9 research outputs found

    Intra-WZ quantization mismatch in distributed video coding

    Get PDF
    During the past decade, Distributed Video Coding (DVC) has emerged as a new video coding paradigm, shifting the complexity from the encoder-to the decoder-side. This paper addresses a problem of current DVC architectures that has not been studied in the literature so far, that is, the mismatch between the intra and Wyner-Ziv (WZ) quantization processes. Due to this mismatch, WZ rate is spent even for spatial regions that are accurately approximated by the side-information. As a solution, this paper proposes side-information generation using selective unidirectional motion compensation from temporally adjacent WZ frames. Experimental results show that the proposed approach yields promising WZ rate gains of up to 7% relative to the conventional method

    Fusion of Global and Local Motion Estimation Using Foreground Objects for Distributed Video Coding

    Get PDF
    International audienceThe side information in distributed video coding is estimated using the available decoded frames, and exploited for the decoding and reconstruction of other frames. The quality of the side information has a strong impact on the performance of distributed video coding. Here we propose a new approach that combines both global and local side information to improve coding performance. Since the background pixels in a frame are assigned to global estimation and the foreground objects to local estimation, one needs to estimate foreground objects in the side information using the backward and forward foreground objects, The background pixels are directly taken from the global side information. Specifically, elastic curves and local motion compensation are used to generate the foreground objects masks in the side information. Experimental results show that, as far as the rate-distortion performance is concerned, the proposed approach can achieve a PSNR improvement of up to 1.39 dB for a GOP size of 2, and up to 4.73 dB for larger GOP sizes, with respect to the reference DISCOVER codec. Index Terms A. ABOU-ELAILAH, F. DUFAUX, M. CAGNAZZO, and B. PESQUET-POPESCU are with the Signal and Image Processin

    High order motion interpolation for side information improvement in DVC

    No full text
    A key step in distributed video coding is the generation of the side information (SI) i.e. the estimation of the Wyner-Ziv frame (WZF). This step is also frequently called image interpolation. State-of-the-art techniques perform a motion estimation between adjacent key frames (KFs) and linear interpolation in order to assess object positions in the WZF, and then the SI is produced by motion compensating the KFs. However the uniform motion model underlying this approach is not always able to produce a satisfying estimation of the motion, which can result in a low SI quality. In this paper we propose a new method for the generation of SI, based on higher order motion interpolation. We use more than two KFs to estimate the position of the current WZF block, which allows us to correctly estimate more complex motion (such as, for example, uniform accelerated motion). We performed a number of tests for the fine tuning of the parameters of the method. Our experiments show that the new interpolation technique has a small computational cost increase with respect to state of the art, but provides remarkably better performance with up to 0.5 dB of PSNR improvement in SI quality. Moreover the proposed method performs consistently well for several GOP sizes. ©2010 IEEE

    High order motion interpolation for side information improvement in DVC

    No full text

    Ein Beitrag zur Pixel-basierten Verteilten Videocodierung: Seiteninformationsgenerierung, WZ-Codierung und flexible Decodierung

    Get PDF
    Moderne Anwendungsszenarien, wie die individuelle Übertragung von Videodaten zwischen mobilen Endgeräten, stellen neue Herausforderungen an das Videoübertragungssystem. Hierbei liegt ein besonderer Fokus auf der geringen Komplexität des Videoencoders. Diese Anforderung kann mit Hilfe der Verteilten Videocodierung erfüllt werden. Im Fokus der vorliegenden Arbeit liegen die sehr geringe Encoderkomplexität sowie auch die Steigerung der Leistungsfähigkeit und die Verbesserung der Flexibilität des Decodierungsprozesses. Einer der wesentlichen Beiträge der Arbeit bezieht sich auf die Verbesserung der Seiteninformationsqualität durch temporale Interpolation
    corecore