
Strathprints Institutional Repository

Amanquah, N.N. and Dunlop, J. (2004) Deploying a middleware architecture for next generation
mobile systems. In: UNSPECIFIED.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9039054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Deploying A Middleware Architecture for Next Generation Mobile Systems

N Amanquah and J Dunlop
University of Strathclyde -Department of Electronic and Electrical Engineering, Glasgow G1 1XW, Scotland

Phone: +44 141 5482081, Fax:+44 141 5524968,
e-mail: {nathan.amanquah, j.dunlop}@strath.ac.uk

Abstract: Although 2G systems quite adequately
cater for voice communications, the demand today
is for high-speed access to data centric applications
and multimedia. Future networks have been
designed to provide higher rates for data
transmission, but this will be complemented by
higher speed access to services via hotspots using
secondary wireless interfaces such as Bluetooth or
WLAN. With a wide range of applications that may
be developed, a growing number of short range
wireless interfaces that may be deployed, and with
mobile terminals of different capabilities, a means to
integrate all these variables in order to facilitate
provision of services is desirable. This paper
describes an architecture involving the use of
middleware that makes software development
independent of the specific wireless platform. The
advantages of this approach are also presented.
Sample applications for use in next generation
systems were implemented on a testbed and features
of these have been described. The method described
is a standardised approach for service execution in
mobile systems, independent of radio interface
involved.

1. Introduction
Next generation networks are expected to feature

data and multimedia application sessions that require
transmission rates much higher than currently
achievable using the GSM interface. To complement
this drive towards the delivery of high-speed services,
hotspots have commenced to be deployed, which
feature high speed short-range [1] wireless connections.
These are aimed at high data rate applications,
primarily access to the Internet, email, and sometimes
to remote corporate data-based applications, and
ultimately to multimedia content. Several wireless
technologies exist for providing such connectivity. One
notable example is the Bluetooth [2] wireless interface,
which has a small form factor, and lower power
consumption, and hence is targeted towards small hand
held mobile devices. Although originally billed as a
cable replacement technology, it is also capable of
supporting such data sessions, as well as audio. Other
wireless interfaces include the IEEE 802.11 series of
standards, HiperLAN, and InfraRed.

Short range wireless has a significant role to play in
the delivery of high speed services in next generation
mobile communications. It is evident that to develop
next generation services for more than one wireless
interface will require knowledge of the workings of the
particular target platform, and will make an application
less portable. Nevertheless, that is not a sufficient
requirement. It is necessary to be able to locate or
discover what services are on offer, and to be able to

access them, without requiring significant effort on the
part of a user. With respect to service providers, an
open framework where services can be developed and
deployed without requiring knowledge of a specific
wireless platform would be particularly useful.
Furthermore, standardised procedures for interaction
between distributed objects and an architecture that can
integrate disparate objects in order to deliver a more
useful service would be desirable. This is a role filled
by middleware in conjunction with service discovery
protocols.

In this work, Bluetooth has been selected as a
sample wireless interface in a testbed. A middleware
based architecture is described and demonstrated on the
testbed, but may well be implemented on other wireless
platforms. This serves to illustrate some aspects of next
generation networks and services. It will be a win-win
situation both for application developers (including
third party developers), hardware vendors and users
alike. Although Bluetooth has a short transmission
range, for most of the services described or expected,
this distance is adequate. [6] describes a successful
deployment of specific services over Bluetooth, but
only provided access to local services, and was for the
Bluetooth interface only. This paper in contrast
examines an architecture for deploying services over
any short range wireless platform, Bluetooth has only
been used as a sample for demonstration. First, an
overview of next generation services is given, followed
by a description of the testbed, and the proposed
architecture. A sample deployment, together with the
software is examined, and lessons therefrom are
outlined in the conclusion. It is shown that middleware
can be employed to abstract the wireless interface,
while integrating distributed service components.

2. Overview of Services
Several types of services can be envisioned. One

useful primary service is having access to the Internet,
and to email from any location at a reasonable data
transmission rate. Clients will prefer to access such
high speed services via access points at wireless
enabled information kiosks, public phone booths acting
as access points, and from similar hotspots in airport
terminals, train stations and banking halls –indeed
wherever people aggregate and tend to have to wait for
some other service. Such situations are ideal because
clients remain almost stationary for long enough to
establish a session to obtain the information required-
for the entire li fe cycle of a session; a complete
transaction. Hefty data or multimedia files may be
downloaded faster and more cheaply during such
sessions than over the GSM interface. For others, the
desired service will be a location-based service. It may
often take the form “where am I” and “where is the

nearest XYZ” . Yet another category of services
requires interaction between a client application and a
remote server/service. This runs the gamut of services
to satisfy a variety of client needs comprising services
such as booking or checking flight times, activating an
alarm system at a user’s home, monitoring the location
of a child, or updating a corporate database. All such
scenarios can make good use of an access point
conveniently located, with its own power supply and
connection to the Internet or other communications
network. Such services may be classified broadly as
infrastructure network dependent services.

At the other end of the spectrum, infrastructureless
networks can be established and some applications can
still make use of these. The wireless network interfaces
are capable of forming a network without the presence
of a wired access point. Chat applications and file
sharing schemes can make use of such peer to ad hoc
peer networks. Users sitting in a bus on a journey for
example can exchange information or chat by seeking
out and establishing sessions with will ing participants.

3. Middleware Testbed Description
Middleware Technology [4][8][9] is the architecture

and specification for creating, distributing, and
managing distributed program objects in a network.
Distributed object computing extends an object-
oriented programming system by allowing objects to be
distributed across a heterogeneous network, so that
each of these distributed object components inter-
operate as a unified whole. These objects may be
distributed on different computers throughout a
network, living within their own address space outside
of an application, and yet appear as though they were
local to an application. The distributed objects may be
components of the service, or objects to facilit ate the
management of qualitative and quantitative aspects of
QoS. In order to make use of services available at an
access point, the service must first be located after a
wireless connection has been established. Such actions
require the use of a service discovery protocol [7][10].
Furthermore, provision should exist for a user to
download a client application if one is not available for
the desired service.

For this testbed, Java RMI (remote method
invocation) is the preferred middleware platform. Jini is
employed as the service discovery protocol. Jini is
itself based on Java RMI, a veritable middleware
platform. Another reason for using Jini, in this proof of
concept deployment on the testbed, is its tight
integration with the Java programming language. It is
quite straightforward to write Jini enabled Java
applications. Furthermore, the compile once run
everywhere paradigm of Java makes it convenient for
client terminals to download a single copy of a client
application, which will run on their hardware. Besides,
with Java enabled mobile devices and software already
on the market, it is positioned as a potential favourite
platform for application development. Jini and RMI
require the definition of an interface (a set of functions)
between the client and the service. By separating the
service interface from the implementation, different

implementations can be provided for the same interface
to suit the client' s capabiliti es. This is desirable in order
to provide context aware QoS. The same server side
code will run but be presented differently according to
the capabiliti es of the device. Jini' s real strength is the
abili ty to distribute platform independent executable
code to the client that requires a service. It must be
emphasised however that this work is not about
mapping Java services to Bluetooth [11], but rather
abstracting the application from whatever wireless
interface is used.

4. Middleware Architecture
The middleware testbed incorporates a number of

individual components that work together to provide a
Jini service over a wireless interface (in this case
Bluetooth). The interactions are depicted in Figure 1
The components are described in the subsequent
sections. Middleware provides the isolating layer of
software that shields an application from the
complexities of a heterogeneous environment at the
network layer and below.

The middleware testbed makes use of a distributed
framework that provides extensions to the Java RMI
middleware, and makes use of the Jini architecture for
service discovery. It makes extensions to it to facilit ate
delivery of services in a uniform way, and to aid
interoperabili ty between services, and leverage devices
in ways that they were not originally envisaged. This
functionali ty is provided as a Java Class. Attributes
required by all services are also specified in one class.
The advantage of using a standard class is that it can be
extended to provide further attributes desired by a
service provider, but the basic class will remain the
same. Any descendant class will still have the class
members needed for the proper operation of
middleware. The Middleware Toolkit has being
implemented predominantly as a collection of Java
classes and a set of ancill ary functions to enable
connectivity, and other desirable functionality.

The architecture proposed will allow third party
developers to create applications independently,
without significant regard for a specific target wireless
interface by making use of the middleware toolkit.
Support of applications created by third party
developers is one factor that made Japan’s iMODE a
success and is a desirable feature to be supported.
Middleware comes between the client application and
the underlying hardware or wireless interface. A
developer will not need to know the intricacies of the
operation of any specific wireless platform, or its
protocol stack. That nevertheless does not prevent a
client application from making direct calls to the
wireless interface if such is its design, although such an
application will be rendered less portable between
different wireless interfaces. Both types of applications
may co-exist on a wireless terminal.

With this architecture, client applications will
interact uniformly with middleware on the client-to-
middleware interface uniformly, irrespective of the
underlying interface. On the middleware-to-wireless
API interface, the implementation of middleware calls

would be platform specific. For example, calls to
establish a session in Bluetooth will differ from that for
wireless LAN or other wireless interface, but will have
the same API definition and achieve the same effect. In
fact, for this testbed, work began before the completion
of JSR-82 specification [5] for Bluetooth-Java
interaction. Accordingly, a proprietary Bluetooth-Java
interface has been defined. To make use of the JSR-82
definitions, or to replace the Bluetooth interface with
HomeRf or Wireless LAN, would simply involve
changing the implementation of the middleware-to-
wireless interface, without affecting any of the
applications previously written. Applications will
operate correctly provided they have not been written
to bypass the middleware. A bypass is not a desirable
attribute, although it is permitted for flexibility. This
does not make for portability. The role of middleware
is to effectively mask the underlying hardware from the
application developer.

BT-link

BT-API

Client-side Middleware

Client

C
lie

nt

A
pp

li
ca

tio
n

BT-link

BT-API

Server-side Middleware

Service

Se
rv

ic
e

A
pp

li
ca

tio
n

Ji
ni

 L
oo

ku
p

S
er

vi
ce

Su
pp

or
t s

er
vi

ce
s

fo
r

Ji
ni

ar

ch
ite

ct
ur

e
eg

 R
M

IC

H
T

T
P

 se
rv

ic
e

 &

do
w

nl
oa

da
bl

e
 c

li
en

ts

Fixed Network or AP

Access Point

Figure 1 Middleware architecture to enable independence between
wireless platform and applications

The middleware toolkit includes such functionali ty
common to all wireless platforms and to next
generation applications such as methods to establish a
connection, or to tear it down, functions to determine
what capabiliti es a mobile terminal has, in order to
present a service in the proper context, and procedures
to return location information if required. There are
also methods to return discovered services and their
attributes or to search attributes of services, as well as
functions to located nearby wireless terminals. The
toolkit also facilitates retrieval of the client executable
from a URL. This is just a sample of available
functionali ty.

5. Middleware Testbed: Software
Components

The present work makes use of a proprietary Java-
Bluetooth API and a middleware toolkit, above which
client applications or services sit. It demonstrates the
interaction between client and service applications and
the middleware. Interaction between middleware and
the wireless interface is also demonstrated.
Furthermore, most Jini client or Jini service
applications would share a number of common
functions. This boiler plate functionali ty has been put
together into “wrapper” applications, for clients and for
services, making it faster to create other applications
for the testbed. Two email clients and a service have
been created to ill ustrate these as in Figures 2 to 4.

The email clients and service demonstrates certain
features of next generation services available via access
points:

The client is thin and is agnostic to the underlying
connection between it and the service. It will run well
on both a wired and wireless interface. Because the
target environment would be wireless, data passed
between the client and service is kept to the minimum
possible, to give the user a responsive experience.

Figure 2 Sample Email Service

Figure 3 Graphical User Interface for Email Client

Figure 4 Text-based User Interface for Email Client

The Jini service however is not constrained by size.
It has all the functionality required to provide the
service. It can be a much bigger application than the
client, including all the supporting libraries. For
example, the email service on this test bed is in effect
an email client application. This requires knowledge of
how to interact with POP and SMTP servers, and how
to handle mail received generally. This functionality is
incorporated in the program by making use of JavaMail
API, and JavaBeans Activation Framework- both
extensions to the Java 2 Platform, Standard Edition

(J2SE) [3]. The JavaMail API provides a set of abstract
classes that model a mail system. These extra libraries
are altogether only about 600KB in this case, but for
other types of services or applications, could be much
bigger. It could be much bigger than a typical mobile
device would handle. However, this presents no
problem because all these libraries would be hosted on
an access point. All a client has to be able to do is to
know how to exchange messages with the Jini email
service using Java RMI. The client need not know how
to contact a normal mail server, nor associated
protocols. This will be carried out on its behalf by the
Jini mail service. The client must simply display the
information returned, or pass new messages to be sent
on its behalf.

A simple interface between the Jini mail service and
client is defined, incorporating a few functions to
provide interaction between the two. It is possible to
create applications for clients targeted at devices with
different capabiliti es, while preserving the interface
between the client and the service. The client can thus
be a text based one or an enhanced graphical interface.
The client implementation would depend to a large
degree on the capabiliti es of the target mobile device.
Indeed, multiple implementations may be provided by
the service provider, and made available for
downloading to client terminals by an HTTP/FTP
server. A client terminal that locates the Jini lookup
service can determine what services are available. The
user can then decide to download an appropriate client
application, depending on the capabiliti es of the
terminal. All the clients would use the same object
interface. Alternatively, using the Jini paradigm, the
user interfaces can be incorporated in the service, and
the appropriate one is downloaded to a client at run
time, depending on its capabili ty. This testbed
ill ustrates both a Graphical user interface and character
based clients that access the same services, but targeted
towards devices of different capabiliti es.

All access points are started up first, followed by all
software services. The Jini Lookup service and
supporting services are started. Next a utili ty
application based on the middleware toolkit is started,
followed by any application services that users may
want to use. Jini services look for and register with the
lookup service, so that any clients that find the lookup
service can interrogate it for a proxy of a desired
service. With a proxy in hand, a client can then interact
with the service directly. One role of middleware in this
instance is also to retrieve information about services
registered with the Jini lookup service and register it
with the Bluetooth’s native service discovery protocol
(SDP). It serves as a bridge. In principle, this could
have been another Service discovery protocol service,
in which case middleware will fill the role of a
translation and mapping service between Jini and the
other service discovery protocol. In the latter case, it
would be possible for a client using a different service
discovery to identify and make use of a Jini service.

A set of parameters have been defined, which
provide basic information on all services, and is useful
for providing context, location and quali ty of service
information. It is expected that all applications

implement these properties. These parameters form one
Java class, the SDPEntries, which is registered with the
Jini lookup service as an attribute of the service. On
creation of the service, the service provider supplies
values for these properties. At runtime, the values can
be specified by a user interface. These values are
retrieved during service discovery, and provide useful
information on the hierarchical categorisation of
registered services. It makes for easy browsing of
services. Information is provided on where to obtain a
downloadable client, as well as where this access point
is located, thus facilitating the presentation of location
based information. These basic attributes are given in
Table 1 along with a brief description of what each
parameter represents. Figure 5 also il lustrates a sample
implementation of this class for the Email Service.
 These attributes have a two fold purpose. Service
providers implement this class with their applications,
which get registered with the look up service so that all
relevant data is supplied to the lookup service. Then the
server-side middleware can extract this information and
package it for the client side middleware, to facilitate
speedy service discovery. If a second service discovery
protocol is in use, the server side middleware is
responsible for registering these values with it.

Fields of SDP
Entries

Description

Class-
Hierarchy

Provider defined hierarchy in relation
to other services.

ServiceName Name of the service
Service-
Description

A brief description of the service

ProviderName Name of service provider
Location Geographical Location of this service
Category Class of QoS that characterises this

service.
ServiceID Unique ID for this service.
Lookup-
ServerIP

IP address of Lookup Service – May
be local, optional

AccessPointIP IP address of access point. May be
local, optional

ClientExecut-
ableURL

Downloadable executable for this
service

IconURL An Icon for use by Bluetooth for this
service

Table 1 SDPEntries Class attributes

Figure 5 Sample Implementation of SDPEntries object by Email
Server

6. Client terminal
The testbed presently demonstrates that the client

application can be written entirely independently of the
underlying wireless interface. Furthermore, being a
Java-based application, this will run on any platform
with a Java virtual machine. Certainly, consideration
would have to be given to using what Java functionality
is available in limited versions of Jini such as the Java
2 Micro Edition (J2ME) for small mobile terminals. It
is assumed that when developing applications for such
an environment, the appropriate substitute objects for
what is not available in the limited versions would be
employed.

On the client terminal is also located a utili ty
application based on the middleware toolkit, that
interacts with applications on one hand, and the
underlying wireless interface on the other (in this case
Bluetooth). This client-side middleware is responsible
for locating other nearby wireless devices or access
points, determining what services are available to the
remote device selected, and establishing a suitable
session with the AP. The user interface of the client
side middleware based utili ty makes it possible to
browse the services on the remote device. Based on the
services available at this access point the relevant client
application can be started. One important piece of
information returned during service discovery is the IP
address of the Jini Lookup server from which a
‘ registrar’ or proxy for the desired service can be
obtained. The IP address is useful for setting up a Jini
session because using the known IP address, the client
application can make a unicast request to the Jini
lookup service for the desired service’s proxy, in order
to be able to contact the service desired. This client side
middleware toolkit based utility works almost as an
extension to the operating system. It goes between the
client application and the underlying wireless interface.
It is also used to download the client application from
the remote device or AP if it is unavailable locally.
Nevertheless, a client application can bypass the client-
side middleware altogether, and make use of the Java-
Bluetooth API directly.

7. The Service
The service is written independently of the

Bluetooth interface. The service only is required to
implement the SDPEntries object with attributes, which
would be registered with the Jini lookup service. This
object describes various features of the service. The
server-side middleware interrogates the Jini lookup
server and identifies all objects with these attributes,
and can make this information available to a second
service discovery protocol. In this case, the server-side
middleware makes use of a Java Bluetooth API object
to write to the Bluetooth Service discovery protocol
database in a format that can be read by other Bluetooth
devices (even if such Bluetooth devices had no client-
side Jini middleware available on them). The service
can be of any size and complexity required to
accomplish the task and can be updated at any time
without modification to the clients, as long as the
interface between it and the client is preserved.

8. Supporting Services
A number of services, including a Jini Lookup

Server are deployed to create the Jini framework, as
well as to provide a means to download a client when it
is not available locally on the client device. These
services may run on the same host as the access point
or on another host. There may also be interaction
between the Jini service and other remotely located
services as need be, in order to fulfil its service
requirements.

9. What is demonstrated:
• Clients deployed on a mobile terminal can be made

very thin, and can be tailored to meet the
capabiliti es of the terminal. Any clients developed
to the same service interface can interact with the
bulky service to obtain the same desired results.

• Location independent client operation: The email
client on this testbed for example needs no
configuration changes when it establishes a
connection with an Access Point. The only
configuration made once for all t ime is specifying
what the user’s usual email settings are. On change
of network, other factors like IP address that
usually affect network access, no longer require
user intervention. Also any access point may be
used to access the service, without worrying about
the new network’s configuration (as long as there
is a route from the new AP offering the mail
service to the target mail server desired). An
identical scheme can be employed for a web
browsing service.

• There is a separation between application
development (client and service) and protocols for
the wireless interface.

• The use of multiple client user interfaces for the
same service, reflecting the context/capabiliti es of
the client terminal is supported.

• Service discovery is carried out in the Bluetooth
sphere (second service discovery protocol) and in
the Jini environment, as well as by purely RMI
based methods.

• Location dependent service have been
demonstrated on the testbed by extracting the
location in a building or post code of the access
point, and passing this on to a location service,
which returns relevant maps or information for this
location.

• Although this is geared towards infrastructure
networks, a chat application has been deployed on
the tested. The application can be downloaded to a
client which lacks it, and clients can engage in peer
to peer communications, by making use of
middleware to determine what other clients are
within range, and if they would be will ing
participants in this type of communications.

The middleware toolkit has been defined as an
extensible Java class. No user interface has been
predefined for use with the middleware toolkit. The
service provider will only need to make calls to its
member functions in order to obtain the effect desired.

The interface will remain the same for different
wireless interfaces, but the actual implementation of
each function can be overridden or extended to obtain
the desired effect. Thus it is possible to extend the
middleware toolkit to incorporate platform specific
quali ty of service management routines.

 One role of the middleware toolkit includes
retrieving information about services registered with
the Jini lookup service and registering it with a second
service discovery protocol i f present. (in this case
Bluetooth's native SDP).

Middleware functionality can be extended to provide
other qualitative and quantitative QoS support, without
affecting the basic functionality desired. The
middleware toolkit enables an application to be
oblivious of QoS management. Independence from the
underlying wireless platform is also provided by
middleware. Applications will only fail on a new
wireless platform when they have been written to
bypass the middleware architecture. It is recommended
that for IP based services, RMI be used for interactions
between the client application and the service. This
paper has presented a standardised methodology for
service execution in mobile systems which is
independent of the radio interface involved.

10. Acknowledgement
The work reported in this paper has formed part of

the WA1 area of the Core 2 Research Programme of
the Virtual Centre of Excellence in Mobile & Personal
Communications, Mobile VCE, www.mobilevce.co.uk,
whose funding support, including that of EPSRC, is
gratefully acknowledged. More detailed technical
reports on this research are available to Industrial
Members of Mobile VCE.

11. References:
[1] D. Leeper, “A long term-view of Short Range

Wireless” , IEEE Computer, p39-44, June 2001
[2] Bluetooth Special Interest Group, “The Bluetooth

Specifications” , www.bluetooth.com
[3] Sun MicroSystems, “Java 2 Platform, Standard

Edition (J2SE)” , http://java.sun.com
[4] Campbell AT, Coulson G, Kounavis ME,

“Managing Complexity: Middleware Explained” ,
IEEE IT Pro Magazine, September/October 1999
p22-28

[5] Java Community Process, “JSR 82 Java APIs for
Bluetooth” , Java Specification Requests,
http://www.jcp.org/en/jsr/detail?id=82

[6] R Kraemer, “Bluetooth Based Wireless Internet
Applications for Indoor Hot Spots: Experience of
a Successful Experiment during CeBIT 2001” ,
26th Annual IEEE Conference on Local Computer
Networks, Tampa, USA, November 14 - 16, 2001

[7] R. E. McGrath, “Discovery and its discontents:
Discovery protocols for ubiquitous computing” ,
Ubiquitous Computing, Department of Computer
Science University of Ill inois, Urbana-Champaign,
April 2000.

[8] M. B. Juric, I. Rozman, and M. Hericko,
“Performance Comparison Of Corba And Rmi” ,

Information and Software Technology Journal,
Elsevier Science, vol. 42, pp. 915{ 933, October
2000.

[9] G. S. Raj, “A detailed comparison of corba, dcom
and java/rmi” ,
http://my.execpc.com/~gopalan/misc/
compare.html, September 1998.

[10] G G Richard, “Service Advertisement and
Discovery: Enabling Universal Device
Cooperation” , IEEE Internet Computing, Sept-Oct
2000, p18-26

[11] J Dunlop, N Amanquah, “Mapping of Services on
Bluetooth Radio Networks” , In proceedings of
European Wireless 2002 Conference
(Florence),Vol 1,p69-74

