Ci, and Ti be the summed execution time of the nodes on Ci. The
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number of cycles in the translated MDFG is derived per Property 4.8 and Property

4.13. The total delay-weights of each distinct cycle in the translated MDFG can

be derived per Property 4.10, Property 4.15 and Property 4.16. J is the iteration

space for the algorithm represented by the original MR-MDFG, and the iteration

space for the translated MDFG would be J ′ = J/(RCRT ) based on Property 4.17.

In linear scheduling, and with the availability of parallel processors, the execution

time for Ci is ti = Ti × d(max{π(j1 − j2) : j1, j2 ∈ J ′} + 1)/(πDi)e, where π is the

schedule vector. In executing Ci the same as in [56], the computation indexed by

jA in iteration space J’ is executed only after the execution of computation indexed

by jB − Di, upon which jA depends. This follows the constraint Diπ > 0. Given

the availability of parallel processors, the parallel execution time for all cycles is

t = MAX{Ti × d(max{π(j1 − j2) : j1, j2 ∈ J ′} + 1)/(πDi)e}, where the maximum

is taken over all cycles in the MDFG translated from the original MR-MDFG. This

formula is called cyclic MR-MDFG shrinking.

The optimal solution to cyclic MR-MDFG shrinking is to find π so as to minimize

t or to minimize f = (max{π(j1− j2) : j1, j2 ∈ J ′})/(min{πDi/Ti : Di ∈ D}) subject

to (1) πD > 0 (for respecting the dependence constraints and for the cycles to be

computable) (2) GCD(π1, · · · , πn) = 1, where delay-matrix D is with m columns,

each of which is a vector Di (i = 1, · · · , m). Construct matrix D’ with m columns

each of which is (Di/Ti)× c, i = 1, · · · , m, where c is a minimum positive integer such

that elements in D’ are integers. In the formula of generalized selective shrinking,

replacing J and D by J’ and D’ respectively, we unite the ways in finding solutions for

optimal generalized selective shrinking and for optimal cyclic MR-MDFG shrinking.

Optimal solution of the linear schedule vector π, denoted as π0, can be found based

on the procedures in [56][57].

We define the Criticality of a cycle Ci in the MDFG as Ti/(π0Di). A schedule of
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a list of s nodes N1 → N2 → · · · → Ns is said to be contiguous if the nodes are sched-

uled without any intermediate gap or idle time. In this chapter, the communication

latency in multiprocessor implementation is neglected for focusing on the key topics.

Given vector π0, we define an ortho-plane as a hyperplane that is orthogonal to π0 in

iteration space. Moreover, we define F as the maximum number of lattice points on

any ortho-planes in the iteration space. Now we construct the scheduling algorithm

for executing the cycles in the MDFG in parallel according to the solution π0 for the

optimal cyclic MR-MDFG shrinking.

Algorithm 4.1: In n-D iteration space J’ along the orientation of π0, for 1 ≤ i ≤

m, consider Set Si including π0Di adjacent ortho-planes, with at most Ai = F ×π0Di

lattice points and with one iteration of cycle Ci in each lattice point. All
∑m

i=1 Ai

iterations of cycles in sets S1, · · · , Sm are then ordered, and scheduled according to

the decreasing order of the criticalities of cycles. For those iterations of cycles with

equal criticality, they are ordered among themselves at random. The nodes in each

iteration of cycles are also ordered to form a list so that the precedence constraints are

satisfied. A separate processor is assigned for scheduling of each iteration. The nodes

of the iteration with the greatest criticality are scheduled contiguously in processor

P1. Then, the nodes of the next iteration in the criticality list are scheduled in pro-

cessor P2 such that P1 and P2 compute in parallel and the schedules completed so far

are preserved. In other words, if some of the nodes of this iteration also belong to the

previously scheduled iteration (this might be true if the two iterations correspond two

intersecting cycles), then the schedule of these nodes should remain unaltered. This

process is repeated similarly in scheduling all other ordered iterations. In scheduling,

there may be necessary communications between processors or between a processor

and storage to exchange data or load/store data. Once scheduling of all iterations of
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Ci in Set Si (1 ≤ i ≤ m) is completed, substitute next π0Di adjacent ortho-planes

in the orientation of π0 for Si right away, and continuously repeat the scheduling of

iterations of Ci as above by using the same processors among P1, P2, · · · again. This

process is repeated until all iterations of all cycles in iteration space J’ are scheduled.

Property 4.18: All nodes in any cycle Ci (1 ≤ i ≤ m) scheduled by Algorithm

4.1 are computed contiguously, unless Ci has common nodes with another cycle Cj

(1 ≤ j ≤ m, j 6= i), and the criticality of Ci is less than that of Cj.

Property 4.19: Algorithm 4.1 respects all dependence constraints in the MDFG.

Property 4.20: Given π0, the constructed Algorithm 4.1 for scheduling the MDFG

achieves the least execution time designated in cyclic MDFG shrinking.

Property 4.21: The complexity in Algorithm 4.1 is mlog2(m) (m is the number

of cycles in the MDFG), for sorting the criticalities of cycles in the MDFG.

Property 4.22: When we explore the inter-iteration parallelism within the rate-

balanced multirate multidimensional digital signal processing algorithms represented

by the MR-MDFG: G=(V,E,T,D,M), via intercalation, unfolding and cyclic MR-

MDFG shrinking, the complexity is made up of three parts: part I is O(VE), to

find cycles in the MR-MDFG (using Bellman-Ford algorithm), and to calculate rate

Ri for each node Ui (as Step 1 and Step 2 of Procedure 3.1), Q, RC , RT , m and

delay-weights of edges after unfolding (as in Procedure 4.1 , Procedure 4.2 and their

properties); part II is to find optimal solution π0 to cyclic MDFG shrinking, and the

complexity analysis is the same as for generalized selective shrinking, which is found

in [56][57], mostly dependent on n (where n is the number of dimensions and small

in practical algorithms); part III is mlog2(m), to construct Algorithm 4.1, where m

is the number of cycles in the MR-MDFG.
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CHAPTER V

EXPERIMENTS AND DESIGN EXAMPLES

This Chapter presents our experimental results and design examples for architec-

tural designs in exploiting parallelism in multidimensional multirate DSP applica-

tions based on the theories and design methodologies presented in Chapter II, III and

IV. The theories and methodologies presented in previous chapters are applicable to

the general class of multidimensional multirate DSP algorithms which include many

practical applications in acoustic, image and video processing systems. Due to the

space limit in this dissertation, we provide three major representative results as the

applications of the theoretical work reported in the previous chapters.

A. Non-RAM-Based and Control-Distributed Deigns of Zerotree Construction Sys-

tems

As part of our study, various experimental results have been obtained regarding the

implementation of architectures proposed in Chapter II. We have achieved the gate-

level synthesis of the architecture with Cadence Verilog HDL simulation package.

The simulation results have shown advantages in our designs in contrast with those

RAM-based architectures for implementing the algorithm of zerotree construction.

We also compare the gate-level synthesis of our architecture for zerotree construction

with the results of the architecture for basic wavelet transforms (without zerotree

construction). The experimental results have shown that the execution time, hard-

ware cost and delay are comparable although the algorithm of zerotree construction

is much more complicated than the algorithm of basic wavelet transform.

In simulation of the module of Processing Unit for PU1, PU2 and PU3, we chose

to implement the computation of Harr-basis[17] integral wavelet filtering using shifters
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Table I. The implementation of non-RAM-based zerotree construction

The width of image The number of gates Clock cycles

32 8388 1264

64 16808 4576

128 31428 17344

256 62148 67456

512 122958 265984

Table II. The gate-level implementation of RAM-based zerotree construction

The width of image The number of gates Clock cycles

32 1024B RAM cells + 2388 2592

64 4096B RAM cells + 4436 10304

128 16384B RAM cells + 8532 41088

256 65536B RAM cells + 16724 164096

512 262144B RAM cells + 33108 655872

and adders based on calculations of integers. The computation of other wavelet-basis

filterings can be implemented similarly when using general structures of floating-point

adders. All devices are locally controlled and the hardware connections are localized

and optimized. The size of input image is N × N , with each pixel represented in 8

bits. The input image is fed to the system with one pixel per clock cycle.

To evaluate the performance, we also present a gate-level synthesis of a typical

RAM-based design for zerotree construction[18] as a contrast with the architectures

proposed in this dissertation. In this design, the image is stored in an off-chip RAM
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Table III. The gate-level implementation of DWT

The width of image The number of gates Clock cycles

32 3612 1120

64 6684 4288

128 12828 16768

256 25116 66304

512 49692 263680

and accessed by an ASIC processing structure for the wavelet transforms and ze-

rotree construction. The processing structure performs the calculation of hierarchical

wavelet transforms on the image, and constructs the zerotree data structure based on

the results of wavelet transforms by locating the parent-children relationships with

calculation of address pointers.

In literature, researchers have proposed many RAM-based architectural designs

for zerotree coding ([18][19][20]). All of these designs use off-chip RAMs since the sizes

of input images are much bigger than the size of what on-chip caches can hold. There

exist bottlenecks in nature limiting the processing rate in these designs — the frequent

data transfers between the processor and the RAM, the limitation on the off-chip

RAM bus bandwidth and on the size of the data bus. The difference between access

rates from off-chip RAMs and access rates from on-chip storage can be referenced from

[28][29]. Generally, access from off-chip RAMs is at least tens of times slower than

access from on-chip FIFOs. The comparison in Table I and II between our design of

zerotree construction and a typical RAM-based implementation shows overwhelming

advantages of the non-RAM-based design of zerotree construction against the RAM-

based implementation of zerotree construction. The number of gates used in the
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implementation and the execution time in clock cycles are shown in Table I, II and

III.

In the following we present the complexity analysis of our architectural designs

for arbitrary level of wavelet transforms, generic wavelet filters and data precisions.

Since L (the width of wavelet filters) is far less than N (the width or length of input

image) and the size of boundary effect of wavelet transforms is only dependent on

L, in the analysis we ignore the boundary effect to simplify the expressions. The

area of the architecture in Fig. 7 in Chapter II is dominated by PUs and TUs since

all connections are restricted in locality. A PU contains pL MACs (Multiplier and

Accumulator Cell), where p is the number of precision bits of data, thus three PUs

contain 3pL MACs, and the area for these MACs is O(pL). Because a TU is necessary

for the column-major filtering in every level transform, and the number of cells in TU

at the ith level transform is N(L+2i), the area for TUs is N(L+2m+1-1), where m

is the number of levels in DWT. Assuming 2m+1 is a constant C, the whole area

of the architecture for m level DWT is A=O(pNL). Noting that a new datum is

calculated and outputted as a pixel arrives every cycle, and the output size is not

more than input size if the boundary effect is disregarded, we have the system’s

latency (execution time) T as N2 clock cycles. Thus the product of A and T for

the system is O(pN3L), where pN2 is the input size of the algorithm. The hardware

utilization of PU1 and PU2 is 100%. The utilization of PU3 for m levels of DWT can

be figured out by the comparison between the computation tasks of PU3 and PU1 or

PU2. PU1 and PU2 respectively processes a half amount of the computation for the

first level of 2-D DWT; on the other hand, PU3 with the same hardware structure

takes all computation tasks for the other levels of 2-D DWT. Considering that the

computation amount for every level of 2-D DWT is four times less than that of the

previous level, we have the utilization of PU3 equal to (
∑m−1

i=1 (T/4i))/(T/2), where T
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Table IV. The performance analysis for the zerotree construction architecture

Device Area Execution Time Hardware Utilization

PU1 O(pL) N2 100%

PU2 O(pL) N2 100%

PU3 O(pL) N2 2
∑m−1

i=1 (1/4i)

ALL PUs O(pL) N 2 2/3 + (2/3)
∑m−1

i=1 (1/4i)

TU O(pNL) N 2 100%

is the computation amount for the first level of 2-D DWT. Thus the total hardware

utilization of three processors is (2 + 2
∑m−1

i=1 (1/4i))/3, which is around 90% for the

2-D DWT of more than 4 levels of transform. The utilization of TUs is 100%. The

result of performance analysis has been summarized in Table IV.

The proposed architectures can be extended to the computation of more complex

algorithms. For instance, with the coefficients grouped in zerotrees, it is easy to

generate the zerotree-coding symbols (as the third step of EZW algorithm) based on

the architecture in Fig. 7 in Chapter II. Put detectors for insignificant coefficients and

registers at output ports and connect the registers at those output ports corresponding

to the relation of parent and children. A symbol of IZ is generated and kept in the

pertinent register if one coefficient is detected to be insignificant. According to the

scheme of EZW, this register is then reset to the symbol of ZTR either if all of its

corresponding children are ZTRs or if the children are leaves of the zerotree and

IZs. Then the registers of the ZTR’s children are set as bubbles so that nothing is

output to the generated symbol stream. Also the symbols POS and NEG [13] can

be generated by trivially detecting the signs of the significant coefficients. Thus, the

zerotree-coding symbols can be streamed out via system output ports in real time
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when the input image is fed to the system.

B. Fully Retiming the MR-MDFG That Represents the 3-D DWT

In this section we propose a simple design example: retiming the MR-MDFG which

represents the algorithm of 3-D discrete wavelet transform based on the design method-

ology in Chapter III. The use of the algorithm of 3-D Discrete Wavelet Transform

(3-DWT) on the compression and the processing of medical imaging, image database

and video signals becomes a hot topic lately ([44][45][37]). A challenge to the design

of 3-DWT that is applied onto a 3-D data set is the intensity of the computation. As

many other MD applications, the design of application specific integrated circuits is

usually required in order to improve the performance. Fully retiming the MR-MDFG

that represents the algorithm of 3-DWT is necessary to exploit the inter-operation

parallelism within the 3-DWT when mapping the 3-DWT to hardware which uses

serial input format to process a 3-D input data set.

The complete retiming formulations proposed in this dissertation allow the de-

signs for more complicated cases of serial processing order and computation structure

of wavelet filtering, but due to the purpose of a concise illustration of our ideas in

Chapter III, we assume a simple case of 3-DWT in which the serial processing order

is simply frame-wise, column-wise and then row-wise and the input data stream is

fed to system with one item at each clock cycle.

The MR-MDFG corresponding to 3-DWT is illustrated in Fig.20, where the row-

wise and column-wise filters are 4-tap filters, and the frame-wise filter is a 5-tap filter,

considering that a wavelet basis used on the frame orientation is different from other

orientations in some practical applications [44]. The computation nodes No. 2–5, No.

9–12 and No. 16–20 are multipliers where the data is multiplied by a filter coefficient.
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Other nodes are adders. Node No. 1 takes input data and node No. 24 sends out the

output. The offset-weights and multirate-weights of edges are illustrated in Fig.20.
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Fig. 20. The MR-MDFG for 3-DWT and the retiming solutions

By MD intercalation, the MR-MDFG in Fig.20 is partitioned into four single-

rate subgraphs G0, G1, G2 and G3. G0 contains node No. 1 alone, G1 contains nodes

No. 2–8, G2 contains nodes No. 9–15, and G3 contains nodes No. 16–24. The rate

of G0 is a unit matrix whose diagonal elements are 1’s and other elements are 0’s.

M1, M1 × M2 and M1 × M2 × M3 as shown in Fig.20 are the rates of G1, G2 and

G3 respectively. Based on their rates, the subgraphs are moved by various offsets

within the iteration space according to the procedure of MD intercalation. Three

grids based on the rates of M1, M1M2 and M1M2M3 are created in iteration space for

G1, G2 and G3 respectively, and the instances of subgraphs are always located in their

respective grid only. Following the complete formulation of retiming operations on

MD intercalated iteration space, we have that the retiming operations on the nodes

in these subgraphs are re-defined in their respective grids, i.e., the retiming vectors
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correspond to the moving distances within the grids.

The size of 3-D input data set is assumed to be N × N × N . The group of

vectors representing the processing order is {(S1, S2, S3}, where S1 = (0, 0, 1)T , S2 =

(0, 1, 0)T , and S3 = (1, 0, 0)T . The eigen-function F(X)=N 2(X,S1)+N(X,S2)+(X,S3).

Assume that the system clock period is required to be 1, i.e., it is restricted that

any edge in the MR-MDFG should have non-zero valued offset-weight after retiming.

Thus the final retiming formulation is summarized to: minimize COST=
∑

v∈V Rv

under the restrictions A: Ru ≥ F (d(e) + r(u)− r(v) and B: F (d(e) + r(u)− r(v)) ≥ 1

for any edge u→ v in the MR-MDFG.

To find an approximately optimal solution of retiming vectors for this problem in

polynomial time, we use a rate-oriented retiming, with the techniques similar to the

orthogonal 2-D retiming introduced in [32]. By rate-oriented retiming, or considering

the solutions of retiming vectors under the restriction A and B along the orientations

of M1, M2 and M3 separately, we derive the retiming vectors for the computation

nodes as illustrated in Fig.20. Based on these solutions, the MR-MDFG for 3-DWT

is fully retimed such that any edge has a non-zero valued offset weight, so the compu-

tation nodes in the MR-MDFG can be executed in parallel and thus the system clock

period is minimized to 1. The MR-MDFG is illustrated in Fig.21 after all retiming

operations are applied.

Following the fully retimed MR-MDFG, we propose the architectural design of

3-DWT as shown in Fig.22. All calculation units work simultaneously and the clock

cycle period is minimized. In Fig.22, a structure called Shift Unit (SU) is employed

to store the intermediate data corresponding to offset-weights of edges in Fig.21.

The structure of SU that consists of a register array with A × B cells (or registers)

is illustrated in Fig.22. The systolic data flow among the cells is specified by the

arrows. A cell transfers its content to the next adjacent cell once it receives a datum
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Fig. 21. The MR-MDFG for 3-DWT after retiming operations

from its preceding cell in each clock cycle. From the scheme of systolic data flow, it

is apparent that Fig.22 is a snake-like representation of a linear shift register array.

As part of our study, we have simulated a Register Transition Level (RTL) imple-

mentation of the architecture for 3-DWT in Fig.22 in Verilog Hardware Description

Language (Verilog HDL). To evaluate the performance, we also present a Verilog HDL

implementation of a typical architecture of 3-DWT following the design in [45] based

on addressable memories. The simulation results have demonstrated considerable

performance advantages in our design over the typical architecture for implementing

the 3-DWT algorithm. In Verilog implementation of calculation units for wavelet

filtering, we chose to implement the computation of Harr-basis[43] wavelet filtering

based on integer operations. The computation of other wavelet-basis filtering can be

implemented in similar architectures using floating-point units. The 3-D input data

set has N × N × N elements, with each one represented by a byte. Note that the

clock cycle period in our design is tens of times shorter than that in [45] because all

function units in our design work in parallel based on the fully retimed MR-MDFG.
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C. Exploiting Maximum Inter-Iteration Parallelism in Multidimensional Multirate

Systems

This section we provide an application of the design methodology proposed in Chap-

ter IV for exploring the bound of the inter-iteration parallelism in multidimensional

multirate digital systems. There are many practical DSP algorithms with feedback

recursions such as SFQ[15][16], adaptive-computation based algorithms and some

other algorithms with data-dependent computation structures. At low level of sig-

nal processing, the computation structures of algorithms are basically static or data-

independent. The algorithms include fundamental wavelet transforms and main parts

of JPEG and MPEG algorithms. Many of those computation structures can be rep-

resented in acyclic data flow graphs without using feedback recursions. On the other

hand, for high level signal processing algorithms such as the SFQ, pattern recognition

in acoustic signals, face detection and fingerprint detection, systems are mostly adap-

tive and/or feedback-based in nature, and the computation structures are dynamic,

i.e., data-dependent. Those algorithms can usually be represented by cyclic data flow

graphs where data might flow within the system along circular paths because of the

feedbacks. In literature there have been many software implementations for high-level

signal processing algorithms and data-dependent computations, but many are of low

performance in terms of execution time and can be used seldom in real-time appli-

cations. With more and more advanced VLSI techniques nowadays we can integrate

larger circuits into chips and have a broader range of options in designing complex

circuit systems. Within such circumstances, this dissertation makes contributions

for a theoretical understanding of the parallelism exploitation which is essential in

designs of hardware implementations for multidimensional DSP algorithms.

In this section we briefly introduce the implementation of a typical multirate
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multidimensional DSP algorithm with feedback recursions. We use the SFQ algorithm

[15] as the prototype for our example to implement. The SFQ scheme in [15] is

an adaptive transform coding framework that extends basic wavelet transforms to

the signal-dependent wavelet packet transforms. It is one of the best image coding

algorithms in terms of coding efficiency that have been reported. The optimal scheme

of SFQ is a high-complexity algorithm whose computation structure includes feedback

recursions where the input image is transformed with all wavelet packet trees (i.e.,

arbitrary frequency resolutions), and a specific wavelet packet decomposition and

a scalar quantizer are selected based on rate-distortion measurements. In a near-

optimal and practical solution [15] whose computation complexity is relatively low,

the schemes of transform and quantizer designs are decoupled, and the data are

transformed and quantized based on rate-distortion values partially. In literature

there are only software implementations of SFQ algorithms which are executed in

sequential ways. No parallelism within the SFQ algorithms has ever been explored

or exploited.

Generally, the SFQ computation structures can be represented in cyclic data

flow graphs with delay-weights on the edges connecting various calculation units and

feedback cycles for data-adaptive computations. Fig.23 shows an illustration of the

MR-MDFG representation for the calculation of a subband of data as a part of the

algorithm of near-optimal wavelet packet SFQ. For clarity and brevity, we specify

the nodes in the MR-MDFG as computation units with buffers inside and they can

perform wavelet filtering or other complicated computations. The edges with delay

and multirate weights correspond to the dependence relationships between calculation

units. The values of the weights are dependent on particular wavelet filters. In Fig.23,

i.e., the original MR-MDFG for the SFQ algorithm, node A and B are regarding the

computations of wavelet filtering; the other computation nodes are responsible for
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Fig. 23. The MR-MDFG representation of an SFQ algorithm and the partition of the

MR-MDFG

the computation tasks of quantizations, error estimations and etc. Each edge in the

graph is labeled with two vectors, e.g., edge B → C is labeled with (1/2, 1/2)/(a, b)

where the first vector (1/2, 1/2) is the multirate weight and the second vector (a, b)

is the delay weight. The symbols a, b, c, · · · , x, y, z represent integers corresponding

to the delays determined by the details of computation equations which include the

selection of wavelet filters and etc. For brevity and without loosing generality, let

c = 3, d = 2, e = −2, f = 2, g = −1, h = −3, s = 2, t = 3, u = 3, v = 2, w = 6 and

x = 8.

Based on the procedures and properties in Chapter IV, we can translate Fig.23

into a single-rate MDFG. Following Procedure 3.1, the original MR-MDFG is parti-

tioned into two disjoint unit subgraphs, shown as in Fig.23, by cutting off all mul-

tirate edges in Fig.23. Suppose that subgraph Q1 contains A and B; subgraph Q2

contains C, D, E, F and G. The rates of the tow subgraphs are R1 = (1, 1) and

R2 = (1/2, 1/2) respectively per Definition 4.3. According to Step 2 of Procedure
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Fig. 24. The final translated single-rate MDFG

4.2, we obtain RT = LCM(1/R1, 1/R2) = (2, 2), and take R1RT and R2RT as

the unfolding factors to unfold Q1 and Q2, i.e., apply Procedure 4.1 on the unit sub-

graphs. The number of cycles and the sum of the delays on the cycles after unfolding

are calculated per Property 4.15 and Property 4.16. It is straightforward in this case

since only Q2 has a cycle and the unfolding factor for this subgraph turns out to be

(1, 1). All unfolded subgraphs after Procedure 4.1 are shown in Fig.24. The new delay

vectors on edges in the unfolded graphs are determined in Procedure 4.1. As the last

step to transform the orignal MR-MDFG into a single-rate MDFG, it is necessary

to connect the disjoint subgraphs by employing Step 3 of Procedure 4.2. The delay

vectors on edges connecting node instances from separate subgraphs are calculated

per equations in Step 3 of Procedure 4.2.
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The number of all cycles and the delay weights on the cycles after Procedure 4.2

are determined per Property 4.11 through Property 4.15. The result of the translation

of the original MR-MDFG into a single-rate MDFG is shown in Fig.24. Let the

sum of delay vectors on Cycle 1, B01 → C00 → D00 → E00 → B01, be d1.

d1 = (c′,d′) + (e, f) + (g,h) + (w′,x′) = (3, 5). Let the sum of delay vectors on

Cycle 2, C00 → D00 → E00 → G00 → C00, be d2. d2 = (u,v) + (e, f) + (g,h) +

(s, t) = (2, 4). To consider the exploitation of the inter-iteration parallelism, we only

investigate the subgraph containing cycles after Procedure 4.2 as shown in Fig.25.

According to the procedure in [56], we obtain the optimal solution of linear scheduling

vector π0 equal to (5, 4) based on the values of d1 and d2 as shown in Fig.26. Given

π0, we can apply Algorithm 5.1 in scheduling the computation nodes and segment the

2-D iteration space along the orientation of π0 as in Fig.26. Note that the step size

for segmentations is determined by the length of the projection of d1 or d2 on the

orientation of π0 for Cycle 1 or Cycle 2 respectively. To put it simply, the computation

nodes on the cycles of Fig.25 in each lattice point (corresponding to an iteration) of

the iteration space can be executed concurrently within every segmentation.

C00 D00

G00

E00 F00

(u,v) (s,t)

(y,z)(g,h)(e,f)

(w’,x’)

(c’,d’)
B00

Fig. 25. The subgraph of the single-rate MDFG containing cycles only
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Fig. 26. An illustration of the implementation of the SFQ algorithm in 2-D iteration

space



102

CHAPTER VI

CONCLUSION

In this dissertation, we have conducted theoretical work and proposed several design

methodologies on computer architectural designs for high-performance computing

of multidimensional multirate digital signal processing applications with inter- and

intra- iteration parallelism being exploited. Wavelet-based digital algorithms are

typical instances of such digital signal processing applications. Experimental results

and design examples for the applications of the design methodologies are provided.

The results have demonstrated better performance in terms of hardware cost and the

execution time than other methods and designs in existing literature.

Chapter II has proposed a methodology for non-RAM-based architectural de-

signs of wavelet algorithms based on novel nonlinear I/O data space transformations.

Exploiting common features of computation locality and multirate signal processing

within general wavelet-based algorithms, Chapter II proposes a series of novel nonlin-

ear transformations in I/O data space analysis and obtains regularized and/or merged

structures of dependence graphs for any wavelet-based algorithms. Such nonlinear

transformations for newly-modeled data dependence graphs lead to non-RAM-based

architectures for hardware implementations of general wavelet-based algorithms.

The series of nonlinear I/O data space transformations are proposed as a the-

oretical basis of architectural designs for generalized wavelet-based algorithms, but

it is infeasible to introduce designs for all complex wavelet-based algorithms due to

the space limit in Chapter II. We use the zerotree construction algorithm as the

representative and propose a non-RAM-based design in which the input image is re-

cursively decomposed by DWT and the zerotrees are constructed simultaneously. In

contrast with the reported architectures ([18][19][20]) for wavelet zerotree construc-
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tions that use large off-chip RAMs in building zerotrees and employ either memory

address pointers or data rearrangement, our architectures only need much smaller

on-chip FIFOs leading to the elimination of off-chip communications and the increase

of processing rates.

The philosophy underlying our proposed design in Chapter II is a full exploitation

of the locality of the computation. The computation of wavelet-based zerotree coding

is strongly featured by the computation locality in that the calculations of coefficients

on a certain zerotree only depend on the same local sub-area of the 2-D inputs. This

desirable feature has been fully exploited in Chapter II by concurrent calculations

of children and their parent in the rearranged DWT, so that the necessary storage

for intermediately calculated data is reduced to a great extent. Thus some items

of intermediate data need not be held for future calculations if the coefficients on

the corresponding zerotrees are scheduled to be calculated together and earlier. This

primary approach based on our novel nonlinear I/O data space transformations is not

only used to derive designs for the algorithm of zerotree construction, but for many

other general complex wavelet-based digital systems.

The technique of MD retiming has been proposed in literature to improve the

circuitry performance of MD single-rate DSP systems. However, the theoretical anal-

ysis in Chapter III has demonstrated that this technique can not be extended to

ARBITRARY MD multirate DSP systems. The class of rate-balanced MD multirate

DSP algorithms in which all wavelet-based algorithms and most of other practical

multirate applications are included has been identified theoretically in Chapter III.

We theoretically generalize the MD retiming operations from MD single-rate DSP

systems to rate-balanced MD multirate DSP systems, where all operations in single-

rate systems can be taken as special cases of operations in multirate systems. An

important new technique applied in iteration space prepared for fully retiming rate-
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balanced MR-MDFG’s, MD intercalation, is proposed in Chapter III. Based on it,

a complete UNIFIED formulation of retiming operations for MD multirate DSP al-

gorithms represented by rate-balanced MR-MDFG’s is proposed, where clock period

constraint, cost minimization, causality constraint, and arbitrarily linear processing

order are addressed. The complete formulation constructs the theoretical basis for

optimally exploiting the intra-iteration parallelism in rate-balanced multirate DSP

systems in Chapter III. Finally, a design example of optimally retiming the MR-

MDFG that represents the 3-DWT algorithm is proposed in Section B of Chapter V

as the application of this methodology.

Chapter IV has proposed the methodology of inter-iteration parallelism exploita-

tion by combining (1) the multidimensional intercalation, (2) the multidimensional

unfolding, (3) the translation of a multirate multidimensional data-flow graph into

a single-rate multidimensional data-flow graph, and (4) the cyclic MDFG shrinking.

Based on these approaches, we have shown how the inter-iteration parallelism is op-

timally exploited against precedence constraints within multirate multidimensional

DSP algorithms in multiprocessor implementation. As a measurement to achieve

the full inter-iteration parallelism, an upper bound on the number of processors is

given, which is derived from (1) the topology and weights of the MR-MDFG and (2)

the shape of the iteration space. Any other multiprocessor implementations with a

number of processors beyond this bound do not lead to further improvement.

While this dissertation is mainly directed to a theoretical understanding of paral-

lel processing implementations and a proposal of novel methodologies in architecture

designs for MD multirate DSP applications, the work in this dissertation also helps

discussing general topics regarding the high-level synthesis of MD DSP systems, on

which interested readers are referred to for details in our classified and specialized

discussions. The proposal of multidimensional intercalation leads to a unified formu-
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lation of hardware designs for multidimensional DSP algorithms by exploring intra-

and inter-iteration parallelism. A direct mapping of multirate DSP algorithms to

hardware would require data to move at different rates on the chip, which involves

complicate routing and synchronization of multiple clock signals. The methodologies

of multidimensional unfolding and translating an MR-MDFG into an MDFG lead to

mapping a multirate DSP algorithm into a single-rate VLSI architecture, where the

entire system operates with the same clock signal. No sub-clocks are necessary and

the hardware efficiency is improved significantly.
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