26 research outputs found

    Comparison of stimulus-evoked cerebral hemodynamics in the awake mouse and under a novel anesthetic regime

    Get PDF
    Neural activity is closely followed by a localised change in cerebral blood flow, a process termed neurovascular coupling. These hemodynamic changes form the basis of contrast in functional magnetic resonance imaging (fMRI) and are used as a correlate for neural activity. Anesthesia is widely employed in animal fMRI and neurovascular studies, however anesthetics are known to profoundly affect neural and vascular physiology, particularly in mice. Therefore, we investigated the efficacy of a novel ‘modular’ anesthesia that combined injectable (fentanyl-fluanisone/midazolam) and volatile (isoflurane) anesthetics in mice. To characterize sensory-evoked cortical hemodynamic responses, we used optical imaging spectroscopy to produce functional maps of changes in tissue oxygenation and blood volume in response to mechanical whisker stimulation. Following fine-tuning of the anesthetic regime, stimulation elicited large and robust hemodynamic responses in the somatosensory cortex, characterized by fast arterial activation, increases in total and oxygenated hemoglobin, and decreases in deoxygenated hemoglobin. Overall, the magnitude and speed of evoked hemodynamic responses under anesthesia resembled those in the awake state, indicating that the novel anesthetic combination significantly minimizes the impact of anesthesia. Our findings have broad implications for both neurovascular research and longitudinal fMRI studies that increasingly require the use of genetically engineered mice

    Watching the Healing Brain: Multimodal and Non-invasive Imaging of Regenerative Processes after Experimental Cerebral Ischemia

    Get PDF
    Stroke is a severe disease of the brain, which leads to cell death and loss of function. Neuroprotective therapy to prevent neuronal loss has not been effective in human stroke patients. Therefore, new therapeutic strategies are needed. Spontaneous recovery can be observed in some patients. However, the basis of this phenomenon is not completely understood yet. Several endogenous regenerative processes have been observed following cerebral ischemia, which may be the reason for functional recovery and can be used as a basis for new therapeutic strategies. Shortly after the insult, endothelial cells start to proliferate and eventually lead to revascularization of ischemic brain tissue (angiogenesis). Furthermore, resident neural progenitor cells increase their proliferative activity, migrate towards the ischemic tissue and even differentiate into new neurons (neurogenesis). Detailed knowledge about the molecular mechanisms and interactions between angiogenesis and neurogenesis in response to stroke is needed in order to reveal new therapeutic targets. This PhD thesis established novel non-invasive imaging strategies to followed post-stroke angiogenesis and neurogenesis with particular regard to their dynamic temporal profiles. Bioluminescence imaging and magnetic resonance imaging were chosen for this purpose. The vascular endothelial growth factor receptor 2 was used as a molecular marker for angiogenesis, and for the first time the molecular basis of post-stroke vascular remodelling was observed non-invasively with bioluminescence imaging in an angiogenesis-specific reporter mouse. Structural changes of the vascular system were monitored with a magnetic resonance imaging strategy. Initial pronounced decrease of vessel density in ischemic tissue was followed by vessel density normalization. Non-invasive observation of endogenous neurogenesis is limited by the small number of neural progenitor cells within the adult brain. This work established the first bioluminescence protocol optimized for highly sensitive bioluminescence imaging of neurogenesis in a neurogenesis-specific reporter mouse. For the first time, increased proliferation of neural progenitor cells after stroke was observed with bioluminescence imaging. As post-stroke angiogenesis and neurogenesis may lead to regeneration of brain function, this PhD thesis established the first functional magnetic resonance imaging protocol for the specific application in mice. First investigations of brain function after stroke were performed and future studies will have the opportunity to follow functional recovery in transgenic mouse models. All methods used in this thesis bear the exceptional potential to be combined into a multimodal approach. Screening for new therapeutic targets within the brain endogenous regenerative capacity will be possible non-invasively. Furthermore, the effect of new therapies on angiogenesis, neurogenesis or functional recovery can be quickly tested

    Functional Connectivity fMRI of the Rodent Brain: Comparison of Functional Connectivity Networks in Rat and Mouse

    Get PDF
    At present, resting state functional MRI (rsfMRI) is increasingly used in human neuropathological research. The present study aims at implementing rsfMRI in mice, a species that holds the widest variety of neurological disease models. Moreover, by acquiring rsfMRI data with a comparable protocol for anesthesia, scanning and analysis, in both rats and mice we were able to compare findings obtained in both species. The outcome of rsfMRI is different for rats and mice and depends strongly on the applied number of components in the Independent Component Analysis (ICA). The most important difference was the appearance of unilateral cortical components for the mouse resting state data compared to bilateral rat cortical networks. Furthermore, a higher number of components was needed for the ICA analysis to separate different cortical regions in mice as compared to rats

    The Mechanism of Downregulated Interstitial Fluid Drainage Following Neuronal Excitation.

    Get PDF
    The drainage of brain interstitial fluid (ISF) has been observed to slow down following neuronal excitation, although the mechanism underlying this phenomenon is yet to be elucidated. In searching for the changes in the brain extracellular space (ECS) induced by electrical pain stimuli in the rat thalamus, significantly decreased effective diffusion coefficient (DECS) and volume fraction (α) of the brain ECS were shown, accompanied by the slowdown of ISF drainage. The morphological basis for structural changes in the brain ECS was local spatial deformation of astrocyte foot processes following neuronal excitation. We further studied aquaporin-4 gene (APQ4) knockout rats in which the changes of the brain ECS structure were reversed and found that the slowed DECS and ISF drainage persisted, confirming that the down-regulation of ISF drainage following neuronal excitation was mainly attributable to the release of neurotransmitters rather than to structural changes of the brain ECS. Meanwhile, the dynamic changes in the DECS were synchronized with the release and elimination processes of neurotransmitters following neuronal excitation. In conclusion, the downregulation of ISF drainage following neuronal excitation was found to be caused by the restricted diffusion in the brain ECS, and DECS mapping may be used to track the neuronal activity in the deep brain

    MRI Characterization of Radiation Necrosis in an Animal Model: Time to Onset, Progression, and Therapeutic Response

    Get PDF
    Radiation necrosis is a severe, but late occurring type of injury to normal tissue, within and surrounding a radiation treatment field, which can lead to significant complications for neurooncology patients. Radiation necrosis is difficult to distinguish from recurrent tumor by either neurologic examination or clinical imaging protocols. Concerns for the development of radiation necrosis often limit therapeutic radiation doses. Current treatment options for radiation necrosis are limited. The development of solutions to these clinical challenges has been hampered by an appropriate animal model of radiation necrosis. With a novel mouse model of radiation necrosis developed in our lab employing a Gamma Knife, which enables high-dose, fractionated, hemispherical irradiation in the mouse brain, the objectives were to i) optimise radiation dosing schemes: total dose, fractionation) for this Gamma-Knife mouse-model of radiation necrosis; ii) determine the efficacy of bevacizumab: Avastin) and its murine analog B20-4.1.1, both vascular endothelial growth factor: VEGF) inhibitors, as mitigators of radiation necrosis in mice; iii) validate the neuroprotective effect of SB 415286, an inhibitor of glycogen synthase kinase 3β;: GSK-3β), in mouse brain following high-dose radiation treatment; and iv) identify and validate the quantitative blood oxygen level dependent: qBOLD) method as an imaging marker of radiation necrosis. For these purposes, a series of experiments were performed, including monitoring the onset and progression of radiation necrosis in mice receiving different dose schedules, comparing the development of radiation necrosis in irradiated mice with or without treatments, and mapping the irradiated and non-irradiated mouse brains using qBOLD method. It was found that i) radiation dose schedules affect the onset and progression of radiation necrosis; ii) anti-VEGF antibodies slow the progression of radiation necrosis in irradiated brain tissue; iii) SB 415286 protects against and mitigates radiation necrosis in irradiated brain tissue; and iv) a high SNR: 400 at least) is required to decouple oxygen extraction fraction: OEF) and deoxyhemoglombin cerebral blood volume: dCBV) in mouse brain using qBOLD method. In qBOLD, the voxel spread function: VSF) reduces the effect of macroscopic magnetic field inhomogeneities. However, with current shimming methods, imaging parameters, and post-processing algorithms, the resulting OEF and dCBV maps in the mouse brain are not reliable. These results demonstrated that the development of radiation necrosis in this Gamma Knife mouse model can be characterized by both anatomic MR imaging and histology. Both anti-VEGF therapy and GSK-3β inhibition could be potential therapeutic managements for radiation necrosis, but further studies are needed to optimize dosing schemes and treatment periods and elucidate mechanisms of action. Characterizing radiation necrosis in mouse brain using qBOLD remains a challenge due to the imperfect correction for macro magnetic field inhomogeneities

    Role of Genetic Variation in Collateral Circulation in the Evolution of Acute Stroke: A Multimodal Magnetic Resonance Imaging Study

    Get PDF
    No studies have determined the effect of differences in pial collateral extent (number and diameter), independent of differences in environmental factors and unknown genetic factors, on severity of stroke. We examined ischemic tissue evolution during acute stroke, as measured by magnetic resonance imaging (MRI) and histology, by comparing 2 congenic (CNG) mouse strains with otherwise identical genetic backgrounds but with different alleles of the Determinant of collateral extent-1 (Dce1) genetic locus. We also optimized magnetic resonance (MR) perfusion and diffusion deficit thresholds by using histological measures of ischemic tissue

    Fasting prevents medetomidine-induced hyperglycaemia and alterations of neurovascular coupling in the somatosensory cortex of the rat during noxious stimulation

    Get PDF
    Abstract Medetomidine and isoflurane are commonly used for general anaesthesia in fMRI studies, but they alter cerebral blood flow (CBF) regulation and neurovascular coupling (NVC). In addition, medetomidine induces hypoinsulinemia and hyperglycaemia, which also alter CBF regulation and NVC. Furthermore, sudden changes in arterial pressure induced by noxious stimulation may affect NVC differently under medetomidine and isoflurane anaesthesia, considering their different effects on vascular functions. The first objective of this study was to compare NVC under medetomidine and isoflurane anaesthesia during noxious stimulation. The second objective was to examine whether fasting may improve NVC by reducing medetomidine-induced hyperglycaemia. In male Wister rats, noxious electrical stimulation was applied to the sciatic nerve in fasted or non-fasted animals. CBF and local field potentials (LFP) were recorded in the somatosensory cortex to assess NVC (CBF/LFP ratio). The CBF/LFP ratio was increased by medetomidine compared with isoflurane (p = 0.004), but this effect was abolished by fasting (p = 0.8). Accordingly, medetomidine produced a threefold increase in blood glucose (p < 0.001), but this effect was also abolished by fasting (p = 0.3). This indicates that isoflurane and medetomidine anaesthesia alter NVC differently, but the undesirable glucose dependent effects of medetomidine on NVC can be prevented by fasting

    Normothermic mouse functional MRI of acute focal thermostimulation for probing nociception

    Get PDF
    Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus

    Influence of different isoflurane anesthesia protocols on murine cerebral hemodynamics measured with pseudo-continuous arterial spin labeling

    Get PDF
    Arterial spin labeling (ASL)-MRI can noninvasively map cerebral blood flow (CBF) and cerebrovascular reactivity (CVR), potential biomarkers of cognitive impairment and dementia. Mouse models of disease are frequently used in translational MRI studies, which are commonly performed under anesthesia. Understanding the influence of the specific anesthesia protocol used on the measured parameters is important for accurate interpretation of hemodynamic studies with mice. Isoflurane is a frequently used anesthetic with vasodilative properties. Here, the influence of three distinct isoflurane protocols was studied with pseudo-continuous ASL in two different mouse strains. The first protocol was a free-breathing set-up with medium concentrations, the second a free-breathing set-up with low induction and maintenance concentrations, and the third a set-up with medium concentrations and mechanical ventilation. A protocol with the vasoconstrictive anesthetic medetomidine was used as a comparison. As expected, medium isoflurane anesthesia resulted in significantly higher CBF and lower CVR values than medetomidine (median whole-brain CBF of 157.7 vs 84.4 mL/100 g/min and CVR of 0.54 vs 51.7% in C57BL/6 J mice). The other two isoflurane protocols lowered the CBF and increased the CVR values compared with medium isoflurane anesthesia, without obvious differences between them (median whole-brain CBF of 138.9 vs 131.7 mL/100 g/min and CVR of 10.0 vs 9.6%, in C57BL/6 J mice). Furthermore, CVR was shown to be dependent on baseline CBF, regardless of the anesthesia protocol used
    corecore