4 research outputs found

    Current-Mode Dual-Phase Precision Full-Wave Rectifier Using Current-Mode Two-Cell Winner-Takes-All (WTA) Circuit

    Get PDF
    In addition to the recently proposed full-wave rectifier by Prommee et al. using voltage-mode (VM)two-cell winner-takes-all (WTA) circuit, we present current-mode (CM) precision full-wave rectifier using CM two-cell WTA circuit. The popular Lazzaro’s CM WTA circuit has been employed for the purpose and there is no requirement of inverting the input signal. Also, dual complimentary phases of the output current signal are available from high-output impedance terminals for explicit utilization. As compared to many recently proposed CM rectifiers using complex active devices, e.g. dual-X current conveyor or universal voltage conveyor, our circuit is very compact and requires a total of 21 transistors. SPICE simulation results of the circuit implemented using 0.35 um TSMC CMOS technology are provided which verify the workability of the proposed circuit

    A single MO-CFTA based electronically/temperature insensitive current-mode half-wave and full-wave rectifiers

    Get PDF
    The article presents a current-mode full-wave rectifier employing multiple output current follower transconductance amplifier (MO-CFTA). The both circuits description is very simple, it merely comprises only single MO-CFTA, without external passive element. In addition, the magnitude and direction of output currents can be controlled via electronically method. Furthermore, the outputs are independent of the thermal voltage (VT). The performances of the proposed circuits are investigated through PSpice. They show that the proposed circuits can function as a current-mode precision half-wave and full-wave rectifiers where input current range from 0uA to 514uA and -518uA to 518uA, respectively. They can be achieved at ±2V power supplies. The maximum power consumption is 3,01mW

    Graphene frequency multipliers

    Get PDF
    Abstract-In this letter, the ambipolar transport properties of graphene flakes have been used to fabricate full-wave signal rectifiers and frequency-doubling devices. By correctly biasing an ambipolar graphene field-effect transistor in common-source configuration, a sinusoidal voltage applied to the transistor gate is rectified at the drain electrode. Using this concept, frequency multiplication of a 10-kHz input signal has been experimentally demonstrated. The spectral purity of the 20-kHz output signal is excellent, with more than 90% of the radio-frequency power in the 20-kHz frequency. This high efficiency, combined with the high electron mobility of graphene, makes graphene-based frequency multipliers a very promising option for signal generation at ultrahigh frequencies
    corecore