77,345 research outputs found

    Deploying a middleware architecture for next generation mobile systems

    Get PDF
    Although 2G systems quite adequately cater for voice communications, today demand is for high-speed access to data centric applications and multimedia. Future networks have been designed to provide higher rates for data transmission, but this will be complemented by higher speed access to services via hotspots using secondary wireless interfaces such as Bluetooth or WLAN. With a wide range of applications that may be developed, a growing number of short range wireless interfaces that may be deployed, and with mobile terminals of different capabilities, a means to integrate all these variables in order to facilitate provision of services is desirable. This paper describes an architecture involving the use of middleware that makes software development independent of the specific wireless platfor

    European Union Acts project MIDAS: objectives and progress to date

    No full text
    Introduction to the ACTS program: Advanced Communications and Technology and Services, known simply as ACTS, is one of the specific programmes of the "Fourth Framework Programme of European Community activities in the field of research and technological development and demonstration (1994-1998)". It provides the main focus of the European Unions research effort to accelerate deployment of advanced communications infrastructures and services, and is complemented by extensive European research in the areas of information technology and telematics. The stated objectives of ACTS are to "develop advanced communication systems and services for economic development and social cohesion within Europe, taking account of the rapid evolution of technologies, the changing regulatory situation and opportunities for development of advanced transeuropean networks and services". Within ACTS, the emphasis of the work has shifted from the exploration of fundamental concepts and detailed system engineering, as it had been in earlier programs such as RACE (Research and development in Advanced Communication technologies for Europe), to issues relating to implementation of advanced systems and generic services, and applications which demonstrate the potential use of advanced communications in Europe. A key feature of the ACTS program is that the research be undertaken in the context of real-world trials. Work within the program is divided into six technical areas: Interactive digital multimedia services, photonic technologies, high speed networking, mobility and personal communication networks, intelligence in networks and services and quality, safety and security of communication systems and services. The total EU budget for the ACTS program is approximately 670 MECU, covering around 160 projects, with over 1000 individual organisations participating within the program, thereby illustrating the scale of the activities. MIDAS is one of five projects in the technical area of photonic technologies concerned with high speed transmission, the others being ESTHER, UPGRADE, HIGHWAY and SPEED, each concerned with various aspects or approaches to the development of 40 GBit/s transmission systems within the European arena. A full list of project descriptions and objectives, as well as those of the ACTS program as a whole, are to be found in Ref [1]. The MIDAS consortium consists of the following organisations: Chalmers University of Technology (Sweden), CSELT (Italy), Thomson LCR (France), United Monolithic Semiconductor (France), Telia (Sweden), Kings College London (UK), University of Athens (Greece), ORC University of Southampton (UK). The project started in September 1995 and is currently scheduled to finish in September 1998

    Design of a Multimedia Applications Development System

    Get PDF
    The application envisaged for high speed packet switched networks have diverse and demanding transport requirements that are not satisfied by current communications software implementations. In addition, existing communication interfaces for distributed programs are not general enough to express the communication patterns and control required for distributed applications. This Multimedia Applications Development (MAD) system is designed to address these problems mentioned above. It is intended as a platform for implementing and experimenting with protocols and their implementation, network service access methods, and communication primitives for constructing distributed multimedia applications. It is expected that the research will yield real applications that can be used with a campus ATM environment, and that the results will provide deeper insights into how the communication needs of applications can be satisfied more effectively

    A Mathematical Model for Evaluating the Performance of Multicast Systems

    Get PDF
    © 2008 IEEE. Reprinted, with permission, from Syed S. Rizvi, Aasia Riasat, and Khaled M. Elleith, "A Mathematical Model for Evaluating the Performance of Multicast Systems," The 1st IEEE International Workshop on IP Multimedia Communications (IPMC 2008) August 4 - 7, 2008, St. Thomas U.S. Virgin IslandsThe Internet is experiencing the demand of high-speed real-time applications, such as live streaming multimedia, videoconferencing, and multiparty games. IP multicast is an efficient transmission technique to support these applications. However, there are several architectural issues in this technique that hinder the development and the deployment of IP multicast such as a lack of an efficient multicast address allocation scheme. On the other hand, End System Multicasting (ESM) is a very promising application-layer scheme where all the multicast functionality is shifted to the end-users. Supporting high-speed real-time applications always demand a sound understanding of these schemes and the factors that might affect the end-user requirements. In this paper we attempt to propose both analytical and the mathematical models for characterizing the performance of IP multicast and ESM. Our proposed mathematical model can be used to design and implement a more efficient and robust ESM model for the future networks
    • …
    corecore