61,545 research outputs found

    Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light.

    Get PDF
    Fluorescence imaging is one of the most important research tools in biomedical sciences. However, scattering of light severely impedes imaging of thick biological samples beyond the ballistic regime. Here we directly show focusing and high-resolution fluorescence imaging deep inside biological tissues by digitally time-reversing ultrasound-tagged light with high optical gain (~5×10(5)). We confirm the presence of a time-reversed optical focus along with a diffuse background-a corollary of partial phase conjugation-and develop an approach for dynamic background cancellation. To illustrate the potential of our method, we image complex fluorescent objects and tumour microtissues at an unprecedented depth of 2.5 mm in biological tissues at a lateral resolution of 36 μm×52 μm and an axial resolution of 657 μm. Our results set the stage for a range of deep-tissue imaging applications in biomedical research and medical diagnostics

    An Investigation into the Engineering Considerations Required to Design an Ultra Low Noise Logarithmic Amplifier for an Ultrasound Imaging System

    Get PDF
    Ultrasound imaging instruments and other radar type systems frequently employ variable gain amplifiers to effectively process signals of high dynamic range. One such device uniquely suited for this task is the logarithmic amplifier. Presented in this paper are many of the key design issues and solutions concerning the enhancement of one particular company\u27s ultrasound system

    Video-rate photoacoustic microscopy of micro-vasculatures

    Get PDF
    We report the development of photoacoustic microscopy capable of video-rate high-resolution in-vivo imaging in deep tissue. A lightweight photoacoustic probe is made of a single-element broadband ultrasound transducer, a compact photoacoustic beam combiner, and a bright-field light delivery system. Focused broadband ultrasound detection provides a 44-μm lateral resolution and a 28-μm axial resolution. A multimode optical fiber is used to deliver laser pulses. The bright-field light delivery system can effectively improve the illumination efficiency. The photoacoustic probe weighs less than 40 grams and is mounted on a voice-coil scanner to acquire 40 cross-sectional images per second over several-mm range. The fast speed can effectively improve imaging throughput, reduce motion artifacts, and enable the visualization of highly dynamic biomedical processes. High-resolution micro-vascular imaging is successfully demonstrated

    Quantification of Contrast-Enhanced Ultrasound

    Get PDF
    The aim of this experiment was to investigate the effect of manipulating ultrasound scanner settings on time-intensity curve parameters in a tube perfusion phantom system using contrast-enhanced ultrasound imaging. Imaging was performed using a Philips LOGIQ E9 ultrasound scanner equipped with a C1-6VN transducer and utilized two different microbubble contrast agents: Definity and Lumason. The ultrasound scanner settings manipulated included: gain, dynamic range, and frequency. Additionally, relative microbubble concentration, microbubble type, and perfusion flow rate were manipulated. Four time-intensity curve parameters (time to peak, area under curve, gradient, peak intensity) were measured from linearized pixel data. Time to peak was the least impacted time-intensity curve parameter by manipulation of ultrasound scanner settings or the tube perfusion phantom system. Dynamic range and perfusion flow rate manipulation resulted in moderate variation in area under curve, gradient, and peak intensity. Gain, frequency, and relative microbubble concentration manipulation resulted in a high degree of variation in area under curve, gradient, and peak intensity. Both microbubble contrast agents demonstrated similar effects when manipulated. The tube perfusion phantom system contained a small degree of built-in variation, which was incorporated into all variation measurements. Contrast-enhanced ultrasound offers a novel way to quantify microvasculature perfusion. However, variability caused by manipulation of ultrasound scanner settings is still a challenge that hinders the clinical application of contrast-enhanced ultrasound quantification. Standardization practices can be used to limit some of the observed variation. Further research is warranted to investigate how variability in contrast-enhanced ultrasound affects the clinical assessment of microvasculature perfusion

    Flow velocity mapping using contrast enhanced high-frame-rate plane wave ultrasound and image tracking: methods and initial in vitro and in vivo evaluation

    Get PDF
    Ultrasound imaging is the most widely used method for visualising and quantifying blood flow in medical practice, but existing techniques have various limitations in terms of imaging sensitivity, field of view, flow angle dependence, and imaging depth. In this study, we developed an ultrasound imaging velocimetry approach capable of visualising and quantifying dynamic flow, by combining high-frame-rate plane wave ultrasound imaging, microbubble contrast agents, pulse inversion contrast imaging and speckle image tracking algorithms. The system was initially evaluated in vitro on both straight and carotid-mimicking vessels with steady and pulsatile flows and in vivo in the rabbit aorta. Colour and spectral Doppler measurements were also made. Initial flow mapping results were compared with theoretical prediction and reference Doppler measurements and indicate the potential of the new system as a highly sensitive, accurate, angle-independent and full field-of-view velocity mapping tool capable of tracking and quantifying fast and dynamic flows

    Improving elevation resolution in phased-array inspections for NDT

    Get PDF
    The Phased Array Ultrasonic Technique (PAUT) offers great advantages over the conventional ultrasound technique (UT), particularly because of beam focusing, beam steering and electronic scanning capabilities. However, the 2D images obtained have usually low resolution in the direction perpendicular to the array elements, which limits the inspection quality of large components by mechanical scanning. This paper describes a novel approach to improve image quality in these situations, by combining three ultrasonic techniques: Phased Array with dynamic depth focusing in reception, Synthetic Aperture Focusing Technique (SAFT) and Phase Coherence Imaging (PCI). To be applied with conventional NDT arrays (1D and non-focused in elevation) a special mask to produce a wide beam in the movement direction was designed and analysed by simulation and experimentally. Then, the imaging algorithm is presented and validated by the inspection of test samples. The obtained images quality is comparable to that obtained with an equivalent matrix array, but using conventional NDT arrays and equipments, and implemented in real time.Fil: Brizuela, Jose David. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Camacho, J.. Consejo Superior de Investigaciones Científicas; EspañaFil: Cosarinsky, Guillermo Gerardo. Comisión Nacional de Energía Atómica; ArgentinaFil: Iriarte, Juan Manuel. Comisión Nacional de Energía Atómica; ArgentinaFil: Cruza, Jorge F.. Consejo Superior de Investigaciones Científicas; Españ

    Linear-Array Photoacoustic Imaging Using Minimum Variance-Based Delay Multiply and Sum Adaptive Beamforming Algorithm

    Full text link
    In Photoacoustic imaging (PA), Delay-and-Sum (DAS) beamformer is a common beamforming algorithm having a simple implementation. However, it results in a poor resolution and high sidelobes. To address these challenges, a new algorithm namely Delay-Multiply-and-Sum (DMAS) was introduced having lower sidelobes compared to DAS. To improve the resolution of DMAS, a novel beamformer is introduced using Minimum Variance (MV) adaptive beamforming combined with DMAS, so-called Minimum Variance-Based DMAS (MVB-DMAS). It is shown that expanding the DMAS equation results in multiple terms representing a DAS algebra. It is proposed to use the MV adaptive beamformer instead of the existing DAS. MVB-DMAS is evaluated numerically and experimentally. In particular, at the depth of 45 mm MVB-DMAS results in about 31 dB, 18 dB and 8 dB sidelobes reduction compared to DAS, MV and DMAS, respectively. The quantitative results of the simulations show that MVB-DMAS leads to improvement in full-width-half-maximum about 96 %, 94 % and 45 % and signal-to-noise ratio about 89 %, 15 % and 35 % compared to DAS, DMAS, MV, respectively. In particular, at the depth of 33 mm of the experimental images, MVB-DMAS results in about 20 dB sidelobes reduction in comparison with other beamformers.Comment: This is the final version of this paper, which is accepted in the "Journal of Biomedical Optics". Compared to previous versions, this version contains more experiments and evaluatio
    • …
    corecore